Chapter 14 Chromatography of amino acids and peptides

https://doi.org/10.1016/S0301-4770(04)80027-7Get rights and content

Publisher Summary

This chapter focuses on the chromatography of amino acids (AAs) and peptide analysis. The approach to AA analysis depends on the origin of a specimen. Specimens may be divided into three classes: (1) mixtures of AAs derived from peptide hydrolysis, (2) AAs derived from peptide sequencing, and (3) AAs present in some biological fluid. The major task in AA analysis is the determination of free AAs in biological fluids. A specimen may contain many unknown substances that can affect the reliability of the analysis. Conventional AA chromatography is currently performed mainly on octadecyl silica by reversed-phase, high-performance liquid chromatography (RP-HPLC) with water/organic solvent gradients. The most common method for peptide analysis utilizes a HPLC procedure with a column of 25-cm length and 4.1-mm ID, packed with a 5-μm, wide-pore octadecylor octyl-bonded stationary phase, eluted with a water/acetonitrile gradient and 0.1–0.2% of trifluoroacetic acid (TFA) as ion-pairing and solubilizing agents.

References (469)

  • CT. Mant et al.
  • M. Fountoulakis et al.

    J. Chromatogr. A

    (1998)
  • M. Salva et al.

    Anal. Biochem.

    (1989)
  • J. Li et al.

    Anal. Biochem.

    (2002)
  • A. Vasanits et al.

    J. Chromatogr. A

    (1999)
  • Y.V. Tcherkas et al.

    J. Chromatogr. A

    (2001)
  • D. Fekkes et al.

    J. Chromatogr. B

    (2000)
  • P. Jandik et al.

    Anal Biochem.

    (2000)
  • A. Namera et al.

    J. Chromatogr. B

    (2002)
  • BJ. Wanders et al.

    J. Chromatogr.

    (1993)
  • B. Gas et al.

    J. Chromatogr. A

    (1995)
  • J.E. Dickens et al.

    J. Chromatogr. B

    (1994)
  • D. Corradini et al.

    J. Chromatogr. A

    (1994)
  • M.S. Bello et al.

    J. Chromatogr. A

    (1994)
  • S. Oguri

    J. Chromatogr. B

    (2000)
  • J.J. Pesek et al.

    J. Chromatogr. A

    (1996)
  • F. Lelièvre et al.

    J. Chromatogr. A

    (1996)
  • H. Yamamoto et al.

    J. Chromatogr.

    (1992)
  • Q.H. Ru et al.

    J. Chromatogr. A

    (2000)
  • M. Qi et al.

    J. Chromatogr. A

    (1999)
  • H. Zou et al.

    J. Chromatogr. A

    (2002)
  • R. Shediac et al.

    J. Chromatogr. A

    (2001)
  • M. Ummadi et al.

    J. Chromatogr. A

    (2002)
  • M. Castagnola

    Trends Biochem. Sci.

    (1998)
  • M. Castagnola

    Trends Biochem. Sci.

    (1999)
  • J. Chow et al.

    J. Chromatogr.

    (1987)
  • S. Terabe et al.

    J. Chromatogr.

    (1991)
  • M. Castagnola et al.

    J. Chromatogr.

    (1993)
  • M. Castagnola et al.

    J. Chromatogr.

    (1988)
  • N.B. Levina et al.

    J. Chromatogr.

    (1984)
  • N. Matsubara et al.

    J. Chromatogr. A

    (1994)
  • D. Drnevich et al.

    J. Chromatogr.

    (1993)
  • R.A. Bank et al.

    Anal. Biochem.

    (1996)
  • K.C. Chan et al.

    J. Chromatogr.

    (1993)
  • A.J. Shah et al.

    J. Chromatogr. B

    (1999)
  • Y. Qu et al.

    Brain Res. Brain Res. Protoc

    (2001)
  • E.A. Arriaga et al.

    Anal. Chim. Acta

    (1995)
  • S. Oguri et al.

    J. Chromatogr. A

    (1996)
  • J. Björklund et al.

    J. Chromatogr. A

    (1998)
  • H. Liu et al.

    J. Chromatogr. A

    (1998)
  • S.A. Cohen et al.

    Anal. Biochem.

    (1993)
  • J. You et al.

    J. Chromatogr. A

    (1999)
  • X. Fan et al.

    Anal. Chim. Acta

    (1998)
  • J. You et al.

    Anal. Chim. Acta

    (1999)
  • J.-Y. Zhao et al.

    J. Chromatogr.

    (1992)
  • D.J. Pietrzyk et al.

    J. Chromatogr. A

    (1997)
  • P. Oravec et al.

    J. Biochem. Biophys. Methods

    (1995)
  • I. Molnár-Perl

    J. Chromatogr. A

    (2001)
  • K.-L. Woo et al.

    J. Chromatogr. A

    (1996)
  • T. Iwata et al.

    Anal. Chim. Acta

    (2000)
  • View full text