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Forecasting new product penetration with flexible
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Abstract

We describe and apply choice models, including generalizations of logit called ‘mixed
logits,’ that do not exhibit the restrictive ‘independence from irrelevant alternatives’
property and can approximate any substitution pattern. The models are estimated on
data from a stated-preference survey that elicited customers’ preferences among gas,
electric, methanol, and CNG vehicles with various attributes. ( 1999 Elsevier Science
S.A. All rights reserved.
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1. Introduction

By far the most popular econometric models for forecasting demand for new
products are logit and nested logit (McFadden, 1973, 1978; Ben-Akiva and
Lerman, 1985). While computationally convenient, these models exhibit the
well-known and restrictive ‘independence from irrelevant alternatives,’ or iia,
property. Logit exhibits the property over all alternatives while nested logit
exhibits it over alternatives within each nest. This property states that the ratio
of the probabilities for any two alternatives is independent of the existence and
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PII: S 0 3 0 4 - 4 0 7 6 ( 9 8 ) 0 0 0 5 7 - 8



attributes of any other alternative. As a result of this property, the models
necessarily predict that a change in the attributes of one alternative (or the
introduction of a new alternative, or the elimination of an existing alternative)
changes the probabilities of the other alternatives proportionately, such that the
ratios of probabilities remain the same. This substitution pattern can be unreal-
istic in many settings. For example, consider the introduction of electric cars, as
examined, e.g., by Train (1980, 1986) and Brownstone et al. (1996). The logit
model predicts that, among households with the same observed characteristics,
the electric vehicle will draw the same proportion of households from large
luxury gas cars as from small gas cars. However, if the electric car is similar in
size to a subcompact gas car, one might expect the electric car to draw
disproportionately from different classes of vehicles, with, for example, house-
holds who would have chosen a subcompact gas car switching more readily to
the electric car than households who would have chosen a large gas car. More
fundamentally, identification of the correct substitution pattern is an empirical
issue, and the iia property of logit and nested logit imposes a particular
substitution pattern rather than allowing the data analysis to find and reflect
whatever substitution pattern actually occurs.

In this paper, we describe and estimate models for new product forecasting
that can represent very general patterns of substitution. We first provide a gen-
eral specification that distinguishes several types of models, particularly mixed
logits with various structures and probits. These specifications have been known
(citations given below), though perhaps not described in the same manner. More
importantly, there have been few applications, particularly of mixed logits. We
apply the models to data from a stated-preference survey on households’ choices
among gas, methanol, CNG, and electric vehicles.

2. Specification

A person faces a choice among J alternatives. Without loss of generality, the
person’s utility from any alternative can be decomposed into a nonstochastic,
linear-in-parameters part that depends on observed data, a stochastic part that
is perhaps correlated over alternatives and heteroskedastic over people and
alternatives, and another stochastic part that is independently, identically dis-
tributed (iid) over alternatives and people. In particular, the utility from alterna-
tive i is denoted º

i
"b@x

i
#[g

i
#e

i
] where x

i
is a vector of observed variables

relating to alternative i and the person; b is a vector of parameters to be
estimated which are fixed over people and alternatives; g

i
is a random term with

zero mean whose distribution over people and alternatives depends in general
on underlying parameters and observed data relating to alternative i; and e

i
is

a random term with zero mean that is iid over alternatives, does not depend on
underlying parameters or data, and is normalized to set the scale of utility.
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Stacking the utilities, we have: º"b@X#[g#e] where »(e)"aI with known
(i.e., normalized) a and »(g) is general and can depend on underlying parameters
and data. For standard logit, each element of e is iid extreme value, and, more
importantly, g is zero, such that the unobserved portion of utility (i.e., the term in
brackets) is independent over alternatives. This independence gives rise to the iia
property and its restrictive substitution patterns. We consider below models
that allow correlation and heteroskedasticity.

2.1. Mixed logit: General distribution for g and extreme value for e

Let each element of e be iid extreme value as for standard logit; however, allow
any distribution for g. Denote the density of g as f (gDX) where X are the fixed
parameters of the distribution. Given the value of g, the conditional choice
probability is simply logit, since the remaining error term is iid extreme value

¸
i
(g)"exp(b@x

i
#g

i
)N+

j

exp(b@x
j
#g

j
). (1)

Since g is not given, the (unconditional) choice probability is this logit formula
integrated over all values of g weighted by the density of g

P
i
"P¸i

(g) f (gDX) dg. (2)

Models of this form are called ‘mixed logit’ since the choice probability is
a mixture of logits with f as the mixing distribution. The probabilities do not
exhibit iia and different substitution patterns are attained by appropriate speci-
fication of f.

