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Abstract

This paper is concerned with the problem of determining the e*ect of a binary treatment vari-
able on a continuous outcome given longitudinal observational data and non-randomly assigned
treatments. A general semiparametric Bayesian model (based on Dirichlet process mixing) is
developed which contains potential outcomes and subject level outcome-speci0c random e*ects.
The model is subjected to a fully Bayesian analysis based on Markov chain Monte Carlo simula-
tion methods. The methods are used to compute the posterior distribution of the parameters and
potential outcomes. The sampled posterior output from the simulation is also used to construct
treatment e*ect distributions at the unit level (and at other levels of aggregation), marginalized
over all unknowns of the model, including the unknown distribution of responses and treatments,
and treatment e*ects matched by treatment probability. A real data example, dealing with the
wage premium associated with union membership, is considered in detail where quantities such
as the average treatment e*ect, the treatment e*ect on the treated, and matched treatment e*ects
are derived and illustrated. c© 2002 Published by Elsevier Science B.V.
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1. Introduction

This paper is concerned with the analysis of a class of models for longitudinal
observational data where the main question is about the causal e,ect of a discrete
treatment variable on a response given that the treatment variable is non-randomly
assigned and, for any given subject, at any given time point, the outcome is observed for
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only one level of the treatment. Examples of treatment questions include the impact of
smoking by pregnant women on birth weights (Permutt and Hebel, 1989), compliance
e*ects in drug trials (Efron and Feldman, 1991), the impact of union status on wages
(Lee, 1978), and the e*ect of training on wages (Heckman and Robb, 1985).
One way to compute the treatment e*ect is based on the idea of matching where

subjects, or groups of subjects, are matched on the basis of observed covariates, or on
the basis of the so-called propensity score, with the treatment e*ect then calculated as
the di*erence between the observed outcomes of the matched individuals corresponding
to di*erent levels of the treatment (Rosenbaum and Rubin, 1983; Heckman et al., 1998;
Hirano et al., 2000). This method is useful provided it is the case that, conditioned
on the covariates, the unobservables that inDuence the treatment are independent of
the outcomes. If the preceding assumption does not hold, then an alternative way to
proceed, as in this paper, is to specify a joint model of the treatment and the potential
outcomes (i.e., the outcomes, or counter-factuals, that would have been observed for
levels of the treatment not received as in Rubin (1974, 1978)) and then to compare
the observed outcome with the potential outcomes for each subject. An early example
of this approach is often summarized in what is called the Roy model (Roy, 1951).
We note at the outset that although the treatment e*ect in the potential outcomes
model can be identi0ed by distributional assumptions, identi0cation is achieved more
convincingly if, additionally, there exists an exogenous covariate, an instrument, that
a*ects the outcomes only through its e*ect on the treatment (Heckman and Robb,
1985).
Vella and Verbeek (1998) have recently considered a version of the Roy model

for longitudinal data but under the assumption that the (latent) treatment and potential
outcomes are conditionally Gaussian. Their model can be viewed as a longitudinal ex-
tension of the model in Bjorklund and MoGtt (1987). The model is 0t by maximum
likelihood. Jakubson (1991), Ridder (1992), Wooldridge (1995), Kyriazidou (1997)
and Vella and Verbeek (1999) also consider longitudinal treatment models but in the
sample selection context, not in the potential outcomes framework. More recently,
Chib and Hamilton (2000) provide a Bayesian analysis of cross-section and longitu-
dinal data under the assumption that the outcome and treatment distributions belong
either to the multivariate-t family or the family of 0nite mixture of multivariate normal
distributions.
The 0rst main purpose of this paper is to further robustify a potential outcomes

model for longitudinal treatment data by modeling the treatments and outcomes in a
semiparametric fashion. Such an extension has not been considered before in either
the Bayesian or frequentist literatures and is potentially quite useful because of the
well known sensitivity of conclusions in treatment models to distributional assump-
tions. In the proposed model, subjects can be in di*erent treatment states across time
and intra-cluster correlation in subject-speci0c treatments and outcomes is captured
by including treatment- and outcome-speci0c individual random e*ects that are corre-
lated with covariates. Furthermore, the joint distribution of the treatments and potential
outcomes is modeled by a semiparametric mixture of Dirichlet process components
(Fergusson, 1973; Antoniak, 1974). Tiwari et al. (1988) provide one of the earliest
uses of the Dirichlet process approach in econometrics. The model is then estimated
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by a tuned Markov chain Monte Carlo (MCMC) simulation method (Chib, 2001; Chib
and Greenberg, 1995, 1996; Tiernay, 1994) based on the algorithm reported in Chib
and Hamilton (2000).
The second main purpose of this paper is to develop a procedure for calculating the

treatment e*ect by a method that we call Bayesian matching that is similar to, but
distinct, from the propensity score matching scheme described above. Our approach
provides a useful way of extracting and summarizing treatment e*ect heterogeneity
that may be present in the data.
The rest of the paper is organized as follows. In Section 2 we describe the modeling

framework and some implications of our setup. Section 3 contains an outline of the
MCMC estimation procedure and methods for calculating treatment e*ects from the
posterior simulation output. Sections 4 presents a real data example where quantities
such as the average treatment e*ect, the treatment e*ect on the treated, and matched
treatment e*ects are derived and illustrated. Section 5 concludes. Details of the 0tting
method are provided in Appendix A.

