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Abstract

We perform a brief but critical review of the Landauer picture of transport that clar-
ifies how decoherence appears in this approach. On this basis, we present different
models that allow the study of the coherent and decoherent effects of the interaction
with the environment in the electronic transport. These models are particularly well
suited for the analysis of transport in molecular wires. The effects of decoherence
are described through the D’Amato-Pastawski model that is explained in detail. We
also consider the formation of polarons in some models for the electron-vibrational
interaction. Our quantum coherent framework allows us to study many-body inter-
ference effects. Particular emphasis is given to the occurrence of anti-resonances as
a result of these interferences. By studying the phase fluctuations in these soluble
models we are able to identify inelastic and decoherence effects. A brief description
of a general formulation for the consideration of time-dependent transport is also
presented.
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1 Introduction.

Electronic transport in biological and organic molecules has become a very
exciting field [1,2] that brings together ideas and results developed during the
past two decades in many branches of Physics, Chemistry and Biology. On the
basis of this synergic interaction one can foresee very innovative results. Much
of its wealth comes from the fact that molecules are intrinsically quantum
objects, and quantum mechanics always defies our classical intuition. When
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this happens, we are almost certain to find new “unexpected phenomena”
leading to prospective applications. In turn, with a few exceptions, it is not
yet clear how Nature exploits quantum effects in biological systems. However,
it seems likely that evolution has made use of the details of the quantum
tunneling process in modulating charge transport [3]. Hence, by pursuing an
exploration of dynamical quantum phenomena at the molecular level one may
also expect to be more prepared to discover Her hidden ways.

A paradigmatic example of the above situation is the electron transfer in DNA
strands [2]. There is evidence that at least two mechanisms are present in this
case: 1) A coherent tunneling between the base pairs constituting the donor
and acceptor centers. 2) An inelastic sequential hopping through bridging cen-
ters. Theoretically, there is a need to unify the description of these extreme
regimes as well as to study the possible role of vibrations and distortions of the
DNA structure. Our present understanding of these basic physical processes
comes from the field of Quantum Transport, which evolved from the descrip-
tion of non-crystalline materials [4] and reached its climax with nanoelectronic
[5] devices. Since these last structures may have a very small length scale the
term “artificial atoms” [6] is amply justified. Many of the phenomena appear-
ing in these systems could be summarized in the fact that the wave nature
of electrons made them susceptible to interference phenomena. These can be
assimilated to the propagation of light in some complex Fabry-Perrot inter-
ferometer producing either well defined fringes or “speckle-patterns”. Failures
in that simplistic description is essentially due to interactions with excessively
complex environmental degrees of freedom (such as thermal vibrations), and
our lack of control over them is interpreted as “decoherence”[7]. This often
justifies the use of a classical description of the transport process. However,
if one is to borrow some idea from the theory of solid state physics, it could
be that coherent interactions between electrons and lattice distortions give
rise to new effects such as assisted tunneling [8] or even superconductivity.
Indeed both phenomena could give striking results in organic systems [9,10].
One is then compelled to develop new tools to describe electron-phonon (e-ph)
coherent processes in molecular devices.

In what follows we will make a brief description of quantum interference phe-
nomena establishing a ground level language based on the simplest physical
models. While following our personal pathway of many years through the gen-
eral ideas of transport in the quantum regime, we expect to induce a new
perspective into the subtle mechanisms that lead to the degradation of the
simple quantum effects through the interactions with the environment (i.e.
decoherence). As a token, we will visualize coherent effects emerging from the
electron-lattice interaction that can be exploited in new useful ways.

In Section 1 we recall the Landauer ideas [11] for transport which will also
serve to adopt a basic language and give a conceptual framework into which
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the phenomenological aspects of decoherence can fit. In Section 2 we review
the D’Amato-Pastawski (DP) model [12] for coherent and decoherent trans-
port commenting its strengths and limitations. In Section 3 we introduce a
polaronic model that hints at the properties of the complete electron-phonon
Fock space. This not only sheds light on the decoherence process but can also
be used to predict new phenomena such as the coherent emission of phonons.
We devote Section 4 to a brief description of the time dependent transport.
Section 5 gives a general perspective.

2 Landauer’s picture for transport.

The framework that inspired most of the described experimental developments
in mesoscopic electronics was the Landauer’s [11] simple but conceptually new
approach. Besides the “sample” or device, he explicitly incorporated the de-
scription of the electric reservoirs connected to “the sample”. The role of reser-
voirs can be played not only by electrodes but also could be spatial regions
(localized LCAO) where the electrons lose their quantum coherence. This last
situation describes transport in the hopping regime [14] (we will see more on
this latter). The simplest mathematical description is obtained if one thinks
them as one-dimensional wires that connect the individual orbitals i to elec-
tronic reservoirs characterized by the statistical distribution function fi(ε). In
that case, the electronic states are plane waves describing the different bound-
ary conditions of electrons “in” or “out” the reservoir. An electron “out” from
reservoir connected to “site” i has a probability Tj,i(ε) to enter the reservoir
connected to “site” j. A representation of such a situation for the case of
three reservoirs is sketched in Fig. 1. The current per spin state at reservoir j
is obtained by the application of the Kirschhoff’s law (i.e. a balance equation
[13]):

Ij =
e

h

∫
dε
∑

i

[
Ti,j(ε)vj

1
2
Njfj(ε)− Tj,i(ε)vi

1
2
Nifi(ε)

]
. (1)

The meaning of this equation is obvious: it balances currents. Each reservoir j
emits electrons with an energy availability controlled by a Fermi distribution
function fi(ε) = 1/[exp[(ε − µi)/kBT + 1], with a chemical potential, µi =
µo+δµi, displaced from its equilibrium value µo. One can assimilate Vi = δµi/e
as voltages. The density of those outgoing states is 1

2
Ni(ε) (half the total) and

their velocity vi. It was essential in Landauer’s reasoning to note that in a
propagating channel the density of states Ni is inversely proportional to the
corresponding group velocity:

Ni ≡ 1/(vih). (2)
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Fig. 1. Representation of a three probe measurement. The voltmeter may be strongly
coupled and is a source of decoherence.

This is immediately satisfied in one-dimensional wires but its validity is much
more general. This fundamental fact remained unnoticed in the early discus-
sions of quantum tunneling [5] and it is the key to understand conductance
quantization. The Gj,i =

e2

h
Tj,i(ε) are hence Landauer’s conductances per spin

channel. For perfect transmitting samples Tj,i is either 1 or 0 and one obtains
the conductance quantization in integer multiples of e2/h.