The choice probability cannot be calculated exactly because the integral does
not have a closed form in general. The integral is approximated through
simulation. For a given value of the parameters X, a value of g is drawn from its
distribution. Using this draw, the logit formula ¸

i
(g) is calculated. This process

is repeated for many draws, and the average of the resulting ¸
i
(g)@s is taken as the

approximate choice probability:

SP
i
"(1/R) +

r/1,2, R

¸
i
(gr), (3)

where R is the number of replications (i.e., draws of g), gr is the rth draw, and SP
i

is the simulated probability that the person chooses alternative i. By construc-
tion, SP

i
is an unbiased estimate of P

i
for any R; its variance decreases as

R increases. It is strictly positive for any R, such that ln(SP
i
) is always defined,

which is important when using SP
i
in a log-likelihood function (as below). It is

smooth (i.e., twice differentiable) in parameters and variables, which helps in
the calculation of elasticities and especially in the numerical search for the
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1Note that even though SP
*
is unbiased for P

*
, ln(SP

*
) is a biased estimator of ln(P

*
) for finite R,

such that simulator induces bias in the log-likelihood function. This bias decreases as R increases
and, as stated, when R increases faster than the square root of the number of observations,
disappears asymptotically. While we utilize maximum simulated likelihood (MSL) estimation, as do
all the empirical studies cited below, other forms of parameter estimation could be applied, such as
method of simulated moments (MSM), method of simulated scores, or Gibbs resampling. See, e.g.,
McFadden and Ruud (1994).

maximum of the likelihood function. The simulated probabilities sum to one
over alternatives, which is useful in forecasting.

The choice probabilities depend on parameters b and X, which are to be
estimated. Adding subscript n to index sampled individuals and denoting the
chosen alternative for each person by i, the log-likelihood function +

n
ln(P

ni
) is

approximated by the simulated log-likelihood function +
n
ln(SP

ni
) and the

estimated parameters are those that maximize the simulated log-likelihood
function.1 Lee (1992) and Hajivassiliou and Ruud (1994) derive the asymptotic
distribution of the maximum simulated likelihood estimator based on smooth
probability simulators with the number of replications increasing with sample
size. Under regularity conditions, the estimator is consistent and asymptotically
normal. When the number of replications rises faster than the square root of the
number of observations, the estimator is asymptotically equivalent to the
maximum likelihood estimator.

The earliest applications of mixed logit were apparently the automobile
demand models of Boyd and Melman (1980) and Cardell and Dunbar (1980).
These researchers used aggregate, market-share data rather than customer-
specific choice data. As a result, the computationally difficult integration for the
choice probabililities (which in their case where shares) needed to be performed
only once rather than for each customer in a sample. Recent applications (cited
below) have used customer-specific data. These applications have placed various
structures on the mixed logit specification, or, more precisely, on the specifica-
tion of f. In Section 3 below, as in Train (1995) and Ben-Akiva and Bolduc
(1996), we specify an error-components structure: º

i
"b@x

i
#k@z

i
#e

i
where

k is a random vector with zero mean that does not vary over alternatives and
has density g(kDX) with parameters X; z

i
is a vector of observed data related to

alternative i; and e
i
is iid extreme value. This is a mixed logit with a particular

structure for g, namely, g
i
"k@z

i
. The terms in k@z

i
are interpreted as error

components that induce heteroskedasticity and correlation over alternatives in
the unobserved portion of utility: E([k@z

i
#e

i
] [k@z

j
#e

j
])"z

i
@»(k)z

j
. Even if

the elements of k are uncorrelated such that »(k) is diagonal, the unobserved
portion of utility is still correlated over alternatives.

In this specification, the choice probabilities are simulated by drawing values
of k from its distribution and calculating g

i
"k@z

i
. Insofar as the number of error

components (i.e., the dimension of k) is smaller than the number of alternatives

112 D. Brownstone, K. Train / Journal of Econometrics 89 (1999) 109–129



2By ‘analog’ we mean that the mixed logit contains the same pattern of correlation as a nested
logit, namely, equal correlation between all pairs of alternatives within a nest and no correlation
over alternatives in different nests. The models are not exactly the same because the distributions are
different: unobserved utility in a nested logit follows a generalized extreme value distribution which
cannot be obtained exactly as the sum of several random variables. However, as mentioned below,
the proof of McFadden and Train (1996) indicates that a mixed logit can approximate a nested logit
arbitrarily closely.

3 In the terminology of nested logit models, this is equivalent to restricting the ‘log-sum coeffi-
cients’ to be the same for all nests.

(the dimension of g), placing an error-components structure on a mixed logit
reduces the dimension of integration and hence simulation that is required for
calculating the choice probabilities.

Different patterns of correlation, and hence different substitution patterns, are
obtained through appropriate specification of z

i
and g. For example, an analog2

to nested logit is obtained as follows. The alternatives are grouped into K nests,
labeled k"1,2, K. For nest k, define a dummy variable dk

i
that equals 1 if

alternative i is in nest k, and zero otherwise. Define z
i
as the vector composed of

these dummy variables: z
i
"Md1

i
,2, dK

i
N@. Finally, specify k to be a vector of

K iid deviates, such that »(k) is diagonal with elements p
k
, k"1,2, K. Then

the unobserved portion of utility is correlated for any two alternatives within
a nest and uncorrelated for alternatives in different nests: for any iOj,
E[(k@z

i
#e

i
)(k@z

j
#e

j
)]"p

k
if i and j are in nest k, and "0 if i and j are in

different nests. The pattern of correlation is therefore the same as in a nested
logit. Constraining the elements of k to have the same variance, i.e., p

k
"p for all

k, is analogous to restricting the correlations within a nested logit model to be
the same for all nests.3 In both cases, the correlation is the same within all nests.
Overlapping nests can be handled by allowing alternatives to enter more than
one nest in the definition of z

i
.