2. Modeling framework

2.1. The semiparametric panel potential outcomes model

To describe the semiparametric panel model for longitudinal continuous responses
with potential outcomes, let sit denote the time-dependent treatment variable taking two
levels {0; 1} on the ith subject at the tth time period. Suppose that one observes n
subjects in the sample, each over Ti unbalanced time periods (the process governing
attrition is assumed to be ignorable), giving rise to m =

∑n
i=1 Ti observations, with

outcomes z∗it={zit0; zit1} for the two levels of the treatment (of which one is observed).
Thus, in this model, there is one variable zit0 representing the outcome when the
treatment is not received and a di*erent variable zit1 representing the outcome when the
treatment is received. For the actual treatment received (say sit=l), suppose that yit=zitl
denotes the observed response. Let xitj : kj×1 denote the kj dimensional covariate vector
that inDuences the distribution of zitj and let wit : k0 × 1 denote the covariate vector
that a*ects the distribution of the treatments. Assume that the covariate vector wit

contains at least one discrete or continuous covariate rit that is randomly assigned (an
instrument) and which is not present in xitj. If the observed and unobserved data on
the ith subject is denoted by (si ; z∗i ) where si = (si1; : : : ; siTi) and z∗i = (z∗i1; : : : ; z

∗
iTi),

then assume that the joint distribution of (z∗i ; si) conditioned on the covariates can be
factored as

f(z∗i ; si|Wi ;Xi) = f(z∗i |Xi)f(si|z∗i ;Wi ;Xi)

or in other words that the instrument rit does not a*ect the marginal distribution of
z∗i . This assumption is necessary in order to avoid confounding between the e*ect of
si on z∗i and that of the unobservables on z∗i .

The presence of potential outcomes and treatments naturally leads to a model with
latent data. Let the observed treatment sit be a function of a continuous-valued random
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variable s∗it as

sit =

{
0 if s∗it6 0;

1 if s∗it ¿ 0

and let the observed data yit be given by

yit =

{
zit0 if sit = 0;

zit1 if sit = 1:

In the longitudinal context, treatments and outcomes over time on the same subject
are likely to be correlated. To model this correlation, we introduce treatment- and
outcome-speci0c individual random e*ects bi = (ai; bi0; bi1) that can be correlated with
a set of covariates Vi : 3× d. In particular, it is assumed that

bi ∼ N3(ViS;D);

where D is a full positive de0nite matrix.
Next, to allow for the possibility that the unobservables a*ecting the treatment are

also correlated with the outcomes, even after conditioning on the covariates, we model
the joint distribution of s∗it and (zit0; zit1) in a general semiparametric fashion. Condi-
tional on the random e*ects bi, parameters and a positive scale random variable �it ,
let 


s∗it

zit0

zit1




|bi ;�it ;R;�

∼ N3






w′
itS + ai

x′
it0R0 + bi0

x′
it1R1 + bi1


 ; �−1

it




1 �12 �13

�12 �22 �23

�13 �23 �33




 ; (1)

or compactly as

zit |bi ; �it ; R;� ∼ind N3(XitR+ bi ; �−1
it �);

where zit = (s∗it ; zit0; zit1) : 3 × 1, Xit = diag (w′
it ; x

′
it0; x

′
it1), R = (S′; R′0; R′1)′ : k × 1 and

k = k0 + k1 + k2. An interesting point to observe is that the correlated random e*ects
vector bi induces not only intra-cluster correlation but also contemporaneous correlation
amongst the latent treatment and potential outcomes. Without any loss of generality,
we set the parameter �23 to zero; thus the covariance between the potential outcomes
is given by D23. The four free elements of � are denoted by � = (�12; �13; �22; �33).

The model is completed with a semiparametric distribution on �it ∈R+. Speci0-
cally, assume that �it follows an unknown probability measure P with distribution
G, where G in turn follows a Dirichlet process (DP) prior with base measure G0

(Fergusson, 1973; Antoniak, 1974). Under this assumption, for any measurable par-
tition (A1; A2; : : : ; Ak) of R+, the random vector (P(A1); : : : ; P(Ak)) is distributed as
Dirichlet (�G0(A1); : : : ; �G0(Ak)). Formally, the distribution on �it is formulated as

�it ∼ G (t6Ti; i6 n);

G|G0 ∼ DP(�G0);

G0 = Gamma
( �
2
;
�
2

)
; (2)
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where � is a positive scalar parameter that determines the extent of clustering in the
{�it}. We discuss our choice of � in Section 3 but intuitively � can be viewed as the
parameter that measures the prior weight on G0; larger values of � imply larger prior
weight on G0. Our choice of the base measure G0 is motivated by the fact that (under
G0) the distribution zit |bi ; R;� is multivariate-t with location XitR + bi, dispersion �
and � degrees of freedom. We view this as an appropriate (non-Gaussian) benchmark
distribution for zit |bi ; R;�.

2.2. Model implications

To understand the distributional facets of the proposed model, 0rst observe that
the semiparametric structure is induced through the scale parameter �it . This allows
us to move away from normality or from a particular non-Gaussian choice such as
the multivariate-t (which is the implied conditional distribution of zit under G0). We
believe that it is important to specify the distribution Dexibly because of the well known
fragility of conclusions in treatment models to standard distributional assumptions.
To further understand the model implications, we need two key facts of the Dirichlet

process prior on G (Escobar and West, 1995; MacEachern and Muller, 1998). Let

[= (�11; : : : ; �1T1 ; : : : ; �n1; : : : ; �nTn) :m× 1

and let [(it) denote the vector [ excluding the component �it . Then, the 0rst fact is that
any realization of [ from G must lie in a set of p6m distinct values M=(�1; : : : ; �p),
where the �i are a random sample from G0.
From the 0rst fact, it follows that [(it) may contain ties. Suppose that nit values in

[(it) are unique. Let

(�(it)
1 ; : : : ; �(it)

nit )

denote those unique values in [(it) and suppose that each unique value �(it)
j appears

m(it)
j times. Then, the second fact is that the prior distribution of �it conditioned on

([(it); G0), but marginalized over G, can be expressed as

�it |[(it); G0 ∼ E(G|[(it); G0)

∼ 1
�+ m− 1

�G0 +
1

�+ m− 1

nit∑
j=1

m(it)
j �(�(it)

j ); (3)

where �( ) denotes a unit point mass at  . This is a quite appealing mixture distribution
with a continuous component given by the base gamma distribution G0 and a random
number of discrete components at the mass-points �(it)

j .
Let fN denote the trivariate normal density function. Then, given the above two

facts, it follows that the distribution of zit = (s∗it ; zit0; zit1) marginalized over �it and G

zit |bi ; R;�; G0; [(it) ∼
∫

fN (zit |XitR+ bi ; �−1
it �)d[�it |G0; [(it)]