Notice that there is no need for the traditional [1− fj(ε)] factor to exclude
transitions to already occupied final states. In a scattering formulation, any
“in” state contains a linear combination of “out” states. Although two differ-
ent “in” states (e.g. on the left and right electrodes) could end in the same
final “out” state, unitarity of quantum mechanics assures that both sets are
orthogonal. Here the transmission coefficients may depend on the external
parameters such as voltages.

An important particularity of our Eq. (1) is that it does not exclude sites i = j
from the sum. This contrasts with the original multichannel description[13]
and is of utmost importance in the treatment of time dependent problems
where Vi = Vi(t) as will be seen in Section 4. Our Eq. (1), always used with
Eq. (2), has a full quantum foundation within the Keldysh formulation of
Quantum Mechanics (e.g. see Eqs. (5.6-7) in ref. [15]). It can be fully expressed
in terms of quantities obtained from a Hamiltonian model such as local density
of states and Green’s functions. We adopt here a notation consistent with these
formal developments.

2.1 Phenomenology of decoherence.

A first alternative to include decoherence in steady state quantum transport
was inspired in the Landauer’s formulation. There, the leads, while accepting
a quantum description of their spectrum of propagating excitations, are the
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ultimate source of irreversibility and decoherence: electrons leaving the elec-
trodes toward the sample are completely incoherent with the electrons coming
from the other electrodes. In fact, it is obvious that a wire connected to a volt-
meter, by “measuring” the number of electrons in it, must produce some form
of “collapse” of the wave function leading to decoherence (see Fig. 1). Be-
sides, no net current flows toward a voltmeter. The leads are then a natural
source of decoherence which can be readily described in the Landauer picture
if one uses the Landauer conductances together with the Kirschhoff balance
equations. This fact was firstly realized by M. Büttiker [16]. Let us see how
it works for the case of a single voltmeter in the linear response regime. In
matrix form:



IL

Iφ

IR




=




− [GR,L + Gφ,L] GL,φ GL,R

Gφ,L − [GR,φ + GL,φ] Gφ,R

GR,L GR,φ − [Gφ,R + GL,R]










VL

Vφ

VR






. (3)

Here the unknowns are IL, IR and Vφ = δµφ/e. The second equation must be
solved with the voltmeter condition Iφ ≡ 0:

0 =
e

h
Tφ,L(δµφ − δµL) +

e

h
TR,φ(δµφ − δµR), (4)

giving us δµφ to be introduced in the third equation:

IR =
e

h
TR,L(δµL − δµR) +

e

h
TR,φ(δµφ − δµR) (5)

to obtain the current

IR =
e

h
T̃R,L(δµL − δµR)

with

T̃R,L = TR,L +
TR,φTφ,L
TR,φ + Tφ,L

(6)

The first term can be identified with the coherent part, while the second is the
incoherent or sequential part, i.e. the contribution to the current originated
from particles that interact with the voltmeter. This corresponds to an effective
conductance of

G̃R,L = GR,L + (G −1
R,φ + G

−1
φ,L )−1, (7)

which can be identified with the electrical circuit of Fig. 2. This classical view
clarifies the competition between coherent and incoherent transport. However,
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Fig. 2. Classical circuit representation of the non-classical system of Fig. 1.

this circuit does not imply that in Quantum Mechanics one cannot modify one
of the resistances without deeply altering the others. This fact can become very
relevant in partially coherent regimes.

So far with the phenomenology. The next important step is to connect these
quantities with actual model Hamiltonians. This connection was made explicit
by the contribution of D’Amato and Pastawski [12].

3 The D’Amato-Pastawski model for decoherence.

3.1 Reducing the Hamiltonian

Let us first review the basic mathematical background that made possible the
selection of a simple Hamiltonian that best represents the complex sample-
environment system. The objective was to find a simple way to account for the
infinite degrees of freedom of a thermal bath and/or electrodes and use the
exact solution in the Landauer’s transport equation. First, we recall that one
can always eliminate the microscopic degrees of freedom [17,18] generating an
effective Hamiltonian, expressed in a basis of localized orbitals. This produces
effective interactions and energy renormalizations which depend themselves on
the observed energy. Furthermore, one can include a whole lead in a Hamil-
tonian description through a correction to the eigen-energies which has an
imaginary part. In fact, an electron originally localized in the region called
“the sample” should eventually escape or decay toward the electrodes. In a
microscopic description this is equivalent to the decay of an excited atom ac-
cording to the Fermi Golden Rule. Hence, there is a escape velocity associated
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with the energy uncertainty of a local state:

vi =
2a

~
Γi =

a

τi
, (8)

where a is a lattice constant. Let us see a simple example. Consider a sin-
gle LCAO which could be the highest occupied molecular orbital (HOMO)
or the lowest unoccupied molecular orbital (LUMO) responsible for resonant
transport

Ĥo
0 = E0ĉ

+
0 ĉ0

coupled with a quasi-continuum of electronic states of the electrode. They are
described by a “lead” connected to the voltmeter:

Ĥlead =
∑

k

Ekĉ
+
k ĉk.

The sample-lead interaction term is:

Ĥ0−lead =
∑

k

(
Vk,0ĉ

+
k ĉ0 + c.c.

)
.

The unperturbed atomic energy E0 will become corrected by the presence of
the lead. In second order of perturbation we get

leadΣ
R(A)
0 = lim

η→0+

∑

k

|Vk,o|2
E0 −Ek ± iη

= lead∆0(E0)∓ ileadΓ0(E0). (9)

The sign + or − of the infinitesimal imaginary energy η is introduced to
handle eventual divergencies in the sum. Since it determines the sign of time
in the evolution, the supra-index R or A corresponds to either a retarded or
advanced propagation. The imaginary component appears because the elec-
trode spectrum, described by the density of states Nlead(ε), is continuum in the
neighborhood of energy Eo+∆(Eo). This makes possible the irreversible decay
into the continuum set of states k, not included in the bounded description.
The general functional dependence of ∆0(Eo)− iΓ0(Eo) is better expressed in
terms of the Wigner-Brillouin perturbation theory:

lead∆0(ε) = ℘
∫ ∞

−∞

|Vk,0|2
ε− Ek

Nlead(Ek)dEk, (10)

where ℘ stands for principal value and Nlead(Ek) is the density of states at the
lead. Similarly:

leadΓ0(ε) = π
∫ ∞

−∞
|Vk,0|2Nlead(Ek)δ[ε− Ek]dEk. (11)

The evaluation of Eq. (11) and (8) at ε = E0 constitutes the Fermi Golden
Rule (FGR). Of course these quantities satisfy the Kramers-Kroning relations
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∆0(ε) =
1

π
℘
∫ ∞

−∞

Γ0(ε
′)

ε− ε′
dε′. (12)

An explicit functional dependence on the variable ε contains eventual non-
FGR behavior. The FGR describes reasonably electrons in an atom decaying
into the continuum (electrode states), or propagating electrons decaying into
different momentum states by collision with impurities or interaction with a
field of phonons or photons. In some of these cases, we have to add some
degrees of freedom to the sum (the phonon or photon coordinates). A process
α may produce contributions αΣR

0 to the total self-energy ΣR
0 .

