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Transport in molecular electronic devices is different from that in semiconductor mesoscopic
devices in two important aspects: (1) the effect of the electronic structure and (2) the effect of the
interface to the external contact. A rigorous treatment of molecular electronic devices will require
the inclusion of these effects in the context of an open system exchanging particle and energy with
the external environment. This calls for combining the theory of quantum transport with the theory
of electronic structure starting from the first-principles. We present a rigorous yet tractable matrix
Green’s function approach for studying transport in molecular electronic devices, based on the Non-
Equilibrium Green’s Function Formalism of quantum transport and the density-functional theory
of electronic structure using local orbital basis sets. By separating the device rigorously into the
molecular region and the contact region, we can take full advantage of the natural spatial locality
associated with the metallic screening in the electrodes and focus on the physical processes in the
finite molecular region. This not only opens up the possibility of using the existing well-established
technique of molecular electronic structure theory in transport calculations with little change, but
also allows us to use the language of qualitative molecular orbital theory to interpret and rationalize
the results of the computation. We emphasize the importance of the self-consistent charge transfer
and voltage drop on the transport characteristics and describe the self-consistent formulation for
both device at equilibrium and device out of equilibrium. For the device at equilibrium, our method
provides an alternative approach for solving the molecular chemisorption problem. For the device
out of equilibrium, we show that the calculation of elastic current transport through molecules, both
conceptually and computationally, is no more difficult than solving the chemisorption problem.

I. INTRODUCTION

There has been significant progress in exploring the concept of molecular electronics in recent years, due to the
advancement of techniques for characterizing and manipulating individual molecules1–6. The fact that useful devices
can be built on the basis of individual molecules, as demonstrated recently by several research groups 7–18, has
generated wide-spread interest in this new technology. In order to fulfil the true promise of molecular electronics, it
is essential to have a thorough understanding of the electronic and transport processes at the single molecule level.
This paper represents an attempt to put our understanding of electronic transport through individual molecules on a
firm theoretical basis starting from the first-principles.
Traditionally electron transport phenomena are studied in the context of bulk semiconductor devices, the theoretical

description of which is largely built upon two premises: (1) the effective-mass equation and (2) the Boltzmann
Transport Equation (BTE)19. The effective-mass equation subsumes the effect of the background periodic lattice
potential into an effective Hamiltonian so that the electrons can be considered as particles of effective mass m∗

in some applied field. The semi-classical nature of the electronic motion in the bulk devices, on the other hand,
allows us to describe the distribution of electrons in response to the applied fields and various scattering mechanisms
through the solution of the BTE equation, in much the same way as that of classical point-like particles. Within this
approach, the quantum-mechanical effect only comes in through the calculation of band structures and the various

∗Author to whom correspondence should be addressed. Present address: Department of Chemistry and Materials Research
Center, Northwestern University, Evanston, IL 60208. Electronic mail: ayxue@chem.nwu.edu
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carrier scattering rates, which provides the input to the solution of the BTE or its approximate versions such as the
drift-diffusion equation. As a result, the study of transport phenomena is effectively decoupled from the study of the
electronic structures.
The investigation of quantum mechanical transport has begun to flourish during the past two decades, largely

due to the advancement in lithographic techniques which has allowed routine fabrication of submicron features in
artificially tailored semiconductor heterostructures20,21. Two quantum mechanical effects distinguish such mesoscopic
devices from bulk devices, reflecting the wave-particle duality of electron. One is the quantization of electronic
charge which evidences itself in coulomb blockade and single-electron transistors22. The other is the preservation
of quantum phase coherence over a length with size comparable to one of the device dimensions and the resulting
energy quantization of confined electrons, which leads to the observation of conductance quantization in transport
through a narrow constriction (quantum point contact) and negative differential resistance in double-barrier tunneling
structures (resonant-tunneling diode). Transport in these quantum semiconductor structures is now determined by
the scattering property and occupation of the electronic eigenstates under an appropriate external potential. On the
other hand, electrons in such quantum semiconductor structures are usually confined in one or two directions. The
confinement potential, often the electrostatic potential due to a nearby gate or the band discontinuity across the
heterostructure interface, varies slowly on the atomic scale. So the electrons can still be described satisfactorily as
free carriers using the single-band effective mass approximation and most of the important phenomena in mesoscopic
transport can be understood without worrying about the complex electronic structures20,21.
The situation changes dramatically when we consider molecular electronic devices formed by sandwiching a chemi-