72 S. Chib, B.H. Hamilton / Journal of Econometrics 110 (2002) 67–89

is a mixture distribution with a random number of components. On performing the
integration, one gets that zit |bi ; R;�; G0; [(it) is distributed as

1
�+ m− 1

�fT (zit |XitR+ bi ;�; �) +
1

�+ m− 1

nit∑
j=1

m(it)
j fN (zit |XitR+ bi ;�=�

(it)
j );

where the 0rst component distribution is a multivariate-t distribution with � degrees
of freedom and the remaining component distributions are multivariate normal, each
with the same mean but di*erent covariance matrix. Taking the product of these mix-
ture distributions, we get that the distribution f(zi|bi ; R;�; G0; [(it)) of treatments and
potential outcomes over the Ti observations on the ith subject is

Ti∏
t=1


 1

�+ m− 1
�fT (zit |XitR+ bi ;�; �) +

1
�+ m− 1

nit∑
j=1

m(it)
j fN (zit |XitR+ bi ;�=�

(it)
j )


 :

Although bi cannot be marginalized out analytically from this distribution, it is clear that
the proposed model induces intra-subject dependence within the context of a general
and Dexible joint distribution of treatments and outcomes.

3. Prior–posterior analysis

3.1. Estimation by MCMC methods

In this section, we discuss the Bayesian analysis of the proposed model by Markov
chain Monte Carlo simulations. These simulations are produced by iterating a Markov
chain whose limiting, invariant distribution is the posterior distribution of interest. The
sampled variates beyond a transient or burn in stage can, therefore, be viewed as (cor-
related) draws from the posterior distribution. These sampled draws can be summarized
in various ways to produce point and interval estimates of the parameters and posterior
density estimates.
Let X = (R; �; S;D) denote the model parameters and let the prior information be

represented by the distributions R ∼ Nk(R0;B0), �˙ N4(g0;G0), restricted to the region
that generates a positive de0nite � matrix, S ∼ Nd(S0;C0) and D−1 ∼ Wishart(#0;R0),
where the parameters of the prior, subscripted by zero, are adjusted to represent the
available pre-sample information. If the observed data and treatments are denoted by
y= {yit} (t6Ti; i6 n) and s= {sit} ((t6Ti; i6 n), respectively, then the objective is
to learn about the posterior density $(X|y; s) given the data and the prior information.

3.1.1. Posterior sampling
To summarize the unknown posterior density $(X|y; s) we augment the parame-

ter space (following Tanner and Wong (1987), Chib (1992) and Albert and Chib
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(1993)) to include {zit} and {�it} for (t6Ti; i6 n) and {bi} for (i6 n), where
zit=(s∗it ; zit0; zit1) and focus on the sampling of the distribution $(X; {zit}; {bi}; {�it}|y; s).
To cope with the high dimension of the target distribution, and to promote mixing of
the Markov chain output, the vector � is sampled marginalized over {zit}, and the
vector R marginalized over {bi}.

MCMC algorithm for sampling $(X; {zit}; {bi}; {�it}|y; s)
1. Sample (�; {zit}) from �; {zit}|y; s; {bi}; {�it}; R by drawing
(a) � from �; |y; s; {bi}; {�it}; R and
(b) zit from zit |si; R; {bi};�; {�it}, independently for i = 1; : : : ; n and t6Ti;
2. Sample (R; {bi}) from the distribution (R; {bi})|y; s; {zit}; {bi}; {�it};D;� by drawing
(a) R from R|{zit};D;�; {�it} and
(b) {bi} from bi|{zit}; R;D; {�it};
3. Sample % from %|{bi};D−1;
4. Sample D−1 from D−1|{bi}; S;
5. Sample {�it} from �it |zit ; bi ; [(it); G0; R;�;
6. Repeat Steps 1–5 using the most recent values of the conditioning variables.

We now touch on the main ideas behind this algorithm, deferring full details to
Appendix A. In Step 1(a) of this algorithm, � is sampled from the distribution

$(�|y; s; {bi}; {�it}; R)˙ $(�)
n∏

i=1

Ti∏
t=1

f(yit ; sit |bi ; �it ; R;�); (4)

where, on letting & denote the cdf of the standard normal density function,

f(yit ; sit = 0|bi ; �it ; R;�) =f(yit |bi ; �it ; R;�)p(sit = 0|yit ; bi ; �it ; R;�)

=fN (yit |x′
it0R0 + bi0; �−1

it �22)

×&
(−w′

itS − ai − �12�−1
22 (yit − x′

it0R0 − bi0)
(1− �2

12(�it�22)−1)1=2

)
(5)

and

f(yit ; sit = 1|bi ; �it ; R;�) =f(yit |bi ; �it ; R;�)p(sit = 1|yit ; bi ; �it ; R;�)

=fN (yit |x′
it1R1 + bi1; �−1

it �33)

×&

(
w′
itS + ai + �13�−1

33 (yit − x′
it1R1 − bi1)

(1− �2
13(�it�33)−1)1=2

)
: (6)

It is clear that this posterior density does not belong to a known family of distributions
but the sampling strategy that is developed by Chib and Greenberg (1998) in a related
context can be used. Essentially, the idea is to employ the Metropolis–Hastings algo-
rithm with a proposal density that is matched to the target density around the mode
(Chib and Greenberg, 1995). Details are given in Appendix A.
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In Step 1(b), the latent values zit are sampled from zit |sit ; R; {bi};�; {�it} based on
Chib (1992) and Albert and Chib (1993). One point to stress is that for any given unit,
either zit1 is drawn or zit0 is drawn, but not both. In Step 2(a) of the algorithm the
sampling of the coeGcients R is done marginalized over {bi} because Chib and Carlin
(1999) have shown that this strategy reduces the serial correlation of the MCMC chain.
From the Bayes theorem, the desired posterior distribution of R, marginalized over the
random e*ects, is