Ĥ◦
0−−−−−−−−→interactionsĤ0 = Ĥ(◦)

0 + Σ̂R
0 (ε) (13)

with

Σ̂
R(A)
0 (ε)= (∆0(ε)∓ iΓ0(ε)) ĉ

+
0 ĉ0 (14)

=
∑

α

(α∆0(ε)∓ i αΓ0(ε)) ĉ
+
0 ĉ0. (15)

Besides, the best way to do perturbation theory to infinite order is the frame-
work of Green’s functions.

The unperturbed retarded Green’s functions are defined as the matrix ele-
ments of the resolvent operator

ĜoR(ε) = lim
η→0+

[(ε+ iη)Î − Ĥo]−1 (16)

for the isolated sample. It is practical to represent this as a matrix, GoR(ε),
whose elements are written in terms of the eigen-energies Eo

α and eigen-
functions ψ(o)

α (r) =
∑

i uα,iϕi(r) of the isolated sample as

GoR
i,j (ε) = lim

η→0+

∑

α

uα,iu
∗
α,j

ε+ iη − Eo
α

=
[
GoA

j,i (ε)
]∗

(17)

The Local Density of States at orbital i is calculated as

No
i =

1

2π
lim
η→0+

[GoA
i,i (ε)−GoR

i,i (ε)]. (18)

The Fourier transform

GoR
i,j (t2 − t1) =

∫ ∞

−∞

dε

2π~
exp

[
− i

~
ε(t2 − t1)

]
GoR

i,j (ε) (19)
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Fig. 3. Feynman representation of the Dyson equation for the single particle Green’s
function (line). An electron-phonon self-energy is evaluated in terms of the sample
electron (line) and phonon (wave) Green’s functions. The leads self-energies contain
the hopping (dot) and the propagator in the lead.

is solution of:
[(

−i~
∂

∂t2
I+Ho

)
GoR(t2 − t1)

]

i,j

= δi,jδ(t2 − t1) (20)

with t2 > t1. The identity matrix is [I]i,j = δi,j . Hence G
oR
i,j (t2− t1) is − i

~
times

the probability amplitude that a particle placed in j-th orbital at time t1 be
found in i-th one at time t2. The advantage of the method is that GR

i,j(t) can
be calculated numerically from GR

i,j(ε) without a detailed knowledge of the
eigen-solutions of the perturbed system. For GR

i,j(ε) one uses:

GR(ε) = [ε1− (Ho + ΣR(ε))]−1 (21)

= GoR(ε) +GoR(ε)
∞∑

n=1

[
ΣR(ε)GoR(ε)

]n
(22)

= GoR(ε) +GoR(ε) ΣR (ε)GR(ε) (23)

In the second line we have written the usual forms of the Dyson equation from
which the Wigner-Brillouin perturbative series and its representation in Feyn-
man diagrams can be obtained. In Fig. 3 we show the graphical representation
of the Dyson equation considering two local contributions to the self-energy:
the electron-phonon interactions and the escape to the leads.

For a brief tutorial on the calculation of the Green’s function in discrete sys-
tems see Ref. [19]. Although the formalism seems to introduce some extra
notation it has various conceptual advantages. For example, it is straightfor-
ward to use Eq. (21) to prove the optical theorem [19]:

[GR −GA] = GR [ΣR − ΣA]GA (24)

of deep physical significance since it is an integral equation relating the local
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densities of states given by Eq. (18) and the decay rates provided by Eq. (14).
Perhaps the most important advantage, is that they can be used also in the
Quantum Field Theory [20,21] to deal with the many-body case.

The direct connection between observables and the transmittances used in
the Landauer formulation and the Green’s function follows intuitively from the
Green’s function probabilistic interpretation. This was formalized by D’Amato
and Pastawski who used a result of Fisher and Lee [22] that related the trans-
mittance to a product of the Green’s function connecting two regions and
their group velocities. By noting the discussed relation between the group ve-
locity and the imaginary part of the effective potential established in Eq. (8),
DP obtained a simple expression for the transmittance, which in our present
notation can be written as

Tjα,iβ(ε) ≡ |tjα,iβ(ε)|2 = [2 αΓj(ε)] G
R
j,i(ε)

[
2 βΓi(ε)

]
GA

i,j(ε)] . (25)

The left supra-index α in αΓ indicates each of the independent processes pro-
ducing the decay from the LCAO modes (right subindex) associated with the
physical channel. In the basis of independent channels the complex part of the
self-energy is diagonal. Hence the sum over initial states and processes in the
physical channels R and L of Eq. (1) determines a conductance:

GR,L =
2e2

h
4Tr[ΓR(ε)G

R
R,L(ε) ΓL(ε)G

A
L,R(ε)]. (26)

This matrix expression is simply a compact way to write Eq.(1), using Eqs.
(25) and (8) together to compute the linear response conductance between any
pair L and R of electrodes. The sum of initial states at left (L) is the result
of the product of the diagonal ΓL(ε) form of the broadening matrix, while the
final trace is the sum over final states at right (R). With different notations,
these basic ideas recognize by now many applications to the field of molecular
electron transfer [23].

Originally, Fisher and Lee considered only the escape velocity to the leads (i.e.
α = β = lead). Our point is that any other process which contributes to the
decay giving an imaginary contribution to the self-energy would be described
by Eq. (25). In particular, this will be true for a “decoherence” velocity that
degrades the coherent current. This view was proposed in DP [12] adopting a
discrete (tight-binding) description of the spatial variables at each point (or
orbital) in the real space a decay rate was assigned which is balanced by the
particles reinjection in the same site, described as local reservoirs.

We now show how the DP model applies to a simple tunneling system. Con-
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sider the unperturbed Hamiltonian,

Ĥ0 =
N+1∑

i=0



Eiĉ

+
i ĉi +

∑

j(6=i)

Vi,j
[
ĉ+i ĉj + ĉ+j ĉi

]


 . (27)

Since the indices i and j (sites) refer to any set of atomic orbitals, the inter-
actions are not restricted to nearest neighbors. However, for the usual short
range interactions, the Hamiltonian matrix has the advantage of being sparse.
The local dephasing field is represented by

φΣ̂R =
N∑

i=1

−i φΓ ĉ+i ĉi (28)

where φΓ = ~/(2τφ). We consider for simplicity only two one-dimensional
current leads L and R connected to the 1st. and the Nth orbital states respec-
tively,

leadsΣ̂R = −i
(
LΓ ĉ+1 ĉ1 +

R Γ ĉ+N ĉN
)
. (29)

We see that the 1-st state has escape contributions both, toward the current
lead at the left, LΓ1, and to the inelastic channel associated to this site, φΓ1.
The on-site chemical potential will ensure that no net current flows through
this channel.