cally synthesized molecule between two large (on the molecular scale) metallic electrodes. At the molecular scale, the
simplicity associated with the effective-mass approximation breaks down and the electronic structure of the system
has to be taken explicitly into account. The quantum mechanical scattering problem involved is now the scatter-
ing of electrons under the potential of the atomic nuclei and the potential due to other electrons. Understanding
transport in such molecular devices therefore requires a knowledge of the microscopic electronic structure of the
electrode-molecule-electrode system under both zero and finite bias voltages.
The reduction to molecular scale also brings in another complication in transport study as compared to the meso-

scopic systems: treatment of the interface to an external contact. In mesoscopic transport, the details of contact
are often not important. The measuring electrodes, taken as infinite electron reservoirs, can either be simulated by
reflectionless semi-infinite leads with simple confinement potential at the interface, or only come into the theoretical
formulation as an appropriate boundary condition20,21. This is no longer true when the device is of molecular di-
mension. Since the electrodes can have atomic structures on the surface whose dimensions can be comparable to the
molecule, the usually well-defined boundary between the active device region and the contact region is blurred. The
interface to the external contact becomes an integral part of the device and the measured electrical characteristics will
depend on the details of the atomic arrangement of the contact. Moreover, the electronic and structural properties of
the molecule could be modified by the bonding to the measuring contact, bringing in additional complications23–25.
In summary, molecular electronic devices are different from their mesoscopic counterparts in two important aspects:

(1) the effect of the electronic structure and (2) the effect of the interface to the external contact. Since the molecule
can freely exchange energy and electrons with the electrodes, a rigorous treatment of molecular electronic device
can only be achieved including these effects in the context of an open system. As a result, a successful modeling
of molecular electronic devices in general calls for combining the theory of quantum transport and the theory of
electronic structure starting from first-principles.
There have been numerous theoretical works on transport through individual molecules describing the electronic

structure at different levels. Early works have focused on understanding the fundamental mechanisms of transport
in the molecular-scale and developing simple theory for the explanation of experimental results 15,16,26–33. These
works thus were centered on model Hamiltonian or semi-empirical theories (notably the Extended-Hückel-Theory
of organic molecules34 and π-electron tight-binding theory of carbon nanotubes35). Due to the interdisciplinary
nature of molecular electronics, different methods have been used reflecting the authors’ own background which are
essentially all equivalent to the Landauer formula of mesoscopic transport36–38 as used extensively in our previous
works15,16,26–28. Such works have provided useful insights into the factors governing transport through individual
molecules. However, the usefulness of this approach is limited by its incapability of providing an accurate description
of the electronic structure of the molecule and the metal surface involved. Even if a good parameterization exists
for the molecule and the bulk separately, the charge transfer and the resulting self-consistent charge and potential
relaxation upon the formation of surface and adsorption of the molecule is difficult to treat unless drastic assumptions
are made or additional parameters are introduced. In addition, it is difficult to take into account coupling between
electrons and molecular vibrational modes which is expected to play an increasingly important role as the molecular
size increases39–41.
More recently, Lang and coworkers42–46 have presented self-consistent studies of both the conductance and current-

voltage characteristics of atomic and molecular wires using the jellium model of a metal surface and the local-
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density-approximation (LDA) of density functional theory (DFT) with plane-wave basis set. The calculation proceeds
by recasting the Kohn-Sham equation of the electrode-molecule-electrode system into a scattering form using the
Lippmann-Schwinger equation and solving the wavefunctions of the scattering state self-consistently42. The current
is obtained by summing over the contribution of the scattering states which are occupied according to the Fermi
distribution in each electrode, following the spirit of Landauer theory. Similar approaches have also been used by
Tsukada and coworkers47 and Guo and coworkers48.
The jellium model has an appealing and physically reasonable simplicity: all the complexities of the bulk band

structure are simply ignored, the effect of the substrate persists only in providing a continuous energy spectrum and
the only inhomogeneity left in the metal region is the essential one-dimensional inhomogeneity of the surface itself.
However, the jellium model is known to be deficient in describing the electronic density of states and charge density in
the region perturbed by the absorbed molecule even for sp-bonded simple metals for which it is more successful25,49,
and it cannot answer questions regarding the effect of adsorption geometry and surface relaxation. In addition, it is not
applicable to semiconductors and gives serious quantitative error when applied to noble and transition metals where
the bonding at the surface is more directional. The use of the plane-wave basis set and the wavefunction formulation
also make it difficult to treat larger molecular systems, to improve the description of the electronic structure and to
include other scattering mechanisms.
The objective of this paper is to present a rigorous yet tractable self-consistent matrix Green’s function (MGF)