$(R|{zit}; {�it}; S;D;�)˙ $(R)
n∏

i=1

f(zi|[i ; R; S;D;�); (7)

where zi = (zi1; : : : ; ziTi) denotes the 3Ti × 1 vector of observations on the ith subject
and

f(zi|[i ; R; S;D;�) =
∫

f(zi|bi ; [i ; R;�)$(bi|S;D) dbi

˙
∫

exp{−0:5(zi − XiR− rWibi)′�i(zi − XiR−Wibi)}

×fN (bi|ViS;D) dbi ;

Wi = (I3; I3; : : : ; I3)′ : 3Ti × 1, �i =*−1
i ⊗� and *−1

i =diag (�−1
i1 ; : : : ; �−1

iTi ). After some
algebra the density in (7) is seen to be Gaussian with mean R̂=B(R0B−1

0 +
∑n

i=1 X
′
i+

−1
i

(zi −WiViS)) and variance B= (B−1
0 +

∑n
i=1 Xi+

−1
i Xi)−1, where +i =WiDW′

i + �i.
The next part of the MCMC algorithm requires the sampling of the random e*ects

{bi}, the random e*ects coeGcients S and random e*ects variance D−1. The distribu-
tions that need to be sampled in each of these cases follow from standard results for
Bayesian longitudinal models and are presented in Appendix A.
Finally, in Step 5 {�it} is sampled from �it |zit ; bi ; [(it); G0; R;�. Under the distribu-

tion of �it given in (3), a direct calculation shows that the updated distribution is a
continuous-discrete distribution.

�it |zit ; bi ; [(it); G0; R;�∼ qit0$0(�it |zit ; R; bi ;�) +
pit∑
j=1

qitj�(�
(it)
j );

t = 1; : : : ; Ti; i = 1; : : : ; n; (8)

where

$0(�it |zit ; R; bi ;�)˙f(zit |R; bi ;�)dG0(�it)

˙ �(�+3)=2−1
it e−�itdit

is a gamma density with parameters (�+3)=2 and dit=(�+(zit−XitR−bi)′�−1(zit−XitR−
bi))=2 and the weights qit0 and qitj are de0ned in Appendix A. Each
�it (t=1; : : : ; Ti; i=1; : : : ; n) is sampled from these mixed distributions given the most
current value of [(it).
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3.2. Treatment e,ects and Bayesian matching

Given the observed data sit and yit , de0ne the unit (subject-time) level treatment
e*ect �it as

�it =

{
zit1 − yit if sit = 0;

yit − zit0 if sit = 1:
(9)

The goal is to understand how this treatment e*ect may be calculated. It is easy to
see that �it is not non-parametrically identi0ed because it requires knowledge of the
counter-factual which is never observed. Rosenbaum and Rubin (1983), working in
the cross-section case, have provided one way to deal with the identi0ability issue.
Suppose one assumes that

(zit0; zit1) ⊥sit |wit ;

where the subscript t is retained to avoid introducing new notation. If p(wit)=Pr(sit =
1|wit) denotes the probability of treatment (the propensity score), then Rosenbaum and
Rubin (1983) show that one can identify the expected value of �it = yit − zit0 given
the treatment (the “treatment e*ect for the treated”) as

E(�it |sit = 1) = E(yit − zit0|sit = 1)

= Ewit |sit=1E(yit − zit0|sit = 1; wit)

= Ewit |sit=1{E(yit |sit = 1; wit)− E(zit0|sit = 0; wit)}

=Ewit |sit=1{E(yit |sit = 1; p(wit))− E(zit0|sit = 0; p(wit))};
where the second line utilizes the law of the iterated expectation, the third line that
E(zit0|sit = 1; wit) = E(zit0|sit = 0; wit) from the assumed conditional independence as-
sumption and the fourth line that E(zit0|sit = 0; wit) = E(zit0|sit = 0; xit ; p(wit)). Each of
the two terms in braces in the fourth line can be estimated by forming matched treated
and untreated groups, matched according to the propensity score, and then computing
the di*erence in average outcomes for the respective groups (it is important to note
that to estimate the expectations eGciently, it is necessary to adjust for the inDuence
of covariates, say by modeling the outcomes by a regression; thus, even this approach
requires a covariate model for both the treatments and outcomes). The outer expec-
tation is estimated by the average of these di*erences across di*erent values of the
propensity score.
Some diGculties arise if this approach is applied in the longitudinal context. If we

let zi0 and zi1 be vectors of observations on the ith subject and let si denote the Ti × 1
sequence of treatments, then the assumption that (zi0; zi1)⊥si|{wit} is diGcult to sustain
given the clustering in treatment and outcomes that is likely to be present in longitudinal
data. In fact, one may question whether the conditional independence assumption can be
satis0ed in practice, even with cross-section data, given that unobserved variables which
jointly a*ect the treatment and the outcomes are the norm rather than the exception in
most applications.
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An alternative approach is to suppose that there is an additional source of inform-
ation—a valid randomly assigned covariate (instrument)—and to model the joint dis-
tribution of treatments and potential outcomes in a distributionally Dexible way. The
e*ect of covariates is modeled by making functional form assumptions. There seems
to be no simple way to relax the latter feature given that in social-science applications
both treatments and outcomes are typically a*ected by a large number of covariates.
As noted above, even in propensity score approaches, the e*ect of covariates must be
modeled parametrically in both the treatment and outcome distributions. Thus, it seems
to us, that provided one can justify the exclusion restriction in any given empirical
problem, our approach provides a useful framework for tackling the treatment e*ect
problem with longitudinal data.
We now brieDy discuss how one can use our model to obtain summaries of the

treatment e*ects, including one that is based on matched groups, conditioned on the
observed data, but marginalized over all unknowns including the random e*ects and
the unknown distribution G.
The goal is to derive various treatment e*ect distributions from the posterior distri-

bution of �it given the data (y; s). This conditioning on the observed data, which is
quite natural in the Bayesian context, is rarely used when calculating treatment e*ects.
By de0nition, the posterior density of �it is