Mixed logits with error-components are more general than their specification
and our illustration with nested logit might immediately suggest. Importantly,
McFadden and Train (1997) show that any random utility model can be
approximated arbitrarily closely by a mixed logit with an error-components
structure and appropriate choice of the z

i
’s and g. This result differs critically

and is stronger than the ‘mother logit’ theorem, which states that any choice
model can be approximated by a model that takes the form of a standard (i.e.,
non-mixed) logit (McFadden, 1975; Train, 1986, pp. 21—24.) In the mother logit
theorem, any choice model can be expressed as a standard logit if attributes of
one alternative are allowed to be entered in the ‘representative utility’ other
alternatives. However, when cross-alternative attributes are entered, the logit
model is no longer a random utility model (i.e., is not consistent with utility
maximizing behavior and cannot be used for welfare analysis) since the utility of
one alternative depends on the attributes of other alternatives. In the theorem
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4Allenby and Lenk include autocorrelated additive error terms in addition to random parameters.

regarding mixed logits, any random utility model can be approximated by
a mixed logit with an error-components structure without entering cross-
alternative variables, or, more precisely, while still maintaining the mixed logit
as a random utility model.

Most recent empirical work with mixed logits has been motivated by a ran-
dom-parameters, or random-coefficients, specification (Allenby and Lenk,
1994;4 Bhat, 1996a, b; Mehndiratta, 1996; Revelt and Train, 1998; Train, 1998).
The difference between a random-parameters and an error-components speci-
fication is entirely interpretation. In the random-parameters specification, the
utility from alternative i is º

i
"b@x

i
#e

i
where coefficients b are random with

mean b and deviations k. Then º
i
"b@x

i
#[k@x

i
#e

i
], which is an error-

components structure with z"x. Elements of x that do not enter z can be
considered variables whose coefficients do not vary in the population. And
elements of z that do not enter x can be considered variables whose coefficients
vary in the population but with zero means.

Other types of mixed logits have also been used. Elrod (1988) and Erdem
(1995) provide a factor-analytic structure to g. This specification is the same as
the error-components described above with the important difference that the z

i
’s

are estimated (subject to normalization) rather than being observed variables.
Ben-Akiva and Bolduc (1996) specify a ‘general autoregressive’ error structure,
under which each g

i
is correlated with each other g

j
for all jOi with the

covariance being proportional to weights associated with each i—j pair. This
set-up is particularly useful for spatial choice models (such as destination choice
for travel and shipping), with the weight for any two locations reflecting the
distance between the them.

Ben-Akiva and Bolduc (1996) use the term ‘probit with a logit kernel’ to describe
any model where g is normally distributed but the elements of e are iid extreme
value. This term is instructive since it points out that the distinction between pure
probit models (with all components of the error being normal) and mixed logits
with a normal mixing distribution (where all error components are normal except
the final component which is iid extreme value) is conceptually minor and might
be empirically indistinguishable. Unlike pure probits, however, mixed logits can
represent situations where g is not normal, as might arise when random coeffi-
cients must take a particular sign (such as a price coefficient that must be negative
for all people) such that the unrestricted range of the normal is inappropriate.

2.2. Mixed probits: General distribution for g and standard normal for e

When the elements of e are iid standard normal, then a family of models
arises that is analogous to that discussed above for extreme value e and with
estimation performed by the same type of simulation. However, a mixed probit
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5This is essentially the Stern (1992) simulator generalized to allow for non-normal distributions
of g.

requires one additional dimension of simulation relative to a mixed logit (Train,
1995.) In particular, the probability of alternative i conditional on g is
Prob(b@x

i
#g

i
#e

i
'b@x

j
#g

j
#e

j
∀jOi)"Prob(e

j
!e

i
(b@(x

i
!x

j
)#g

i
!g

j∀jOi). In a mixed logit, this probability is the logit formula; however, in
a mixed probit, it is a multi-dimensional integral since e

j
!e

i
is correlated over

j’s due to the common influence of e
i
. Conditional on g and e

i
, the conditional

choice probability for a mixed probit, labeled M
i
(g, e

i
), is a product of univariate

cumulative normals, which is easy to calculate: M
i
(g, e

i
)"

P
jEi

U(b@(x
i
!x

j
)#g

i
!g

j
#e

i
), where U is the standard normal distribution.

The choice probabilities for a mixed probit are therefore simulated as
SP

i
"(1/R)+

r/1,2, R
M

i
(gr, er

i
).5 Conditioning on e

i
adds an extra dimension of

simulation relative to mixed logit; therefore, unless there is a reason to expect
e to be normal instead of extreme value, assuming e to be extreme value seems
preferable on pragmatic grounds for general distributions of g.

