Enlarged Bound on the Measurability of Distances and Quantum κ -Poincarè Group

Giovanni AMELINO-CAMELIA

Theoretical Physics, University of Oxford, 1 Keble Rd., Oxford OX1 3NP, UK

ABSTRACT

When quantum mechanical and general relativistic effects are taken into account in the analysis of distance measurements, one finds a measurability bound. I observe that some of the structures that have been encountered in the literature on the Quantum κ -Poincarè Group naturally lead to this bound.

One of the greatest contemporary challenges for theoretical physics is posed by the incompatibility between Quantum Mechanics and (classical) General Relativity. It is likely that the solution of this puzzle, *e.g.* the construction of a quantum theory incorporating gravity, will require the development of a completely new understanding of physics and geometry. Hints on the structure of the sought new framework can come from the investigation of problems in which the incompatibility between Quantum Mechanics and General Relativity is more evident. Work in this direction has led to the expectation that in Quantum Gravity, unlike ordinary Quantum Mechanics, there might be bounds on the measurability of distances [1, 2, 3]¹.

The most commonly [1, 2] expressed expectation, mostly because of its relevance [2] for the popular critical string theory, is that there should be a *flat* (*i.e. L*-independent) bound on the measurability of a distance *L*

$$\min\left[\delta L\right] = L_P \,, \tag{1}$$

where L_P is the Planck length. (The distinction between the Planck length and the string length is inessential to the line of argument here presented.) Based on the expected inadequacy of ordinary space-time concepts for scales smaller than the Planck length, this can be considered as a minimal bound on the measurability of distances in Quantum Gravity. Within the critical string theory framework it has actually been possible to find indications[2] that (1) originates from the modified uncertainty relation

$$\delta x \,\delta P = \hbar + \frac{L_P^2}{\hbar} \,\delta P^2 \,. \tag{2}$$

As discussed in Ref.[3], an *enlarged* (more stringent and *L*-dependent) measurability bound is suggested by the observation that, once gravitational effects are taken into account, it is no longer possible to rely on the availability of *classical* agents for the measurement procedure (the limit of infinite masses leads to inconsistencies[3] associated with the formation of horizons). Based on this observation one arrives[3] at the measurability bound

$$\min\left[\delta L\right] = \sqrt{\frac{LL_P^2}{s}} , \qquad (3)$$

where s is a length scale characterizing the spatial extension of the devices (e.g., clocks) used in the measurement[3]. This bound is always larger than L_P for acceptable values[3] of s, *i.e.* $L_P \leq s \leq L$, and is maximal in the idealized scenario $s \sim L_P$, in which

$$\min\left[\delta L\right] = \sqrt{LL_P} \ . \tag{4}$$

A candidate modified uncertainty relation that is based on the general structure of (2), and is motivated by the analysis of Ref.[3] (upon disentangling the contributions of δx and δP to the final bound), is given by

$$\delta x \,\delta P = \hbar + \frac{c \,L_P^2}{\hbar} \frac{T^*}{s} \,\delta P^2 \,, \qquad (5)$$

¹I bring to the attention of the reader the Refs. [4, 5, 6], in which related issues have been discussed, although the structures identified in those studies are *gravitational corrections* [3], rather than measurability bounds.

where T^* is a time scale characterizing the process of observation of the system.

In this Letter, I observe that certain structures encountered in the literature on the Quantum κ -Poincarè Group naturally lead to *enlarged* measurability bounds of the type (3), although the deformed uncertainty relation responsible for the bound is not of the type (5).