$(�it |y; s) =
∫

$(�it |y; s; X; s∗it ; �it ; bi)d$(X; s∗it ; �it ; bi|y; s); (10)

from which a sample of �it can be produced by the method of composition using
the draws zit1 or zit0 from Step 1(d) of the MCMC algorithm in Appendix A. The
calculation of these posterior distributions is akin to the way in which Albert and Chib
(1995) 0nd the posterior distribution of latent residuals in binary data models. Given
a posterior sample of �it from $(�it |y; s), which we denote by {�(g)it }, the unit mean
e,ect R�it = E(�it |y; s) may be estimated as

R�it ≈ G−1
G∑

g=1

�(g)it :

In practice, it is useful to consider treatment e*ects at a more aggregated level. For
example, one can de0ne the treatment e*ect at the subject level �i = T−1

i
∑Ti

t=1 �it . A
posterior sample on �i is available as {T−1

i
∑Ti

t=1 �
(g)
it }Gg=1 from which one can calculate

the subject level mean treatment e,ect R�i where

R�i ≈G−1
G∑

g=1

T−1
i

Ti∑
t=1

�(g)it

= T−1
i

Ti∑
t=1

R�it :

The posterior standard deviation of �i can be estimated as the sample standard deviation
of the draws on �i. Similarly, the treatment e*ect for a randomly selected observation
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from the population may be de0ned as

�=

∑
i; t �it
m

=
∑

i �i
n

whose posterior distribution is again available from the posterior sample on �it . The
mean of the posterior distribution of � may be called the average mean treatment
e,ect. Another useful aggregate quantity, following Heckman and Robb (1985), is the
treatment e*ect for the treated. Let T ∗={i; t : sit=1} denote the set of units that receive
the treatment and consider the posterior distribution of �it for units that are in T ∗. A
relevant summary of these posterior distributions is the average mean treatment e,ect
for the treated

�∗ = n∗−1
∑
i; t∈T∗

E(�it |y; s)

≈ n∗−1
∑
i; t∈T∗

G−1
Ti∑
t=1

�(g)it ; (11)

where n∗ is the cardinality of T ∗.
Finally, consider the treatment e*ect across units, grouped not by subject or treatment

status, but according to the probability of treatment. Let

pit = &(w′
itS + ai) (12)

denote the unit level treatment probability given the covariates and the random e*ect.
This treatment probability is distinct from the propensity score that is de0ned in the
standard matching framework in that it includes the unobservable random e*ect. Now
suppose that the range of pit is divided into 10 equally spaced intervals (other intervals
can be treated in the same way). Let

Dj =
{
i; t :pit ∈

(
j − 1
10

;
j
10

)}
; j = 1; 2; : : : ; 10;

denote the set of units for which the corresponding treatment probability is in the jth
decile. Units that fall into any one of these decile groups have similar, or matched,
treatment probabilities. There are two important points to note about this grouping that
distinguish it from the classical matching described above. First, this matching occurs
on the basis of both the observed covariates wi and unobserved covariate ai. Second,
even though the decile groups are set at the outset, the posterior distribution of the
treatment e*ect is well de0ned even in the low and high decile groups where most units
are likely to have the same observed treatment status. Units in those extreme deciles
are essentially self-matched. Given the grouped units, de0ne the matched treatment
e*ect

�j = n−1
j

∑
i

∑
t

�it ; (i; t)∈Dj; j = 0; 1; : : : ; 10;

where nj denotes the number of units in Dj. The posterior distribution of �j can be
derived from the posterior sample of �it as follows. Speci0cally, given a draw of
the parameters % and random e*ects ai at the gth MCMC iteration, one calculates
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the unit level treatment probability p(g)
it = &(w′

it%
(g) + a(g)i ). Each unit, along with the

associated value of �(g)it , is then placed in the appropriate decile group and the matched
treatment e*ects are averaged. This constitutes a draw from the posterior distribution
of �j. This process of matching and averaging within each decile group is repeated
for each MCMC iteration and the sample {�(g)j } thus created is summarized by the

group-speci0c averages G−1∑ �(g)j . These averages are the Bayesian matched treatment
e*ect for the jth decile grouping. As we show in the example that follows, the �j
provides a convenient way to isolate the heterogeneity in treatment e*ects, by treatment
probability.

4. Example: unions and the wage premium

We now present a real data example to highlight the variety of treatment e*ect dis-
tributions which may be constructed in our framework. Our example is concerned with
the wage premium associated with union membership. In this problem, the treatment
variable sit is one if the subject is a union member in year t, and zero if not. The
unit level treatment e*ect �it is the di*erence in the logarithm of the hourly wage in
the union and non-union sectors for subject i in year t. Studies dealing with the union
wage premium abound in the literature (for example, see Lewis (1986) who isolates
over 200 articles dealing with this problem and reports union wage premia ranging
from −75% to 95%). In this literature, the non-random sorting of individuals to the
two sectors is central to the debate. Some studies (e.g., Freeman, 1984; Lewis, 1986)
argue that unionized 0rms are able to select more able workers. Simple OLS estimates
of the union wage premium will, therefore, provide an upper bound of the true union
wage e*ect, since more productive workers will tend to join the union. Other studies,
such as Robinson (1989), claim that union pay scales are less sensitive to individual
ability, implying that less productive workers are more likely to join the union. In
this case, OLS estimates provide a lower bound of the true e*ect. Robinson (1989)
also argues that the sector of relative advantage may be di*erent for di*erent workers.
Some workers may do better in the union sector, while others will be more successful
in the non-union sector. Consequently, accounting for heterogeneity and endogeneity
of the treatment is important for understanding the union wage premium.
To examine the relationship between unions and wages, a random sample of 241

white male high school graduates was drawn from the National Longitudinal Survey
of Youth (NLSY) covering the period 1982–1991. Individuals who had not completed
their schooling, or who had dropped out of the NLSY at some point during this period
were excluded from the analysis. In our sample, the yearly unionization rates range
from 24% to 32%. Overall, 60% of the subjects were in a union job at some point
during the sample period.
In our model we set xit0 = xit1 and let xit0 consist of the variables labor market

experience and its square, marital status, the unemployment rate in the county of res-
idence at time t, and a linear time trend. The covariate vector wit includes xit0 and a
set of variables excluded from the wage equations. These covariates are an indicator
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Table 1
Union data example: summary of means and standard deviations of variables