approach for studying transport in molecular electronic devices, through which many limitations of the previous
works can be overcome rather conveniently using existing computational techniques. In particular, this allows us to
use existing quantum chemical methods for transport calculation with minimum change. The method is based on the
Non-equilibrium Green’s Function Formalism of quantum transport50 and the density-functional-theory of electronic
structure51. We also use the technique of expansion in a finite set of local orbital functions.
The Non-Equilibrium Green’s Function Formalism has proved to be a powerful and formally rigorous approach to

studying quantum transport phenomena in nanodevices, where the devices can be characterized as a small active
device region connected to electron reservoirs via non-interacting leads. Arbitrary interactions in the device can be
included50,54. For non-interacting electron systems in the coherent limit, it reduces to the familiar Landauer theory of
mesoscopic transport50,54. The formalism is fairly complete, and it has been applied successfully to studying quantum-
mechanical transport phenomena in semiconductor mesoscopic systems such as resonant-tunneling diode and single-
electron transistors20,21,50, usually in combination with a model Hamiltonian and more recently using semi-empirical
tight-binding formulations55. For molecular electronic devices, within the Born-Oppenheimer approximation, the
problem is to calculate the Green’s function of the interacting electron system under the potential of the given
configuration of atomic nuclei and external fields.
The study of molecular electronic devices is greatly facilitated by recognizing the fact that due to the metallic

screening in the electrodes, the charge and potential perturbation induced by the adsorption of the molecule extends
over only a finite region into the electrodes, practically the region enclosing the surface metal atoms closest to the
molecule. The charge and potential distributions beyond this region are the same as that of the bimetallic interfaces
without the molecules. By expanding the wavefunction in terms of the finite set of local atomic orbital functions,
the matrix Green’s function approach allows us to take full advantage of this spatial locality by separating the device
into the “extended-molecule” (which includes the molecule itself and the surface atoms perturbed by the molecule)
and the electrode region, the description of each can be treated and systematically improved independent of each
other. The effect of the external contact can be included rigorously as a self-energy operator, which depends only on
the charge and potential distribution outside the “extended molecule” and needs to be computed only once, thereby
the computation can be focused on the physical processes happening in the finite “extended molecule” region. This
not only opens up the possibility of using the full repertoire of molecular electronic structure calculation for studying
transport in molecular electronic devices, but also allows us to interpret the result of computation using the simple
picture of bonding and orbital interactions in molecules, which is necessary for the computation to be useful in terms
of understanding rather than pure numbers. Although we will focus on the density-functional theory of the interacting
electron system, the formalism doesn’t depend on the particular description of the electronic structure.
In matrix form, the present formulation is equivalent to previous works using semi-empirical tight-binding formula-

tions28,55. The tight-binding formulation provides a conceptually and computationally simple framework for studying
transport in systems where a quantum mechanical description of the electronic structure is necessary but the charac-
teristic length scale is much larger than inter-atomic spacing so atomic-scale details are not needed. Example systems
include layered semiconductor devices and long carbon nanotubes. The present formulation keeps the simplicity of
the tight-binding approach while putting it on a firm theoretical basis. The explicit use of the local basis function in
the real space also allows much more detailed understanding of the physical processes through quantities such as the
spatial distribution of charge and current densities, which play the fundamental role in density-functional theory and
its time-dependent extension51–53. In addition, the ambiguities associated with the semi-empirical formulation, such
as the orthogonality of the basis functions used in such formulation and the treatment of self-consistent charge-transfer
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effect56, can be avoided. When the potentials and the integrals are calculated approximately rather than from first
principles, it can also serve as the basis of improved self-consistent tight-binding approaches capable of handling much
larger systems57.
The remainder of this paper is organized as follows: We discuss briefly the use of Non-Equilibrium Green’s Function

and density-functional theory for modeling transport in molecular devices in Sec. II. The matrix Green’s function
method is described in Sec. III. The self-consistent formulation for device at equilibrium is given in Sec. IV, where
we show that our method provides an alternative and generalizing approach to the familiar chemisorption problem in
surface physics. The self-consistent formulation for a device out of equilibrium is given in Sec. V. Finally, we devote
Sec. VI to conclusions. We use atomic-units throughout this paper unless otherwise noted.