3.2 The solution for incoherent transport

To simplify the notation we define the total transmission from each site as:

(1/gi) =
N+1∑

j=0

Tj,i =





4πN1
LΓ1 for i = 0

4πNi
φΓ1 for 1 ≤ i ≤ N

4πNN
RΓN for i = N + 1

(30)

The last equality follows from the optical theorem of Eq.(24). The balance
equation becomes

Ii ≡ 0 = − (1/gi) δµi +
N+1∑

j=0

Ti,jδµj, (31)

where the sum adds all the electrons that emerge from a last collision at other
sites (j ’s) and propagate coherently to site i where they suffer a dephas-
ing collision. These include the electrons coming from the current source i.e.
Ti,LδµL and the current drain. However, since we refer all voltages to the last
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one, Ti,RδµR ≡ 0. The first term accounts for all the electrons that emerge
from this collision on site i to have a further dephasing collision either in the
sample or in the leads. The net current is identically zero at any dephasing
channel (lead). The other two equations are

IL ≡ −I = − (1/gL) δµL +
N∑

j=0

TL,jδµj, (32)

IR ≡ I = − (1/gR) δµR +
N+1∑

j=0

TR,jδµj.

Here we need the local chemical potentials which can be obtained from Eq.
(31). In a compact notation, these coefficients can be arranged in a matrix
form which excludes the leads that are current source and sink:

W =




1/g1 − T1,1 T1,2 T1,3 · · · T1,N
T2,1 1/g2 − T2,2 T2,3 · · · T2,N
T3,1 T3,2 1/g3 − T3,3 · · · T3,N
...

...
...

...

TN,1 TN,2 TN,3 · · · 1/gN − TN,N




. (33)

Then, the chemical potential in each site can be calculated as

δµi =
N∑

j=1

(
W−1

)
i,j
Tj,0δµ0. (34)

Replacing these chemical potentials back in Eq. (31) the effective transmission
can be calculated

T̃R,L = TR,L +
N∑

j=1

N∑

i=1

TR,j

[
W−1

]
j,i
Ti,L. (35)

The first contribution in the RHS comes from electrons that propagate quan-
tum coherently through the sample. The second term contains the incoherent

contributions due to electrons that suffer their first dephasing collision at site
i and their last one at site j.

Until now the procedure has been completely general, there is no assumption
involving the dimensionality or geometry of the sample. The system of Fig. 4
was adopted in DP only because it has a simple analytical solution for Ti,j in
various situations ranging from tunneling to ballistic transport. We summa-
rize the procedure for the linear response calculation. First, we calculate the
complete Green’s function in a tight-binding model. Since the Hamiltonian
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Fig. 4. Pictorial representation of the D Amato-Pastawski model for the case of a
linear chain.

is sparse this is relatively inexpensive if one uses the decimation techniques
described in Ref. [18]. With the Green’s functions, we evaluate the transmit-
tances between every pair of sites in the sample (i.e. nodes in the discrete
equation) and write the transmittance matrix W. Then, we solve for the cur-
rent conservation equations that involve the inversion of W.

What are the limitations of this model? A conceptual one is the momentum
demolition produced by the localized scattering model. Therefore, by decreas-
ing τφ, the dynamics is transformed continuously from quantum ballistic to
classical diffusive. To describe the transition from quantum ballistic to clas-
sical ballistic, one should modify the model to have the scattering defined in
phase space or energy basis. While the first is well suited for scattering matrix
models [25], the last is quite straightforward as will be shown in next Section.
The other aspect is merely computational. Since the resulting matrix W is no
longer sparse, this inversion is done at the full computational cost. A physi-
cally appealing alternative to matrix inversion was proposed in DP. The idea
was to expand the inverse matrix in series in the dephasing collisions, resulting
in:

T̃R,L = TR,L +
∑

i

TR,igiTi,L +
∑

i

∑

j

TR,igiTi,jgjTi,L (36)

+
∑

i

∑

j

∑

l

TR,igiTi,jgjTi,lglTl,L + . . .

The formal equivalence with the self-energy expansion in terms of locators
or local Green’s function justifies identifying gi as a locator for the classical
Markovian equation for a density excitation [26] generated by the transition
probabilities T ′s. Notice that Eq. (36) can also be rearranged as:

T̃R,L = TR,L +
N∑

i=1

T̃R,igiTi,L. (37)

This has the structure of the Dyson equation, graphically represented in Fig.
5. We notice that according to the optical theorem gi = τφ2π~Ni, while both
transmittances entering the vertex are proportional to 1/τφ, the whole vertex
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Fig. 5. Feynman Diagram for the Dyson Equation of the transmittance. It is equiv-
alent to a particle-hole Green’s function in the ladder approximation where a rung
is represented by a dot.

is proportional to the dephasing rate. The arrows make explicit that trans-
mittances are the product of a retarded (electron) and an advanced (hole)
Green’s function. Obviously, one can sum the terms of Eq. (36) to obtain the
result of Eq.(6) for phenomenological decoherence.

Many of the results contained in the D’Amato-Pastawski paper for ordered
and disordered systems were extended in great detail in a series of papers by
S. Datta and collaborators and are presented in a didactic layout in a book
[27]. In the next section, we will illustrate how the previous ideas work by
considering again our reference toy model for resonant tunneling.

3.3 Effects of decoherence in resonant tunneling

After an appropriate decimation [18] the “sample” is represented by a single
state [15,30]. If we choose to absorb the energy shifts into the site energies
E0 = E0 +∆, the Green’s function is trivial

GR
0,0 =

1

ε− E0 + i(LΓ + RΓ + φΓ)
. (38)

By taking the Γ’s independent on ε in the range of interest we get the “broad-
band” limit. From now on we drop unneeded indices and arguments. From
this Green’s function all the transmission coefficients can be evaluated at the
Fermi energy.

TR,L = 4 RΓ |G0,0|2 LΓ, (39)

Tφ,L = 4 φΓ |G0,0|2 LΓ, and

TR,φ = 4 RΓ |G0,0|2 φΓ.
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We obtain the energy dependent total transmittance:

TR,L(ε) = 4 RΓ
1

(ε−E0)
2 + (LΓ + RΓ + φΓ)2

LΓ

{
1 +

φΓ
LΓ +R Γ

}
. (40)

The first term in the curly bracket is the coherent contribution while the second
is the incoherent one. We notice that the effect of the decoherence processes
is to lower the value of the resonance from its original one in a factor:

(
LΓ +R Γ

)

(LΓ + RΓ + φΓ)
(41)

In compensation, transmission at the resonance tails becomes increased.