Variable All sit = 1a sit = 0

Hourly pay (real $) 6.759 (2.961) 8.149 (2.949) 6.181 (2.768)
Experience (in years) 9.176 (3.584) 9.946 (3.456) 8.856 (3.589)
Married (0–1) 0.579 (0.494) 0.702 (0.458) 0.528 (0.499)
Unemployment rate 0.083 (0.033) 0.084 (0.033) 0.083 (0.033)

Professional spouse (0–1) 0.101 (0.302) 0.113 (0.317) 0.096 (0.295)
% employed in Manuf 0.262 (0.104) 0.274 (0.100) 0.257 (0.105)
Right to work state 0.177 (0.382) 0.133 (0.340) 0.196 (0.397)
State UI takeup rate 0.668 (0.154) 0.673 (0.151) 0.666 (0.156)
State max UI bene0t ($) 188 (43) 190 (45) 187 (42)
State tuition ($) 1641 (699) 1721 (705) 1608 (694)

aThe treatment variable sit = 1 represents union membership.

Table 2
Union data example: estimates of the union wage premium using standard methods in the literature

Method Estimated union wage premium

Pooled OLS 0.244 (0.017)
Pooled IV 0.204 (0.172)
Panel data 0xed e*ects 0.148 (0.017)
Panel data random e*ects 0.161 (0.016)
Panel data IV 0.173 (0.212)

Estimate is the coeGcient on union status variable in a regression of yit on xit and union status. Instruments
are the wit covariate vector.

of whether the subject’s spouse has a professional or managerial job (such families
may be more likely to already have the bene0ts that unions o*er) and the fraction of
the local labor force employed in manufacturing (a proxy for local union domination).
Following Budd and Na (2000), we also include data on whether the subject resides
in a right to work state; the unemployment insurance takeup rate in the state at time
t; the maximum unemployment insurance bene0ts; and public university tuition in the
subject’s state of residence. The last three variables capture the attractiveness of union
non-wage bene0ts.
A summary of the data used in the analysis is given in Table 1. Union members

earn almost two dollars more per hour in the sample, although non-union members
tend to have less experience and are less likely to be married. In order to provide
some context, we present in Table 2 estimates of the union wage premium using some
of the estimation methods discussed in the literature. From the 0rst row of the table we
see that a simple pooled OLS technique produces a wage of premium of approximately
24%. Accounting for the possible endogeneity of union status using pooled instrumental
variable methods reduces the union premium to 20%, which is no longer signi0cant.
If we account for subject-level di*erences in the wage outcomes, then the estimated
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union wage premium falls to approximately 16%. None of these methods, however,
are capable of isolating heterogeneity in the treatment e*ect.

4.1. Model 'tting

To analyze these data, we employ the general model discussed above, set � to 10
and the o*-diagonal terms of � to zero. The treatment and potential outcomes remain
correlated at each point in time because of the correlated random-e*ect vector bi. For
simplicity, we do not model time series dynamics in treatments and outcomes although
it is possible that a full analysis of these data may require such extended modeling. This
is because our main (and limited) goal is to illustrate the workings of our proposed
methods. If necessary, further realism can be introduced along the lines discussed by
Geweke and Keane (2000), Hirano (1999), and Vella and Verbeek (1998) in other
contexts.
Because our model contains a large number of parameters and prior elicitation is

diGcult, we build our prior distribution by analyzing a prior, training sample data set.
The training sample is formed by randomly selecting 60 subjects from the National
Longitudinal Survey of Youth. The data on these individuals are then subjected to
analysis with default priors on the parameters. The training sample posterior mean
is taken to be mean of our prior distribution and the variance of our prior distribu-
tion is taken to be a multiple of the training sample posterior covariance. It should
be noted that because we adjust the covariance matrix from the training sample, and
use speci0c distributional forms to represent our prior information, this training sam-
ple approach is not tantamount to analyzing the whole sample with a default prior
on the parameters. The training sample approach may be viewed as replicating the
usual Bayesian sequential logic, where a previous analysis with a di*erent data set
is used as the basis for prior formulation for the current problem. We summarize
the results from the training sample in Table 3 under the heading “training sample
posterior.”
To analyze the remaining data, we set the smoothness parameter � to yield about 160

–185 clusters at each iteration of the sampler. We run our sampler for 10,000 cycles
with a burn-in of 1000 cycles. This MCMC sample size design appears to be adequate
since the autocorrelation plots in Fig. 1 indicate that our sampler mixes relatively
well.
We summarize the results from the 0tting in Table 3. One can see from the pos-

terior estimates that a person living in a right to work state has a substantially lower
probability of being a union member. From the parameter estimates of experience
and experience squared in the potential outcome (log wage) equations, we see that
non-union members have steeper wage pro0les. The positive estimate of D12 suggests
that unobservable factors a*ecting union choice are correlated with factors that inDu-
ence the potential outcomes in the non-union sector. Union members appear to have
better non-union alternatives than workers who are actually employed in the non-union
sector. The estimated positive value of D23 indicates that individuals with high earnings
at non-union jobs tend to have high earnings at unionized jobs, suggesting that sectoral
abilities are positively related but not perfectly correlated.
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Table 3
Union data example: posterior estimates based on data for the period 1982–1991

Variable Training sample posterior Posterior

Treatment (Union member)
Intercept −7.556 (1.887) −4.504 (1.033)
Experience 1.014 (0.266) 0.402 (0.138)
Experience-squared=10 −0.256 (0.073) −0.087 (0.048)
Married 0.060 (0.255) 0.549 (0.179)
Unemployment rate 0.111 (0.048) −0.003 (0.032)
Time trend −0.456 (0.231) −0.218 (0.112)
Spouse prof. 0.075 (0.409) 0.165 (0.209)
% Manufacturing 4.051 (2.785) 1.110 (1.472)
Right to work state −1.965 (1.053) −0.970 (0.401)
UI takeup 0.666 (0.807) −0.087 (0.442)
Max UI bene0t −0.006 (0.006) −0.003 (0.004)
Tuition −0.0003 (0.001) 0.001 (0.0007)