2.3. Pure probits: Normal g and standard normal for e

When g is normal as well as e, then the model is a pure probit and simulation
methods that have been developed for probits can be utilized. The model can be
characterized as º

i
"b@x

i
#m

j
where the vector of unobserved utility compo-

nents m"(m
1
,2, m

J
)@ is distributed normal with zero mean and covariance

matrix ". Given our notation, m
i
"g

i
#e

i
, and any of the structures given above

can be placed on g (provided the distributions are normal), which gives a struc-
ture to ". Hajivassiliou et al. (1992) describe and compare, using Monte Carlo
methods, several probit simulators. These simulators differ structurally from the
simulator described above for mixed logits. In particular, the probit simulators
are based on draws of m (or more precisely, on draws of the difference between
m
j
for each non-chosen alternative and m

i
for the chosen alternative) while the

mixed logit simulator is based on draws of the random terms that compose g.
The probit simulators draw from a (J!1)-dimensional distribution of utility
differences, while the mixed logit simulator draws from a mixing distribution
whose dimension is determined by the specification of the model.

Hajivassiliou et al. (1992) found the GHK simulator (due to Geweke, 1991;
Hajivassiliou and McFadden, 1990; Keane, 1990) performed better than other
probit simulators for the specifications that they examined. To our knowledge,
there has been no comparison of probit simulators with the simulator for
mixed logit with normal g. (As stated above, these are essentially the same
models, with the only difference being that the iid term is normal in the pure
probit and extreme value in this version of the mixed logit.) We provide
a comparison on our data set. However, the advantages and limitations of
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6Respondents were also asked to state their second choice. We did not utilize the second-choice
data in our analysis. Logit models estimated on the first and second choice responses yielded
essentially the same parameter estimates with only slightly smaller standard errors. Also, the
inclusion of two choices for each respondent makes the estimation of mixed logits and pure probits
somewhat more complicated (so as to incorporate the correlation in unobserved factors over the two
choices) and increases the computer time required for estimation by considerably more than twice.
See Revelt and Train (1998) and Train (1998) for estimation of mixed logits with repeated choices for
each decisionmaker.

each depend on the specific situation. For example, in situations where the
dimension of the mixing distribution is less than the number of alternatives (as in
Train, 1998, which had 59 alternatives and seven error components), the mixed
logit simulator might have an advantage simply because the simulation is over
fewer dimensions. The opposite occurs when the dimension of the mixing
distribution exceeds the number of alternatives (as in Revelt and Train, 1998).

In the following section we estimate: (1) a mixed logit with an error-compo-
nents structure and normally distributed g, (2) a pure probit with the same
structure, and (3) a mixed logit with some elements of g being non-normal.
Before describing the models, we describe the data that were used in estimation.

3. Estimated models

3.1. Data

We utilize the survey data collected and described by Brownstone et al.
(1996) on households’ attitudes and preferences regarding alternative-fuel
vehicles. Their sample was identified using pure random digit dialing, geo-
graphically stratified into 79 areas covering most of urbanized California. An
initial computer-aided telephone interview (CATI) was completed for each of
7387 households. This initial CATI collected information on household struc-
ture, vehicle inventory, housing characteristics, basic employment and commut-
ing for all adults, and the household’s intended next vehicle transaction.

The data from the initial CATI were used to produce a customized mail-out
questionnaire for each sampled household. This questionnaire contained
a stated preference (SP) discrete-choice experiment. SP data have been used
extensively in marketing and demand studies, especially for new products for
which historic data on market choices are unavailable (see, e.g., Green and
Srinivasan, 1990; Hensher, 1992; Louviere, 1994.) An example SP task from the
questionnaire is given in Fig. 1. Three hypothetical vehicles with different fuel
types were described, each of which was available in either of two different body
types. The respondents was asked to choose among the six options.6 There were
four possible fuel types (gasoline, compressed natural gas, methanol, and
electric), three of which appeared in each SP question. There were 10—12
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Fig. 1. Vehicle choice survey question.

attributes per vehicle per choice set, depending upon the fuel type of the vehicle.
Four levels were used to cover the range of most attributes. Variation in the
attribute levels was obtained through an orthogonal main effects design. Re-
spondents were specially instructed to treat all non-listed attributes (e.g., main-
tenance costs and safety) as identical for all vehicles in the choice set.

4747 households successfully completed the mail-out portion of the survey,
which constitutes a 66% response rate among the households that completed
the initial CATI. A comparison with Census data reveals that the sample is
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7 Interating to the maximum of the objective function with quasi-Newton Raphson procedures, as
we use, is faster when variables are scaled such that the elements of the diagonal of the Hessian have
approximately the same magnitude.

slightly biased toward home-owning larger households with higher incomes. Of
these 4747 respondents, 4654 had sufficient non-missing information to use in
model estimation.

The variables that enter the model are defined in Table 1. The choice of
variables to enter the nonstochastic portion of utility was determined though
exploration and testing with a standard logit model. Most of the variables are
self-explanatory; however, a few notes are required. (i) Dividing price by the
natural log of income provides a higher log-likelihood for the logit model than:
not dividing by income, dividing by untransformed income, or dividing by the
square root of income (with price and income always measured in thousands of
dollars.) The price coefficient for a respondent with median income is essentially
the same under any of these specifications. (ii) The questionnaire described to the
respondent the cost of recharging/refueling the vehicle at a station, as well as, for
electric and compressed natural gas (CNG) vehicles, the cost of refueling at
home. We found that station refueling cost is not significant for electric vehicles
and home refueling cost is not significant for CNG vehicles. Consistent with
these findings, the variable that enters the model is defined as home refueling
cost for electric vehicles and station refueling cost for non-electric vehicles. (iii)
When a separate constant is included for each size class, with the constant for
the mini class normalized to zero, the estimated coefficients obtain the following
pattern nearly exactly: the coefficient for compacts is twice that of subcompacts,
and the coefficients for mid-sized and large vehicles are equal to each other and
are three times that of subcompacts. The size variable that enters the model is
a parsimonious representation of this result: 0 for mini, 1 for subcompact, 2 for
compact, and 3 for mid-size and large (multiplied by 0.1 for scaling.)7