I start by observing that the quantum κ -deformed Minkowski space[11, 12, 13]

$$[x_j, x_k] = 0 \tag{6}$$

$$[x_j, t] = \frac{x_j}{\kappa} , \qquad (7)$$

can be interpreted as implying that the uncertainties on x_j and t satisfy

$$\delta x_j \, \delta t \geq \frac{x_j}{|\kappa|} \,. \tag{8}$$

One can find the implications for measurability bounds of this deformed (obviously, in ordinary Quantum Mechanics $\delta x_j \, \delta t = 0$) uncertainty relation by analyzing simple procedures for the measurement of the distance L between (the respective centers of mass of) two bodies. As discussed in Refs.[3, 6, 7], this type of measurement is naturally carried out by exchanging a light signal between the two bodies. Assuming for simplicity that one of the two bodies is a clock, one can "attach non-rigidly" [3] to it a "light gun" (*i.e.* a device capable of sending a probe/signal when triggered) and a detector, and "attach non-rigidly" a mirror to the other body. The system would be set up so that a probe be sent toward the mirror when the clock reads the time $t^{(i)}$, and to record the time $t^{(f)}$ shown by the clock when the probe is detected by the detector after being reflected by the mirror. Clearly the time $T \equiv t^{(f)} - t^{(i)}$ provides a measurement ² of the distance L.

The relation (8) could have important implications for the analysis of such a measurement procedure. In fact, it can be interpreted as a relation between the uncertainty δt^* in the time when the probe sets off the detector and the uncertainty δx^* in the position of the probe at the time when it sets off the detector

$$\delta x^* \,\delta t^* \geq \frac{2L}{|\kappa|} \,. \tag{9}$$

Since both δx^* and δt^* contribute to the total uncertainty in the measurement of L,

$$[\delta L]_{tot} \ge \delta x^* + c \,\delta t^* \;, \tag{10}$$

the relation (9) implies that

$$\min[\delta L] \sim \sqrt{\frac{cL}{|\kappa|}}$$
 (11)

²For example, in Minkowski space and neglecting quantum effects one simply finds that L = cT/2, where c is the speed-of-light constant. Gravitational (geometrodynamical) effects would introduce a gravitational correction[3, 4, 5, 6] ΔL , but still the measurement of T would result in a measurement of L, based on $L = \Delta L + T/2$.

This reproduces the relation (4) upon appropriate association of the scale κ to the Planck scale. Actually it is also interesting to consider κ as a second fundamental scale (independent of L_P) of Quantum Gravity, perhaps to be put in relation with s of (3).

The fact that κ -Poincarè is naturally associated to *enlarged* bounds on the measurability of distances is also reflected in its generic prediction[11] of a deformed mass-squared operator, which in turn leads to a deformation of the Klein-Gordon equation. In particular, one of the deformations of the Klein-Gordon equation that have been considered in the κ -Poincarè literature[11, 12, 13] is of the same form of the deformation of the Klein-Gordon equation encountered in the Liouville String investigation reported in Ref.[9], and, just as observed in Ref.[9], leads to energydependent speeds for massless particles, ultimately resulting in a bound of the type (4) for the measurement of distances using massless probes[9].

While the case for *enlarged* bounds on the measurability of distances is certainly made stronger by the growing list of candidate Quantum Gravity phenomena which support them, much more work needs to be done in order to get to a satisfactory mathematical description of some of the relevant structures. Perhaps, the most prominent of such structures requiring mathematical work is the "time of arrival operator" [14] evoked (more or less explicitly) in the analysis here presented.

In the specific context of the quantum κ -deformed Minkowski space it is also important to clarify the physical meaning of the algebraic concept of noncommutative coordinates[11, 15, 16]. Once this is clarified, one might need to reconsider even the statement that the Eqs.(8) and (9) follow from Eq.(7). Moreover, although it does not pose a major obstruction for measurement analysis since a preferred frame is always identified by the laboratory (*e.g.*, I implicitly assumed above that the center of the frame coincided with the clock), the loss of ordinary translation invariance encoded in Eq.(7) certainly has deep implications which would be worth exploring.