Potential outcomes (zit0)
Intercept 1.028 (0.414) 1.130 (0.116)
Experience 0.061 (0.074) 0.105 (0.019)
Experience-squared −0.007 (0.014) −0.034 (0.004)
Married 0.086 (0.064) 0.021 (0.017)
Unemployment rate −0.0001 (0.008) 0.002 (0.003)
Time trend −0.021 (0.065) −0.016 (0.017)

Potential outcomes (zit1)
Intercept 1.328 (0.256) 1.268 (0.064)
Experience 0.111 (0.048) 0.087 (0.012)
Experience-squared −0.036 (0.006) −0.020 (0.003)
Married −0.009 (0.027) 0.021 (0.014)
Unemployment rate −0.012 (0.004) −0.009 (0.002)
Time trend −0.017 (0.046) −0.019 (0.011)

�22 0.028 (0.005) 0.007 (0.001)
�33 0.034 (0.005) 0.018 (0.002)

D12 1.323 (0.607) 0.846 (0.252)
D13 −0.033 (0.309) 0.020 (0.075)
D22 0.903 (0.211) 0.228 (0.048)
D33 0.468 (0.091) 0.105 (0.011)
D23 0.039 (0.087) 0.052 (0.013)

Treatment e,ects
� 0.005 (0.068)
�∗ (union) 0.272 (0.028)
�∗ (non-union) −0.102 (0.096)

The second column gives the posterior means and standard deviations from the training sample. The
corresponding results for the analysis sample are in the last column. Results are based on 10,000 MCMC
draws.
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Fig. 1. Union data example: posterior distributions of %9, �33, and D23 (top panel) and corresponding
autocorrelation plots from the MCMC output (bottom panel).

The bottom three rows of Table 3 contain the posterior means and standard devia-
tions of the average mean treatment e*ect, �, as well as the treatment e*ect for union
and non-union members. We see that our model, which accounts for the endogeneity of
union status, produces a substantially lower estimate of the treatment e*ect than a model
that ignores the endogeneity of the treatment. Our model also generates a smaller union
wage gap than that obtained from the IV 0t reported in Table 2. However, the estimates
of the treatment e*ect for the treated, �∗, suggest substantial heterogeneity in the union
wage premium. This is not captured by standard IV approaches. Finally, we estimated
parametric speci0cations of our model assuming multivariate normal and multivariate-t
(with 10 degrees of freedom) distributions. These parametric models yield estimates
of � that lie between the semiparametric and IV estimates (e.g., � = 0:05 or 0.06).
The estimate of D12 appears to be particularly sensitive to the parametric assumption
(the mean posterior of D12 was 0.499 in the multivariate-t model, compared to 0.846
in the semiparametric model), leading to an estimated treatment e*ect of −0:030 for
non-union workers, as compared to �∗ =−0:102 from the semiparametric model. Ex-
periments by the authors using simulated data suggest that our semiparametric model
is particularly robust to extreme observations, which may explain these di*erences in
results.
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Fig. 2. Union data example: box plots of �j strati0ed by treatment probability decile. The mean number
of observations falling into the treatment probability decile is reported at the bottom of the graph, and the
fraction of these observations that receive the treatment is reported at the top.

4.2. Treatment distributions

Fig. 2 presents the boxplots of the posterior distributions of the Bayesian matched
treatment e*ects, �1; : : : ; �10. This 0gure is useful in understanding the heterogeneity
in the treatment e*ect across the various treatment probability deciles. Workers ap-
pear to self-sort across sectors, since the distribution of �j becomes more positive
for the higher treatment probability deciles (i.e., observations with a higher proba-
bility of union membership). Individuals in the lowest treatment probability decile,
for whom the predicted probability of being in a union job is between 0 and 0.1,
are estimated to earn 18% more, on average, in the non-union sector. The union
wage premium is estimated to be positive for the remaining set of workers; the
union wage-gap is estimated to be 18% or more for the 0ve highest treatment prob-
ability deciles. These 0ndings are consistent with a model of the labor market in
which workers choose the sector in which they have a comparative advantage. The
numbers at the top and bottom of the 0gure indicate the average number of ob-
servations in the sample that fall into a particular treatment probability decile, and
the probability that an observation received the treatment (i.e., held a union job).
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Fig. 3. Union data example: box-plots of R�i categorized by Rpiu (left), Rpin (middle) and others (right).

For example, only 1% of the estimated 1223 observations with treatment probabil-
ity between 0 and 0.1 received the treatment. As might be expected, the �1 distri-
bution exhibits more variation than the treatment distributions in the other deciles
because the observations in the 0rst decile largely contain individuals who are self-
matched.
Angrist et al. (1996) and Heckman et al. (1998) argue that some subjects in a

sample are not at risk of changing treatments, and so the data are not very informative
about their treatment e*ect distributions. One way to capture this idea in our model is
to group subjects by their predicted probabilities of receiving the treatment (being a
union member) in every period in the sample, denoted by Rpiu, and never receiving the
treatment in the sample, Rpin. Subjects with larger values of Rpiu and Rpin are unlikely
to be at risk of changing treatment. In this example, we considered subjects with
Rpiu ¿ 0:60 to be likely to always work at a union job, and those with Rpin ¿ 0:60 to be
very likely to never be a union member. Fig. 3 shows that the empirical distribution
of the subject level mean treatment e*ect, R�i, for subjects presumed to be at risk of
changing treatment lies between that for subjects with high values of Rpiu and Rpin. One
interpretation of this 0gure is that if employment in a union job were to become more
attractive, one would likely see a small increase in wages, since the subjects induced
to change sectors would be drawn from the sub-group labeled “others” in Fig. 3. For
these subjects, the treatment e*ect distribution is centered at approximately 0.10 and
crosses zero.
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5. Conclusion