3.2. Standard logit and mixed logit estimates

Column 1 of Table 2 gives the estimated parameters and standard errors for
a standard logit model. Column 2 presents a mixed logit with the same specifica-
tion for the non-stochastic portion of utility plus four error components. The
first and second error components are iid normal deviates that enter the utility
for each non-electric vehicle and each non-CNG vehicle, respectively. These
error components are motivated by the nested logit specification of Bunch and
Bradley (1995), which contains nests for non-electric and non-CNG vehicles.
The third and fourth error components relate to the dimensions of the vehicle. In
particular, the third error component is a normal deviate multiplied by the size
variable described above, and the fourth error component is a normal deviate
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Table 1
Variable definitions

Variable names Definitions

Price/ln(income) Purchase price in thousands of dollars,
divided by the natural log of household in-
come in thousands

Range Hundreds of miles that the vehicle can travel
between refuelings/rechargings

Acceleration Seconds required to reach 30 mph from stop,
in tens of seconds (e.g., 3 s is entered as 0.3)

Top speed Highest speed that the vehicle can attain, in
hundreds of miles/h (e.g., 80 mph is entered as
0.80)

Pollution Tailpipe emissions as fraction of comparable
new gas vehicle

Size 0"mini, 0.1"subcompact, 0.2"compact,
0.3"mid-size or large

‘Big enough’ 1 if household size is over 2 and vehicle size is
3; 0 otherwise

Luggage space Luggage space as fraction of comparable new
gas vehicle

Operating cost Cost per mile of travel, in tens of cents per mile
(e.g., 5 cents/mile is entered as 0.5.) For electric
vehicles, cost is for home recharging. For
other vehicles, cost is for station refueling
Fraction of stations that have capability to
refuel/recharge the vehicle

Station availability

Sports utility vehicle 1 for sports utility vehicle, zero otherwise
Sports car 1 for sports car, zero otherwise
Station wagon 1 for station wagon, zero otherwise
Truck 1 for truck, zero otherwise
Van 1 for van, zero otherwise
Constant for EV 1 for electric vehicle, zero otherwise
Commute(5]EV 1 if respondent commutes less than five miles

each day and vehicle is electric; zero otherwise
College]EV 1 if respondent had some college education

and vehicle is electric; zero otherwise
Constant for CNG 1 for compressed natural gas vehicle, zero

otherwise
Constant for methanol 1 for methanol vehicle, zero otherwise
College]methanol 1 if respondent had some college education

and vehicle is methanol; zero otherwise
Non-EV 1 if vehicle is not electric; zero if electric
Non-CNG 1 if vehicle is not CNG; zero if CNG
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8Different draws are taken for different respondents. McFadden (1989) indicates the importance,
in the context of method of simulated moments estimation, of taking different draws for each
observation: with different draws for each observation, the simulation error in the simulated
probability is uncorrelated over observations and tends to cancel out when the simulated probabil-
ity is averaged over observations. With maximum simulated likelihood (MSL) estimation, the
average of the log of the simulated probability is utilized rather than the average of the untran-
sformed probabilities. Since the log of the simulated probability is not an unbiased estimate of the
log of the true probability, the canceling-out can only be shown to occur in MSL when the number
of replications is sufficiently large as to effectively eliminate the bias. However, some type of
canceling probably occurs even with fewer replications. Lee (1992) describes the properties of MSL
estimators when the same draws are used for all observations.

multiplied by the luggage space variable. To be precise, the stochastic portion of
utility for alternative i is defined as [+

k/1~4
p
k
(1

k
z
ki
)]#e

i
where 1

k
is iid

standard normal, z
ki

are the four variables described above, and e
i
is iid extreme

value. The parameters p
1
,2, p

4
are estimated; each denotes the standard

deviation of the normal deviate that generates that error component. In simula-
ting the choice probability for a respondent, four numbers are drawn from
a random-number generator for the standard normal distribution; the four
‘variables’ 1

1
z
1i
—1

4
z
4i

are created; and the conditional probability is evaluated
with coefficients p

1
,2, p

4
for the four ‘variables.’ This process is repeated for

numerous draws and the conditional probabilities are averaged to obtain the
simulated probability. We used 250 draws in estimation of the mixed logit
model.8

The error components enter significantly. Gas and methanol vehicles enter
both the no-EV and non-CNG error components, unlike electric and CNG
vehicles which enter only one. The covariance in the stochastic portion of utility
is therefore greater for gas and methanol vehicles than other pairs of fuels. CNG
vehicles enter the non-EV component, which has a larger coefficient than the
non-CNG component; the covariance between the stochastic portion of utility
for CNG vehicles with that for gas and methanol vehicles is larger than for
electric vehicles with gas and methanol vehicles. Stated succinctly, the following
pairs are given in order of decreasing covariance: a gas vehicle paired with
a methanol vehicle, gas or methanol paired with CNG, gas or methanol paired
with electric, CNG paired with electric.