It is interesting to note the results in the non-linear regime when the voltage
drop eV is greater than the resonance width (LΓ + RΓ + φΓ). If the new
resonant level lies between µo+ eV and µo, we can easily compute the non-

linear current using TR,L(ε, eV). Notably, one gets that the total current does
not change as compared with that in absence of decoherent processes, i.e.:

I
h

2e
=
∫ µo+eV

µo

T̃R,L(ε, eV)dε =
∫ µo+eV

µo

T o
R,L(ε, eV)dε (42)

= 4π RΓ
1

(LΓ + RΓ)
LΓ. (43)

Thus, in this extreme quantum regime, the decoherence processes do not affect

the overall current. Such relative “stability” against decoherence is fundamen-
tal in the Integer Quantum Hall Effect [24] and should also be present for
tunneling through molecular states as both of them have a discrete spectrum.
Notice that in this last case the dependence of the escape rates on eV is gener-
ally weak. Hence, the experimental value of the current allows an estimation
of the escape rate.

We learn important lessons from the case of resonant tunneling with the in-
clusion of external degrees of freedom as decoherence:

1) The integrated intensity of the elastic (coherent) peak is decreased.

2) An inelastic current comes out to compensate this loss and maintains the
value of the total transmittance integrated over energy.

3) Decoherence broadens both contributions to the resonance, relaxing energy
conservation.
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The representation of the electron-phonon through complex self energies damps
the quantum interferences associated with repeated interactions with some vi-
brational modes that would originate the polaronic states. In what follows
we will explore some simple Hamiltonian models where decoherence is not
introduced in such an early stage. Instead of calculating transition rates, the
approach will be to consider the many-body problem and to compute the
quantum amplitudes for each state in the Fock space.

4 The electron-phonon models

4.1 A state conserving interaction model

Let us consider a simple model that complements that of DP by providing an
explicit description of a single extended vibrational mode whose quanta in a
solid would be optical phonons,

Ĥph = ~ωob̂
+b̂. (44)

The electrons are described by:

Ĥe =
∞∑

i=−∞

Eiĉ
+
i ĉi −

∑

j(6=i)

[
Vi,j ĉ

+
i ĉj + Vj,iĉ

+
j ĉi
]
. (45)

The orbitals between 1 and N = Lx/a define our region of interest. Orbitals at
the edge are connected with the electrodes, where Vi,j = V , through tunneling
matrix elements V0,1 = V1,0 ≡ VL and VN,N+1 = VN+1,N ≡ VR. The results
will be simpler when VL(R) ≪ V . Electrons and phonons are assumed to be
coupled through a local interaction:

Ĥe−ph =
N∑

i=1

−Vg ĉ+i ĉi(b̂+ + b̂). (46)

To build the electron-phonon Fock space we consider a single electron propa-
gating in the leads while the number n of vibronic excitations is well defined.
While this election neglects the phonon mediated electron-electron interac-
tion, it still has non-trivial elements that are the basis for the development
of the concept of phonon laser (SASER) [31]. This model will be called State
Conserving Interaction (SCI).
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Fig. 6. Scheme for the problem of an electron plus a single phonon mode. The in-
teracting system in the upper figure is transformed into polaronic modes associated
to spatial eigenstates which interact weakly through the leads (lower figure).

The total energy, which is conserved during the transport process, is

E = εn + n~ωo with 0 ≤ εn ≤ εF .

Here εn is the kinetic energy of the incoming electron on the left lead and n is
the number of phonons before the scattering process. A scheme of the complete
electron-phonon Fock space is shown in Fig. 6. It is clear that an electron that
impinges from the left when the well has n phonons, can escape through the left
or right electrodes leaving behind a different number of phonons. Since these
are physically different situations, the outgoing channels with different number
of phonons are orthogonal and therefore cannot interfere. This is represented
in the fact that the sum of transmittances over final channels satisfy unitarity.

The physical analysis of the excitations can be simplified resorting to a new
basis to refer the electron-phonon states. We notice that, if we neglect the in-
teraction with the leads, we can diagonalize the electronic Hamiltonian with-
out affecting the form of the electron-phonon interaction. First we diagonalize
the electronic system finding the annihilation operators ĉα =

∑N
i=1 uα,iĉi at
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eigenstates ψα with energies Eα and wave functions uα,i = 〈i| α〉

Ĥ0 =
N∑

α=1

Eαĉ
+
α ĉα and Ĥe−ph =

N∑

i=0

−Vg ĉ+α ĉα(b̂+ + b̂) (47)

The Hamiltonian Ĥe−ph is just a linear field for the harmonic oscillator where
the field amplitude is proportional to the density of the electrons that dis-
turbs the lattice. Hence, the excitations, called Holstein polarons, are easily
obtained. The interesting point is that with the proposed Hamiltonian one
can diagonalize simultaneously every electron subspace. i.e. in this model the
phonons do not cause transitions between electronic levels. The new excita-
tions are described by

(
â+k
)n |0p,k〉 =

∞∑

n′=0

χn,n′

(
b̂+
)n′

ĉ+k |0〉 (48)

which is valid at every electron space index α. These operators represent po-
larons in the energy basis analogous to the Holstein’s local polaron model
[28]. The “polaronic” ground state is related to the unperturbed state by

|0p,k〉 =
∑∞

n=0 χ0,n

(
b̂+
)n
ĉ+k |0〉 .The polaronic energies are lower than those of

electrons plus phonons:

Eα,n′ = Eα + ~ωo(n
′ + 1

2
)− |Vg|2

~ωo

with n′ =
〈
â+â

〉
. (49)

Since phonons do not produce transitions between electron energy states, this
model introduces decoherence through a State-Conserving Interaction (SCI).
The lesson we learn from this is that by writing the interactions in differ-
ent basis we can choose the quantum numbers that are conserved: e.g. local
densities in the DP model and energy eigenstates in the SCI model.

4.2 Coherent and decoherent effects in electronic transport.

The general problem of the electronic transport has been solved within the
formalism of Keldysh [15,30] in a FGR decoherent approximation [32]. How-
ever, here we will solve the full many-body problem. Figure 6 makes evident
that the phonon emission/absorption can be viewed as a “vertical” hopping in
a two dimensional network. Once we notice that the Fock-space is equivalent
to the electron tight-binding model with an expanded dimensionality [31][33],
we see that the transmittances can be calculated exactly from the Schrödinger
equation. While excitations are best discussed in the polaronic basis, for the
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Fig. 7. Each site is a state in the Fock space: The lower row represents electronic
states in different sites with no phonons in the well, the sites in black are in the
leads. Higher rows correspond to higher number of phonons. Horizontal lines are
hoppings and vertical lines are e-ph couplings.

electron transport it is preferable the use of the asymptotic states. There, when
the charge is outside the interacting region, the electron-phonon product states
constitute the natural basis. Recently, this model has gained additional inter-
est as it has been used to explain inelastic effects in STM through molecules
[34], to study the transport in molecular wires [35] and to investigate Peierls’s
like distortions induced by current in organic compounds [36].