This paper has developed a semiparametric Bayesian analysis of treatment models
for longitudinal data that incorporates potential outcomes and non-random treatment as-
signment. The model incorporates the special features of longitudinal data, for example
subject-speci0c clustering of treatments and outcomes, without requiring independence
of treatments and responses given the covariates or strong distributional assumptions.
It is important to specify the distribution Dexibly because of the well known fragility
of conclusions in treatment models to usual distributional assumptions.
Unlike other semiparametric approaches, the unit level treatment e*ects generated

from the proposed model may be summarized to yield many of the e*ects discussed in
the literature. For example, we construct the treatment e*ect for the treated, as well as
the average treatment e*ect in the population. Furthermore, by relying on a model-based
formulation of the outcomes, we obtain detailed summaries of the treatment e*ects,
including one that is based on matched groups, conditioned on the observed data, but
marginalized over all unknowns in the model. The empirical example also emphasizes
that our approach provides an intuitive and convenient way of summarizing treatment
e*ect heterogeneity. We should mention that this paper does not delve into the problem
of comparing the proposed model with parametric alternatives. Such a comparison is
now possible for the 0rst time using the methods that have been developed by Basu
and Chib (2001). An application of the latter methods to the current problem will be
considered in future work.
We conclude by noting that the proposed framework may be utilized in situations that

are more general than the binary treatment, continuous outcome case considered here.
More complicated time series dynamics may also be considered in the treatment and
outcome equations. Finally, it is possible to allow for multiple treatments or multivariate
responses, as well as treatments and outcomes which are binary, ordinal, or continuous.
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Appendix A

In this appendix we summarize the MCMC algorithm that is used to 0t the semi-
parametric panel potential outcomes model proposed in this paper.

Algorithm.
1. Sample (�; {zit}) from �; {zit}|y; s; {bi}; {�it}; R by drawing
(a) � from �; |y; s; {bi}; {�it}; R which is proportional to

g(�) = $(�)
n∏

i=1

ni∏
t=1

f(yit ; sit |bi ; �it ; R;�)
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To sample g(�); following Chib and Greenberg (1998); let q(�|\; ,V) denote a
multivariate-t density with parameters \ and V de0ned as the mode and inverse
of the negative Hessian; respectively; of log g(�); where , is an additional scaler
tuning parameter. Let the degrees of freedom of this density be 0xed at a value
(say 15). Then

(b) Sample a proposal value �′ from the density q(�|\; ,V).
(c) Move to �′ given the current point � with probability of move (Chib and Greenberg;

1995)

min

(
$(�′)

∏n
i=1

∏Ti
t=1 f(yit ; sit |bi ; �it ; R;�′)

$(�)
∏n

i=1

∏Ti
t=1 f(yit ; sit |bi ; �it ; R;�)

q(�|\; ,V)
q(�′|\; ,V) ; 1

)
;

otherwise stay at �. In the latter expression; f(yit ; sit = k|bi ; �it ; R;�); k = 0; 1; is
speci0ed in (5) and (6).

(d) {zit} from zit |yit ; si; R; {bi};�; drawing each component of zit independently for
i6 n. Following Albert and Chib (1993); if sit=1; 0rst sample s∗it from the distribu-
tion s∗it |yit ; sit ; zit0; bi ; R;�; a normal distribution truncated to the interval (0;∞) and
then given this draw of s∗it ; sample zit0 from the distribution zit0|yit ; sit ; s∗it ; bi ; R;�;
a normal distribution without any restriction on its support. If sit = 0; modify the
above so that s∗it is sampled from the distribution s∗it |yit ; sit ; zit0; bi ; R;�; but now
truncated to the interval (−∞; 0). Then given this draw sample zit1 from the dis-
tribution zit1|yit ; sit ; s∗it ; bi ; R;�.

2. Sample (R; {bi}) from the distribution (R; {bi})|y; s; {zit}; {�it}; S;D;� by drawing
(a) R from R|{zit}; {�it}; S;D;�; a Gaussian distribution with mean

-̂ = B

(
R0B−1

0 +
n∑

i=1

X′
i+

−1
i (zi −WiViS)

)

and variance

B=

(
B−1
0 +

n∑
i=1

Xi+
−1
i Xi

)−1

;

where +i=WiDW′
i +�i and (Xi ;Wi ; zi) are de0ned in the discussion surrounding

(7).
(b) {bi} from bi|{zit}; {�it}; R; S;D; a Gaussian distribution with mean

b̂i = Ci

(
D−1ViS + �−1

Ti∑
t=1

�it(zit − XitR)
)
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and variance

Ci = (D−1 + �−1�∗i )
−1;

where �∗i = �Ti
t=1�it .

3. Sample S from S|{bi};D; a Gaussian distribution with mean Ŝ=C(C−1
0 S0+

∑n
i=1 V

′
i

D−1bi) and variance C= (C−1
0 +

∑n
i=1 V

′
iD

−1Vi)−1.
4. Sample D−1 from D−1|{bi}; S where

D−1|{bi}; S ∼ Wishart


#0 + n;

(
R−1

0 +
n∑

i=1

(bi − ViS)(bi − ViS)′)
)−1


 :

5. Sample {�it} by drawing �it from the distribution �it |zit ; bi ; [(it); G0; R;� where [(it)
denotes the set of {�it} excluding �it . Let �(it)=(�(it)

1 ; : : : ; �(it)
nit ) denote the set of nit

unique values in the collection [(it) and let m(it)
j denotes the number of �’s in [(it)

that take the value �(it)
j . Then sample �it from the continuous-discrete distribution

�it |zit ; bi ; [(it); G0; R;� ∼ qit0$0(�it |zit ; R; bi ;�) +
nit∑
j=1

qitj�(�
(it)
j );

where

$0(�it |zit ; R; bi ;�) = fG

(
�it |; �+ 3

2
;
�+ (zit − XitR− bi)′�−1(zit − XitR− bi)

2

)

is the gamma density and the weights are given by

qit0˙ �
∫

f(zit |R; bi ;�)dG0(�it)

˙ �fT (zit |XitR+ bi ;�; �)

and

qitj ˙ m(it)
j fN (zit |XitR+ bi ;�=�

(it)
j ); j = 1; : : : ; pit ;

where fT and fN denote the multivariate-t and multivariate normal density functions;
respectively.

6. Repeat Steps 1–5 using the most recent values of the conditioning variables.
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