The error component associated with the variable ‘size’ induces covariance
across size classes. Since the variable is largest for mid-size and large vehicles,
the covariance is largest for these. The covariance decreases for mid-size or large
vehicles paired with either compact, subcompact, and mini vehicles, respectively.
Similarly, the error component associated with luggage space induces greater
covariance for pairs of vehicles with greater luggage space. As a referee pointed
out for us, significant variation in the value of luggage space is expected, since
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households that use the vehicle for commuting would generally place a lower
value on luggage space than those who use the vehicle primarily for vacations
and out-of-town trips. The luggage space variable probably also served as
a second indication of vehicles’ overall dimensions. Respondents were told the
size class of each vehicle as well as the luggage space relative to a comparable gas
vehicle. Respondents could easily consider the luggage space information as an
indication of relative dimensions of the vehicle within the fairly broad size
classes. For example, if a respondent is told that an electric vehicle is a mini with

Table 2
Models of vehicle choice

Standard logit Mixed logit A
Estimate Std. error Estimate Std. error

»ariables

Price/ln(income) !0.185 0.027 !0.264 0.043
Range 0.350 0.027 0.517 0.058
Acceleration !0.716 0.111 !1.062 0.186
Top speed 0.261 0.080 0.307 0.115
Pollution !0.444 0.100 !0.608 0.139
Size 0.935 0.311 1.435 0.508
‘Big enough’ 0.143 0.076 0.224 0.113
Luggage space 0.501 0.188 1.702 0.482
Operating cost !0.768 0.073 !1.224 0.159
Station availability 0.413 0.097 0.616 0.145
Sports utility vehicle 0.820 0.144 0.901 0.148
Sports car 0.637 0.156 0.700 0.162
Station wagon !1.437 0.065 !1.500 0.067
Truck !1.017 0.055 !1.086 0.056
Van !0.799 0.053 !0.816 0.056
Constant for EV !0.179 0.169 !1.032 0.425
Commute(5]EV 0.198 0.082 0.372 0.166
College]EV 0.443 0.108 0.766 0.218
Constant for CNG 0.345 0.091 0.626 0.148
Constant for methanol 0.313 0.103 0.415 0.146
College]methanol 0.228 0.089 0.313 0.124

Error components

Non-EV 2.464 0.541
Non-CNG 1.072 0.377
Size 7.455 1.819
Luggage space 5.994 1.248

Log-likelihood !7391.83 !7375.34
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75% of the luggage space of a mini gas car, the respondent could logically
think that the electric vehicle is smaller than a mini gas car—a mini—mini, so to
speak.

The estimated parameters that enter the non-stochastic portion of utility are
generally larger in magnitude in the mixed logit than the standard logit. This
phenomenon is expected. The scale of utility is determined by the normalization
of the iid term e. In a standard logit, all stochastic terms are absorbed (as well as
possible, given that they are not, in reality, all iid) into this one error term. The
variance of this error term is larger in the standard logit model than in a mixed

Table 2 Continued

Probit Mixed logit B

Estimate Std. error Estimate Std. error

»ariables

Price/ln(income) !0.184 0.031 !0.286 !5.999 0.172
Range 0.371 0.044 0.588 !0.877 0.126
Acceleration !0.761 0.136 !1.046 !0.302 0.190
Top speed 0.207 0.082 0.361 !1.364 0.335
Pollution !0.414 0.098 !0.695 !0.711 0.234
Size 0.983 0.363 1.541 0.533
‘Big enough’ 0.164 0.080 0.246 !1.748 0.495
Luggage space 1.333 0.371 1.563 0.463
Operating cost !0.894 0.121 !1.318 !0.071 0.135
Station availability 0.434 0.103 0.674 !0.741 0.236
Sports utility vehicle 0.594 0.103 0.897 0.149
Sports car 0.448 0.114 0.698 0.163
Station wagon !1.085 0.049 !1.508 0.067
Truck !0.798 0.041 !1.094 0.056
Van !0.614 0.042 !0.819 0.056
Constant for EV !1.058 0.359 !0.905 0.418
Commute(5]EV 0.294 0.136 0.359 0.163
College]EV 0.615 0.181 0.770 0.218
Constant for CNG 0.465 0.108 0.621 0.152
Constant for methanol 0.315 0.101 0.476 0.154
College]methanol 0.203 0.086 0.335 0.128

Error components

Non-EV 2.232 0.435 2.289 0.553
Non-CNG 0.707 0.300 0.971 0.412
Size 5.187 1.434 6.808 2.072
Luggage space 4.823 0.935 5.380 1.293