The observations here made, when combined with the results of Refs.[3, 9], also raise the possibility of connections between κ -Poincarè and two other theoretical frameworks. In fact, the correspondence between the κ -analogue of the Klein-Gordon equation and the deformed Klein-Gordon equation discussed in Ref.[9] could be just one aspect of a reacher connection between the two relevant frameworks, *e.g.* the geometry underlying Liouville strings[8] might turn out to be associated to a quantum κ -deformed Minkowski space. Moreover, the comparison with the analysis of Ref.[3] provides motivation for the investigation of the relation between κ -Poincarè and quantum reference frames[17, 18, 19].

Acknowledgements

I am most indebted to J. Lukierski, for very useful conversations on κ -Poincarè and feed-back on a preliminary draft of this Letter. I also happily aknowledge conversations with L. Diosi, F. Lizzi, N. Mavromatos, and Y.J. Ng. This work was supported by funds provided by the European Union under contract #ERBCHBGCT940685 within the Human and Capital Mobility program.

References

- See, e.g., T. Padmanabhan, Class. Quantum Grav. 4 (1987), L107; M. Maggiore, Phys. Lett. B304 (1993), 65; S. Doplicher, K. Fredenhagen, and J.E. Roberts, Phys. Lett. B331 (1994), 39; L.J. Garay, Int. J. Mod. Phys. A10 (1995), 145; A. Kempf, G. Mangano, and R.B. Mann, Phys. Rev. D52 (1995), 1108.
- [2] G. Veneziano, Europhys. Lett. 2 (1986) 199; D.J. Gross and P.F. Mende, Nucl. Phys. B303 (1988) 407; D. Amati, M. Ciafaloni, G. Veneziano, Phys. Lett. B216 (1989), 41; K. Konishi, G. Paffuti, P. Provero, Phys. Lett. B234 (1990), 276.
- [3] G. Amelino-Camelia, Mod. Phys. Lett. A9, 3415 (1994); Mod. Phys. Lett. A11 (1996) 1411.
- [4] F. Karolyhazy, Il Nuovo Cimento A42 (1966) 390.
- [5] L. Diosi, B. Lukacs, KFKI-1989-52-B.
- [6] Y.J. Ng and H. Van Dam, Mod. Phys. Lett. A9, 335 (1994); Mod. Phys. Lett. A10, 2801 (1995).
- [7] E.P. Wigner, Rev. Mod. Phys. 29, 255 (1957); H. Salecker and E.P. Wigner, Phys. Rev. 109, 571 (1958).
- [8] J. Ellis, N.E. Mavromatos and D.V. Nanopoulos, Phys. Lett. B293 (1992), 37; Mod. Phys. Lett. A10 (1995), 425.
- [9] G. Amelino-Camelia, J. Ellis, N.E. Mavromatos, and D.V. Nanopoulos, hepth/9605211, Int. J. Mod. Phys. A (in press).
- [10] I.C. Percival and W.T. Strunz, quant-ph/9607011.
- [11] J. Lukierski, A. Nowicki, and H. Ruegg, Phys. Lett. B293 (1992) 344. For a review, see J. Lukierski, H. Ruegg, and V.N. Tolstoy, Lectures at Karpacz Winter School, Karpacz, Poland, Feb 14-26, 1994.
- [12] S. Majid and H. Ruegg, Phys. Lett. B334 (1994) 348.
- [13] J. Lukierski, H. Ruegg, and W.J. Zakrzewski, Ann. Phys. 243 (1995) 90.
- [14] C. Rovelli, quant-ph/9603021.
- [15] A. Connes, Non Commutative Geometry (Academic Press, 1994).
- [16] J. Wess and B. Zumino, Nucl. Phys. (Proc. Suppl.) 18B (1991) 302.
- [17] M. Toller, gr-qc/9605052.
- [18] C. Rovelli, Class. Quantum Grav. 8 (1991), 297; *ibid.* 8 (1991), 317.
- [19] J.D. Brown and D. Marolf, Phys. Rev. D53 (1996), 1835.