II. NON-EQUILIBRIUM GREEN’S FUNCTION APPROACH FOR MODELING MOLECULAR

ELECTRONIC DEVICES

A. Non-Equilibrium Green’s Function Formalism

As current flows, the device is driven out of equilibrium. For systems out of equilibrium, the Green’s function
approach can be developed following the same procedure as the equilibrium case, by defining the contour-ordered
Green’s function59–61 G(1, 1

′

) = −i〈TC [ψH(1)ψ+(1
′

)]〉 (for details, see Haug and Jauho50). The Green’s functions
involved, besides the retarded and advanced Green’s function,

GR(1, 1
′

) = −iΘ(t1 − t1′ )〈{ψH(1), ψ+
H(1

′

)}〉,

GA(1, 1
′

) = iΘ(t1′ − t1)〈{ψH(1), ψ+
H(1

′

)}〉, (2.1)

include the correlation function (or the “lesser” Green’s function) which is the central quantity in this formalism

G<(~r, t;~r′, t′) = +i〈ψ+(~r, t)ψ(~r′, t′)〉 (2.2)

Any physical observable can be obtained from G<(~r, t;~r′, t′) and its transformations. For example, the quantities of
most interest to us, the charge density n(~r, t) and the current density j(~r, t), are determined as following:

n(~r, t) = 〈ψ+(~r, t)ψ(~r, t)〉 = −iG<(~r, t;~r, t) (2.3)

and

j(~r, t) =
1

2i
lim
~r′→~r

(∇−∇
′

)〈ψ+(~r, t)ψ(~r′, t′)〉 =
1

2
lim
~r′→~r

(∇
′

−∇)G<(~r, t;~r′, t′) (2.4)

For steady state, which we consider here, the Green’s functions depend only on the time difference t− t
′

, which we
can Fourier transform to energy. The resulting equations of motion (EOM) of the Non-Equilibrium Green’s function
are the Keldysh-Kadanoff-Baym equation58–60:

{E − [−
1

2
∇2 + Vext(~r)]}G

R(~r, ~r′;E)−

∫

d~r′′ΣR(~r, ~r′′;E)GR(~r′′, ~r′;E) = δ(~r − ~r′), (2.5)

and

{E − [−
1

2
∇2 + Vext(~r)]}G

<(~r, ~r′;E) −

∫

d~r′′ΣR(~r, ~r′′;E)G<(~r′′, ~r′;E)

=

∫

d~r′′Σ<(~r, ~r′′;E)GA(~r′′, ~r′;E) (2.6)

or its equivalent integral formulation:

G<(~r, ~r′;E) =

∫

d~r′′
∫

d~r′′′GR(~r, ~r′′;E)Σ<(~r′′, ~r′′′;E)GA(~r′′′, ~r′;E) (2.7)

where we assume that the non-equilibrium term in the Hamiltonian is incorporated into a one-body external potential
Vext. The interactions are contained in the self-energy operators Σ[G] which can be obtained systematically from
many-body perturbation theory following the same procedure as their equilibrium counterpart61.
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By solving the KKB equation for G<, we will be able to calculate the current distribution within the device given
the Hamiltonian of the system. However, in general, they involve the evaluation of the full correlation function and
the retarded Green’s function in the presence of tunneling into the leads. The usefulness of the above expressions
then depends on whether we can devise practical calculation schemes for the single-particle Green’s functions. For
molecular-scale devices, the problem is to determine the state of the interacting electron system under the potential of
the given atomic nuclei. By separating the term describing the electron interactions into the classical Coulomb part
and the exchange-correlation part, we can write down the Keldysh-Kadanoff-Baym equation in the following form:

{E − [−
1

2
∇2 + Vext(~r) +

∫

d~r′
ρ(~r′)

|~r − ~r′|
]}GR(~r, ~r′;E)

−

∫

d~r
′′

ΣR(~r, ~r
′′

;E)GR(~r
′′

, ~r
′

;E) = δ(~r − ~r
′

),

G<(~r, ~r
′

;E) =

∫

d~r
′′

∫

d~r
′′′

GR(~r, ~r
′′

;E)Σ<(~r
′′

, ~r
′′′

;E)GA(~r
′′′

, ~r
′

;E) (2.8)

where the external potential Vext is the summation of the ionic potential and the potential that drives the system out
of equilibrium (see the discussion in sections IV and V later).