A transport calculation is simpler if we prune the Fock space to include only
states within some range of n allowing a non-perturbative calculation which
can be considered variational in n. Thus, we are not restricted to a weak e-
ph coupling. To obtain the transmittances between different channels several
methods can be adopted. One possibility is to solve for the wave function
iteratively [33]. An alternative is to obtain Green’s functions to get the trans-
mittances. In this case, the horizontal “dangling chains” in the Fock space
can be eliminated through a decimation procedure [12,18] introducing com-
plex self-energies in the corresponding “sites”.

For simplicity, let us consider the case of a single state of energy E0 in the re-
gion of interest which we will call the “resonant” state. It could be interpreted
as a HOMO or LUMO state depending on the situation. It interacts with a
dispersionless phonon mode, and it is coupled to a source and drain of charge.
The problem for an electron that tunnels through the system can be mapped
to the one-body problem shown in Fig. 7.

Let us consider an asymptotic incoming scattering state consisting of a wave
packet built with electron-phonon states in the left branch corresponding to
n0 phonons, i.e. an electron coming from the left while there are n0 phonons in
the well. When it arrives at the resonant site where it couples to the phonon
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field, it can either keep the available energy E as kinetic energy or change it
by emitting or absorbing n phonons. Each of these processes contributes to
the total transmittance which is given by:

Ttot =
∑

n

Tn0+n,n0
. (50)

In Fig. 8-a we show the total transmittance (thick line) for a case where n0 is
zero and the e-ph coupling is weak. There, the appearance of satellite peaks
at energies E0 + n~ω0 can be appreciated. To discriminate the processes con-
tributing to the current, we include with a dashed line, the elastic contribution
to the transmittance, i.e. that due to electrons which are escaping to the right
without leaving vibrational excitations behind. This makes almost all of the
main peak and just decreasing portions of the satellite peaks. The elastic
contribution at the satellite peaks corresponds to a sum of virtual processes
consisting of the emission of phonons followed by their immediate reabsorp-
tion. The inelastic component associated with the emission of one phonon is
shown with a dotted line.

While the total transmittance (thick line) shows a smooth behavior, the elas-
tic component (dashed line) exhibits a strong dip in the region between the
first two resonances. Therefore, almost all of the transmitted electrons within
this energy range will be scattered to the inelastic channels. This sharp drop
in the elastic transmittance is produced by a destructive interference between
the different possible “paths” in the Fock-space connecting the initial and the
final channels. These paths can be classified essentially as a direct “path” be-
tween the incoming and outgoing channels and the same path dressed with
virtual emission and absorption processes. The first inelastic component (dot-
ted line) also shows a similar behavior in the valley between the second and
third resonances. The main factors that control the magnitude of these antires-
onances are the escapes to the leads and the e-ph coupling. This concept was
introduced in Refs.[37,18] to extend the Fano-resonances [38] observed in spec-
troscopy to the problem of conductance. Perfect antiresonances correspond to
situations where both the real and the imaginary part of the transmission
amplitude are zero. In the present case, such a perfect interference condition
does not occur, and there is a non-zero minimum transmission at the dips.
Through a similar analysis one could tailor the geometrical parameters of the
system (as done in Ref. [39]) to optimize the phonon emission.

An alternative way to appreciate this interference effect is to plot the path
followed by the transmission amplitude in the complex plane when the ki-
netic energy of the incoming electron is changed [40,41]. A plot for the elastic
transmission amplitude is shown in Fig. 8-c). For ε = 0, there is no trans-
mission. If the energy is increased, one starts to follow the path in the figure
anti-clockwise. After reaching the point corresponding to the first resonance,
the transmission starts to decrease and the curve develops a turning near the
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Fig. 8. a) Transmittance as a function of the incident electronic kinetic energy. The
total transmittance is shown with a thick solid line, the elastic component with a
dashed line and T1,0 with a dotted line. The non-interacting transmittance is also
shown with a thin line. In b) the phase shift of the elastic transmittance as a function
of the energy and for the non-interacting case (dotted line) are shown. Figure c)
shows the path of the elastic transmission amplitude in the complex plane when
the electronic energy is changed. The full circles correspond to the first and second
peaks shown in a). These results are obtained with E0 = −1.5, VL = VR = 0.1,
Vg = 0.1 and ~ω0 = 0.2.

origin. The first antiresonance takes place at the point of minimum distance
from the origin.

In order to rationalize the main processes involved in the first two peaks, let
us represent them schematically in Fig.9. Panel (a) shows the standard elastic
process in which no phonon is emitted. Panel (b) is a notable effect that occurs
when the phonon emission is virtual. Notice that this virtual process can have
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b)

Fig. 9. Schematic representation of the processes that lead to the elastic and inelastic
components of the peaks in the total transmittance. Figures a) and b) correspond
to the first and second peaks of the elastic transmittance respectively. Figures c)
and d) correspond to the inelastic part. The well’s ground state is represented by
a solid line and the first excited polaron state by a dotted line. The final polaron
states at the right of the well are also shown. These states have an energy equal to
the incident electron kinetic energy. The final polaron state is depicted with a solid
line for the elastic case and with a dotted line for the inelastic situation. The level
corresponding to the electron final energy is also shown as a solid line for this case.

strong consequences. In Fig. 8 it produces an increase of the transmittance
in almost two orders of magnitude. Panel (d) shows a real inelastic process
which is expected to give a peak if the initial energy satisfies E = Eo + ~ωo.
Notably, one must expect also a contribution when ε = Eo which corresponds
to the virtual tunneling into the resonant state before emitting a phonon as
shown in panel (c).

Another interesting quantity that we can explore with the present formalism
is the phase of the transmitted electron through different channels,

ηm,n =
1

2i
ln
GR

m,n

GA
n,m

, (51)

whose energy derivative gives information on the dynamics of the process.
Figure 8-b shows the phase shift of the elastic transmission probability. For
reference, the phase shift in the absence of e-ph interaction is also shown
with a dotted line. It increases by π over the width of the non-interacting
transmission resonance. The same occurs in the interacting case. However, it
can be seen that each satellite peak has associated a phase fluctuation. Instead
of an increase in the phase by π which would occur for real resonant peaks,
across each “satellite peak” associated with the virtual processes, there is a
phase dip that results in consecutive resonances having phases close to -π/2.
These phase dips are a manifestation of the anti-resonances shown in Fig. (8-
a) for the elastic transmittance. For perfect zero transmission points, one has
an abrupt phase fall of π instead of the smooth phase slip shown in the Fig.
(8-b) [40].
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Let us consider a more general case in which there are initially n0 phonons in
the scattering region. The vertical hopping matrix element connecting states
with n0 and n0 + 1 phonons is

√
n0 + 1Vg. Then, under these conditions, the

adimensional parameter,

g̃ =




(√
n0 + 1

)
Vg

~ωo




2

= (n0 + 1) g, (52)

characterizes the strength of the e-ph interaction. It presents two regimes
according to the importance of this interaction.