Log-likelihood !7368.74 !7375.19
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9We performed an experiment to compare the relative accuracy (or, more precisely, the simula-
tion variance) of the GHK probit simulator and the mixed logit simulator. We calculated the
simulated log-likelihood function at the estimated parameters in Table 2 separately ten times using
ten different sets of random draws (i.e., different seeds for the random number generator.) We
clocked the time required for each calculation and computed the variance in the simulated
log-likelihood value over these ten sets of draws. The GHK probit simulator with 50 replications
took an average of 51.0 seconds for each calculation of the simulated log-likelihood function and
obtained a variance of 26.9 in the value of the simulated log-likelihood over the ten sets of draws.
The mixed logit simulator with 50 replications took 19.8 seconds and obtained a variance of 35.3.
The GHK probit simulator therefore had lower variance than the mixed logit simulator with the
same number of replications. However, the mixed logit simulator took considerably less computer
time. A mixed logit simulator with 125 replication took 48.1 seconds (which is about the same as the
GHK probit simulator with 50 replications) and obtained a variance of 11.6 (which is less than half
that of the GHK probit simulator with 50 replications.) These results suggest that: for a given
number of replications the GHK probit simulator has somewhat less variance than the mixed logit
simulator, while for a given amount of computer time, the mixed logit simulator has considerably
lower variance.

logit since, in the mixed logit, some of the variance in the stochastic portion of
utility is captured in g rather than e. Utility is scaled so that e has the variance of
an extreme value. Since the variance before scaling is larger in the standard logit
than the mixed logit, utility (and hence the parameters) are scaled down in the
standard logit relative to the mixed logit. This is the same result as obtained by
Revelt and Train (1998).

The ratios of estimated parameters, which are the economically meaningful
statistic, are very similar in the standard logit and mixed logit models. For
example, the ratio of the first two coefficients (for price and range) is 0.529 in the
standard logit and 0.511 in the mixed logit. The ratio of the second to the third
coefficients (range and acceleration) is 0.489 in both models. Bhat (1996a) and
Train (1998) also found the ratios of coefficients not to differ significantly
between a standard and mixed logit, while Bhat (1996b) found fairly substantial
differences.

3.3. Pure probit estimates

The third column of Table 2 presents the estimated parameters of a pure
probit model. This model has the same specification as the mixed logit in
column 2 except that the final term in the stochastic portion of utility, e, consists
of iid standard normal terms rather than iid extreme value. The choice probabil-
ities are simulated with the GHK simulator. This simulator requires more
computer time per replication than the mixed logit simulator; to keep the
computer time manageable we reduced the number of replications to 50.9

The ratios of estimated parameters are similar in the pure probit model to
those in the standard and mixed logits. The scale of the estimated parameters is
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10Using the method described in the previous footnote, the simulation variance in the log-
likelihood value for the probit with 50 replications is estimated as 26.9, and that for the mixed logit
with 250 replications as 2.19. The simulation variance for the difference is therefore 29.1, such that
the standard deviation is 5.4. The difference in simulated log-likelihood values is 7375.34-
7368.74"6.6, which is 1.2 times the standard deviation of 5.4.

about the same as in the standard logit. This is due to two counteracting factors.
First, as described above for the mixed logit, the incorporation of part of the
stochastic portion of utility into g rather than e causes the parameters to rise in
magnitude, since the parameters are scaled by the variance of e. Second, the
variance of a standard normal is smaller than that of an extreme value; therefore,
utility is scaled down further in a probit model where e is standard normal than
in a logit model where e is extreme value. In our application, it is simply
a coincidence that these two factors have approximately the same impact,
though in opposite directions, such that the probit parameters are similar in
magnitude to the standard logit parameters. It is interesting to note that we did
not use the logit parameters directly as starting values for the probit model
but instead used the scaled logit parameters (i.e., the logit parameters divided
by 1.6 to account for the difference in the variance between standard normal
and extreme value). The iteration process moved the parameters back to the
approximate scale of the original logit parameters. At convergence, the
probit obtained a higher simulated log-likelihood value than the mixed logit.
However, the difference is within the range expected simply from simulation
variance.10

3.4. Mixed logit with additional error components

The fourth column of Table 2 presents a mixed logit with more error compo-
nents than the mixed logit in column 2 and the pure probit. These extra error
components do not have normal distributions; as a result, there is no pure probit
analog to this model. The motivation and specification of this model require
some discussion. We wanted to try a fairly complete random-parameters speci-
fication, in which households’ tastes regarding each attribute of vehicles vary in
the population. We first estimated a model in which each of the following
variables was assumed to have a coefficient that is distributed independently
normally in the population with mean and standard deviation being estimated:
price/ln(income), range, acceleration, pollution, size, big enough, luggage space,
operating cost, station availability, the EV constant, and the CND constant.
(Note that the mixed logit in column 2 could be interpreted as having random
parameters for size, luggage space, EV constant, CNG constant.) In this speci-
fication, only one extra coefficient, beyond those four in the mixed logit model of
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column 2, obtained a statistically significant standard deviation. More impor-
tantly, the model produced counter-intuitive forecasts under some scenarios.
For example, the predicted share of households choosing a large, expensive gas
car was predicted to rise in response to a 20% rise in the price of large gas cars.
This phenomenon is a natural (though undesirable) consequence of having the
coefficients of attributes take a normal distribution when in reality all house-
holds can be expected to have the same sign for their coefficients. For example,
the price coefficient is necessarily negative for all households; and yet the normal
distribution for this coefficient necessarily implies that some households have
positive coefficients. In forecasting, the households with positive price coeffi-
cients prefer a vehicle more when its price rises. If the share of households with
positive price coefficients is large compared to the share of households choosing
a given vehicle, then the model can predict that a price increase raises demand.
This phenomenon occurs not just for price but for any attribute whose
coefficient is given a normal distribution and yet has an expected sign for all
households. The phenomenon was evidenced in one of the models of Revelt and
Train (1998) in forecasting the impact of rising interest rates on households’
decisions to take loans. Pure probits with a random-parameters specification
are, by their nature, susceptible to it.