In the limit g̃ ≪ 1 the “vertical” processes are in a perturbative regime. The
“vertical hopping”

√
n0 + 1Vg will not be able to delocalize the initial state

along this “vertical direction” and therefore the elastic contribution is the
most important. In Fig. (10-a), we show with a thick line the transmission
probability for a case where g = 0.25 in presence of 10 phonons. Notice that
“satellite” resonances corresponding to phonon emission and absorption are
separated by ~ωo from the main resonance. For comparison, the curve in ab-
sence of electron-phonon interaction is also included with a dotted line. We see
that, as with the DP model, the main resonance peak decreases and presents
a general broadening where we can recognize details of the excitation struc-
ture of the phonon field. The phase shift as a function of the electronic energy
is shown in b). The solid line is the phase shift for the elastic component of
the total transmittance. There, we can appreciate the phase fluctuations that
appear even in the elastic transmission.

On the other hand, if g̃ & 1, the e-ph interaction is in the non-perturbative
regime. This can be achieved either by a strong Vg, or by a high n. The
second situation would correspond to the case of high temperatures or a far
from equilibrium phonon population. In that case, the total transmittance can
be obtained by summing the transmittances for the different possible initial
conditions weighted by the appropriate thermal factor [42]. In any of these
situations, the resulting strong e-ph coupling leads to a breakdown of pertur-
bation theory. A similar case is found for the quantum dots studied in Ref.
[43]. There, in contrast to the situation in bulk material, the studied quan-
tum dots show a strong e-ph coupling. In molecular wires, where elementary
excitations (e or ph) are highly confined, one can expect a similar scenario.

In Fig. (11-a), we show the transmittance as a function of the incident elec-
tron kinetic energy for the case where Vg is strong (g̃ = 4 ) and there are no
phonons in the well before the scattering process. In contrast to the perturba-
tive regime, where the energy shift of the peaks (−V 2

g /~ωo = −g~ωo) is small,
here the energy shift is important and the inelastic contributions to the total
transmittance dominate. In the limit of weak coupling between the scattering
region and the leads, the transmission probability through the channel with n

23



-0.10 -0.05 0.00 0.05 0.10
1E-3

0.01

0.1

1

-0.10 -0.05 0.00 0.05 0.10

-0.5

0.0

0.5

 

 

T

εε - E
0b)

a)

 

 

ph
as

e 
sh

ift
 / 

π

εε - E
0

Fig. 10. a) Total transmittance as a function of the incident electronic kinetic energy.
The solid line corresponds to the case in which there are 10 phonons in the well
before the scattering process. The dotted line corresponds to the case in which there
is no interaction with the vibrational degrees of freedom. b) Phase shift in units of
π as a function of the incident electronic kinetic energy. The solid line is the phase
shift for the elastic transmission. The dotted line corresponds to the non-interacting
case. The parameters of the Hamiltonian in units of the hopping V are: E0 = 0,
VL = VR = 0.05, Vg = 0.004 and ~ω0 = 0.02.

phonons is: exp(−g)gn/n!.

Figure (11-b) shows the total transmittance as a function of the incident elec-
tron kinetic energy for an extreme case where there are 300 phonons in the
well before the scattering process. The electron can absorb or emit as many
phonons, Neff = 4

√
nVg/~ωo, as allowed by the interaction strength. This

means that the phonon spectrum, weighted on the local electron-phonon state
n, will be quite independent on the details of the spectral densities at the far
end of the effective “vertical” chain i.e. the states n±Neff . Hence, the spectral
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Fig. 11. a) and b) show the total transmittance as a function of the incident kinetic
electronic energy. The area under the elastic transmittance is shaded in gray. As
before, the dotted line corresponds to the non-interacting case. In a), the solid
line corresponds to the case in which there are no phonons in the well before the
scattering process and Vg = 0.100, ~ω0 = 0.05. In b) , the solid line corresponds to
the case in which there are 300 phonons in the well before the scattering process
and Vg = 0.0015 and ~ω0 = 5.010−4. The parameters in units of the hopping V are:
E0 = 0, VL = VR = 0.05.

density will show the typical form of a one a dimensional band even when we
take Neff = 4(Vg/~ωo)

√
n ≪ N . This feature manifests in the transmittance

presented in Fig. 11-b). The unperturbed resonant peak is a dotted line which
contrasts with the total transmission in presence of phonons shown with a
continuous line. Its trace follows the structure of the phonon excitation with
the typical square root divergences at the band edges smoothed out by the
inhomogeneity in the hopping elements and the uncertainty introduced by the
escape to the leads.
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5 The solution of Time Dependence

Finally, we would like to present the basic features of time dependent trans-
port. This is relevant since a coherent “time of flight” should be shorter than
any conformational correlation time [44]. The basic idea to get the physics of
time dependent phenomena is to obtain the evolution of an arbitrary initial
boundary condition of the form [ψ(Xj)ψ

∗(Xk)]source . Since here Xj = (rj, tj)
with general tj , this essentially generalizes a density matrix which introduces
temporal correlations that define the energy of this injected particle. The
“density” at a later is obtained from the exact solution of the Schrödinger
equation:

[ψ(X2)ψ
∗(X1)] = ~

2
∫ ∫

GR(X2,Xj) [ψ(Xj)ψ
∗(Xk)]sourceG

A(Xk,X1)dXjdXk

(53)

In order to establish a correspondence with the Danielewicz solution to the
Schrödinger equation in the Keldysh formalism, we used the continuous vari-
able Green’s function which is related to the exact discrete one in the open

system by

GR(ri,rj , ε) =
∑

k,l

GR
k,l(ε)ϕk(ri)ϕ

∗
l (rk). (54)

Now, the key is to recognize that in any Green’s function, a macroscopically
observable time is t = 1

2
[tj + tk] (time center). Its Fourier transform is an

observable frequency ω. Meanwhile, energies are associated with internal time
differences tj−tk (time chords). Within this scheme, the time correlated initial
condition (source), determining the occupation of a local orbital is expressed
in terms of the time independent local density of states Ni(ε) :

[ui(t)u
∗
i (t)]source =

∫
dε

2π~

∫
dδt [ui(t+ δt/2)u∗i (t− δt/2)]source exp[iεδt]

=
∫
dεNi(ε)f(ε, t), (55)

and the occupation factor f(ε, t). Introducing this notation in Eq.(53) one can
identify the dynamical transmittances Ti,j(ε, ω).We refer to [15] for a detailed
manipulation of the time integrals. The basic result is

Ti,j(ε, ω) = 2Γi(ε)G
R
i,j(ε+

1
2
~ω)2Γj(ε)G

A
j,i(ε− 1

2
~ω). (56)

The time dependent transmittance is then:
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Ti,j(ε, t) =
∫
Ti,j(ε, ω) exp[−iωt]

dω

2π
, (57)

where one recovers our old steady state transmittance as:

Ti,j(ε) ≡ Ti,j(ε, ω = 0) =
∫ t

−∞
Ti,j(ε, t− ti)dti =

∫ ∞

t
Ti,j(ε, tf − t)dtf . (58)

Equation (53) then becomes

Ij(t) =
2e

h

∫
dε
∑

i

[
Ti,j(ε)fj(ε, t)−

∫ t

−∞
dtiTj,i(ε, t− ti)fi(ε, ti)

]
, (59)

which is the Generalized Landauer-Büttiker Equation (GLBE) [26,15]. Ac-
cording to Eq.(58), the first term accounts for the particles that are leaving
the reservoir at site j at time t to suffer a dephasing collision at some future
time at orbital i. The second accounts for particles that having had a previous
dephasing collision at time ti at the i orbital reach site j at time t.

In the GLBE formulation the essential features of time dependence in trans-
port is contained in the transmittances. Since the spectrum is continuous, we
can keep the lowest order in the frequency expansion e.g.

Ti,j(ε, ω) ≃
Ti,j(ε)

1− iωτ1 + (ωτ2)
2 + ...

. (60)

According to Eq. (4.5) in Ref. [15] the propagation time τP is identified with
the first significant coefficient in this expansion. Typically, it results the first
order,

τP =
i~

2

[
GR

i,j(ε)
∂

∂ε
GR

i,j(ε)
−1 +GA

j,i(ε)
∂

∂ε
GA

j,i(ε)
−1

]
(61)

= − i~

2

∂

∂ε
ln

[
GR

i,j(ε)

GA
j,i(ε)

]

which can be identified with the Wigner time delay. This propagation time was
evaluated in various simple systems in Ref. [15] recovering the ballistic and
diffusive times for clean and impure metals respectively. In a double barrier
system, in the resonant tunneling regime, the propagation time is determined
by the life-time inside the well. In fact, using the functions of Subsection 2.3,
one gets for the propagation through the resonant state:

τP =
~

2(LΓ +R Γ)
. (62)

27



From these considerations, we see that τP represents a limit to the response in
frequency (admittance) of the device. Typically, one gets Gω = G0/(1− iωτP ).
This is in fair agreement with the experimental results [45].

As an striking example, we mention the “simple” case of tunneling through a

barrier [46] of length L and height U exceeding the kinetic energy ε of the
particle. For barriers long enough the expantion is dominated by the second
order term in Eq. (60) and one gets:

τP = L/

√
2

m
(U − ε), (63)

which, within our non-relativistic description, can be extremely short provided
that the barrier is high enough. This is the time that one has to compare with
vibronic and configurational frequencies [47].

The general propagation times can also be calculated in more complex situa-
tions such as disordered systems [48] and those affected by incoherent inter-
actions [15].

6 Perspectives

We have presented the general features of quantum transport in mesoscopic
systems. There, interactions with environmental degrees of freedom introduce
complex phenomena whose overall effect is to decrease the clean interfer-
ences expected for an isolated sample. Such degradation can be accounted
for as decoherence. We introduced various simple models which present de-
coherence. We started presenting the simplest phenomenological models of
Büttiker, by discussing its connection with the Hamiltonian description of the
DP model. Various simple models for resonant tunneling devices including
electron-phonon interactions were introduced. We feel that they contain the
essential coherent and decoherent effects induced by the vibronic degrees of
freedom.

Reference [12] showed that in disordered systems, the effective transmittance
away from the resonances keeps its form as a superposition of tails from dif-
ferent resonances. This applies to both the DP and SCI models. This justifies
the simplification of using a single resonant state.

Our results for this model make quite clear how complex many body inter-
actions result in the loss of the simple interferences of one body description.
Essentially, each external degree of freedom coupled with the electronic states
leads to two situations producing decoherence:
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1) By real emission or absorption of phonons, they open an additional scat-
tering channels contributing incoherently to the transport. This situation is
represented in the DP decoherence model, as well as in the various polaronic
models presented here. Those are real processes which can be detected by
measuring a change in the bath state (phonon models) or energy dissipated
(DP model) within the sample.

2) However, even when the electron-phonon processes might be virtual , they
would add new alternatives to the quantum phase of the outgoing state. This
strongly limits an attempt to control the electron phase and hence is mani-
fested as decoherence.

The study of the coherent component in the presence of decoherent processes
gives a first, though imperfect, hint to the conditions of the transport pro-
cesses. In particular, it can show how decoherence can affect the interference
between different propagation pathways. Once they are summed up, the con-
ductance, which is a square modulus, would manifest the effect of a diminished
interference. This approach was adopted in a recent work [49] that addressed
the delocalizing effect of decoherence on transport in the variable range hop-
ping regime.

It is also worthwhile to mention that the randomization of the quantum phase
introduced by the virtual processes can be as much effective [50] as those
involving a real energy exchange in producing decoherence. In fact, it has
been found recently that this practical uncertainty is the mechanism through
which quantum chaos contributes to dissipation and irreversibility [51]. Such
quantum chaotic systems have intrinsic decoherence time scales which contrast
with the extreme quantum regime of a resonant tunneling where decoherence,
if any, is controlled by the environment.

We want to close this section mentioning the connections of the results in Sec-
tion 4 with other ongoing research on various hot issues of electronic transport.
While the problem of tunneling times [52,46] is a controversial one, it has im-
portant practical aspects [45]. Indeed, molecular electronics opens the whole
issue of quantum dynamical processes to a fresh consideration. One aspect is
the effect of decoherence on frequency response. A related issue under study is
the interconnection between decoherence times, irreversibility and dynamical
chaos [50]. Having shown the subtle relation between spectral properties and
time dependences, one foresees that our models can provide new insight to this
topic. The analysis of the consequences of the spectral complexity of many-
body systems is a fully unexplored field ahead. Once again, technology pushes
us to the frontiers of the conceptual understanding of Quantum Mechanics
and Statistical Physics.
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