The solution is to specify a density that is strictly positive only on one side of
zero. For the model in column 4, we assume log-normal distributions for the
coefficients of price/ln(income), range, acceleration, top speed, pollution, big
enough, operating cost and station availability. Since the log-normal distribu-
tion gives positive coefficients, variables whose coefficients are necessarily nega-
tive (price/ln(income), acceleration, pollution, and operating cost) are entered as
the negative of the variable. The four variables that enter the error components
of the mixed logit in column 2, could logically take different signs by different
households; these are therefore assumed to have normal distributions, as in the
mixed logit model in column 2.

The kth coefficient with a log-normal distribution is specified as exp(b
k
#s

k
l
k
),

where l
k

is iid standard normal and s
k

and b
k

are parameters. The mean
coefficient is exp(b

k
#(s2

k
/2)) and the standard deviation of the coefficient is the

mean multiplied by J(exp(s2
k
)!1). In preliminary analysis, models with unre-

stricted b
k
’s and s

k
’s failed to converge, with one or more of the s

k
’s becoming so

large that exp(b
k
#s

k
l
k
) exceeded the numerical limit of the software. We

therefore constrained the parameters such that the standard deviation of each
log-normally distributed coefficient was equal to its mean. (Mechanically, we
constrained each s

k
to be 0.8326.) This constraint is appealing, since it results in a

model with no more parameters than in the mixed logit in column 2 or the pure
probit, and yet contains variation in the stochastic portion of utility over more
attributes than in these models. The simulated log-likelihood value for this
model is nearly the same as that for the mixed logit without the extra variation.
While the extra variation does not improve the fit of the model, it changes the
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substitution patterns that are forecast by the model. The differences are explored
below.

Table 2 gives two sets of estimates for the variables with log-normally distrib-
uted coefficients. On the right is the estimate of b

k
for each coefficient; the

standard error is for the estimate of b
k
. On the left is the mean coefficient implied

by the point estimate of b
k
and the constrained value of s

k
(multiplied by !1 if

the negative of the variable was entered.). The left-hand number is comparable
to the estimates in the previous columns for other models. The ratios of these
estimates are similar to those in the other three models; the scale is similar to
that of the mixed logit in column 2. If indeed the ratios of coefficients are
adequately captured by a standard logit model, as our results and those of Bhat
(1996a) and Train (1998) indicate, then the extra difficulty of estimating a mixed
logit or a probit need not be incurred when the goal is simply estimation of
willingness to pay, without using the model for forecasting.

3.5. Substitution patterns

The substitution patterns that are implied by the models can be compared
through several examples. Suppose a small electric car is introduced to a base
situation consisting of gas cars that range in size from small to large. The
standard logit model, because of the iia property, implies that the new electric
car will draw proportionately from all sizes of the gas cars. In contrast, the
mixed logits and probit predict that the electric car will draw more proportion-
ately from smaller gas cars than from larger gas cars. This more realistic
substitution pattern is the consequence of the error component relating to size.
It is particularly important for policy analysis. For example, electric cars are
seen as a way of reducing gas consumption and tailpipe emissions. The predicted
reductions are lower when households are predicted, realistically, to switch from
small gas cars more readily than from large gas cars.

Suppose now that a large methanol car is added to the small electric and
various sizes of gas cars. The logit model of course predicts proportionate
switching. The mixed logits and probit predict disproportionate switching, with
greater switching from the larger gas cars than the smaller gas cars, and with
greater switching from the gas cars than the electric car. The later difference is
due to the fact that the same error components enter for methanol and gas,
indicating a similarity in households’ views of these two types of fuel (relative to
electric). This difference is reasonable, since refueling with methanol is essential-
ly the same as refueling with gas, whereas the procedures for recharging an
electric car are quite different.

The distinction between the two mixed logits is illustrated by considering the
predicted impact of a rise in the price of large gas cars. As always, the standard
logit predicts that households switch proportionately to each of the other size
classes. The two mixed logits and the probit predict that households switch
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11GAUSS software to estimate mixed logits is available for downloading, along with a users’
manual and sample runs, from Train’s web site at http://elsa.berkeley.edu/&train.

more readily to mid-size cars than to smaller cars, as one would expect in reality.
However, the two mixed logits imply a different amount of switching in total. In
particular, the mixed logit in column 4 of Table 2 predicts considerably less
switching away from large cars in reaction to a price increase, than the mixed
logit in column 2 or the probit. Recall that this model, unlike the other
mixed logit or the probit, includes variation in the price coefficient over house-
holds. Households who place relatively little importance on price have a
greater tendency to buy an expensive large car. And these households, since
their price coefficient is relatively small, do not react to price increases as
readily as a household with average price coefficient. As a result, the mixed
logit with variation in the price coefficient would predict a smaller share of
customers switching away from large cars when the price is raised. This example
illustrates the flexibility of mixed logits to represent various substitution
patterns.11
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