B. Density-Functional Theory as the Compromise

For transport through molecular scale devices, the system is characterized by the highly non-equilibrium distribution
in the device region, which is driven by contact to two large reserviors with different electrochemical potential. A
truly first-principles treatment of the electronic processes in such non-equilibrium system can only be based on the
non-equilibrium version of the many-body perturbation theory such as the quasi-particle theory62 or perhaps the
time-dependent density-functional theory53. Such a first-principles theory doesn’t exist yet. Instead, we will work
with density-functional theory51,52.
The theory of DFT is based on the study of systems in their ground state or in thermodynamic equilibrium

corresponding to the grand canonical ensemble, where the variational formulation of quantum mechanics can be
used. For transport through non-interacting systems, the problem can be solved by working in the scattering state
representation, since electrons coming from different electrodes are in separate thermodynamic equilibrium at different
electrochemical potentials. This is the essence of the Landauer theory of quantum transport. In this case, it may
be justified to use density-functional theory to calculate the scattering state wavefunctions which correspond to a
two-component system, each characterized by a well-defined thermodynamic ensemble. However, we are not aware
of any formal proof of this. In fact, this has been the basis for the use of DFT to calculate current and conductance
in the past42–45,47,48. For the interacting electron system which DFT attempts to describe, the nonlinear current-
voltage characteristic can be obtained only by doing perturbation theory in the part of the Hamiltonian that drives
the system out of equilibrium. For these reasons, the use of the DFT formalism, with probably the exception of
its time-dependent extension53, in transport calculations can only be taken as qualitative in principle, although this
doesn’t preclude its quantitative success in practice.
From here on, we will work with density functional theory in our modeling of molecular devices, with the un-

derstanding that we approximate the true self-energy operator for exchange-correlation interaction with the DFT
description of exchange-correlation potential62. We will treat the usage of DFT in a more qualitative sense in that
it has a well-defined physical basis, from which we know where it can be expected to succeed and where it may fail
and why. Therefore we will put more emphasis on using the results of such calculation for qualitative understanding
whenever possible. These results may serve as the basis for further improvement as our understanding of molecular
devices progresses. The reason for this choice is therefore practical, rather than fundamental.

III. THE METHOD OF MATRIX GREEN’S FUNCTION

Our starting point is the Keldysh-Kadanoff-Baym equation (Eq. (2.8)). Remember that we approximate the self-
energy operator Σ by the DFT description of the exchange-correlation potential Vxc(~r, ~r

′) which is an energy inde-
pendent real operator, but doesn’t need to be local. In particular, we will only assume Vxc to be local in the electrode
region. It can take any non-local form in the “extended molecule”. There is no “lesser” self-energy operator Σ<

associated with Vxc. This is in contrast with the true quasi-particle theory where Σ is in general non-Hermitian and
the corresponding Σ< represents the scattering rates or “life-time” of the quasi-particle state61,63.
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Given the exchange-correlation potential Vxc(~r, ~r
′) , we can define the single-particle wavefunction ψµ(~r):

[−1/2∇2 + Vext(~r) +

∫

n(~r′)

|~r − ~r′|
d~r′]ψµ(~r) +

∫

d~r′Vxc(~r, ~r
′)ψµ(~r

′) = ǫiψµ(~r) (3.1)

The retarded Green’s function GR is related to ψµ(~r) through the spectral representation:

GR(~r, ~r′;E) =
∑

µ

ψµ(~r)ψµ(~r
′)∗

E+ − εi
(3.2)

where E+ = limδ→0+ E + iδ. We expand the wavefunction in terms of a finite set of local orbital functions:

ψµ(~r) ∼=

N
∑

i

cµiφi(~r) (3.3)

where φi(~r) are atom-centered and decay rapidly to zero away from the corresponding atomic center. We use the
symbol ∼= to indicate the above expansion is exact only for a basis set that is complete. Besides the approximation
of single-particle theory, this is the only approximation involved in our matrix Green’s function method64. Note the
choice of the basis set can be different in different parts of the system, reflecting the different nature of the electronic
states in each of them. The Schrödinger-type equation can be transformed into a generalized eigenvalue problem:

∑

j

Hijcµj = εµ
∑

j

Sijcµj (3.4)

where Sij is the overlap matrix,

Sij =

∫

d3rφ∗i (~r)φj(~r) (3.5)

and

Hij =

∫

d3rφ∗i (~r)[−
1

2
∇2 + Vext(~r) +

∫

d3~r′
ρ(~r′)

|~r − ~r′|
]φj(~r) +

∫

d3r

∫

d3~r′φ∗i (~r)Vxc(~r, ~r
′)]φj(~r

′) (3.6)

Instead of solving the above equation, we substitute Eq. (3.3) into Eq. (3.2) and write down the Green’s function in
terms of basis function φi:

GR(~r, ~r′;E) ∼=
∑

µ

∑

i,j

cµic
∗
µj

E+ − εi
φi(~r)φ

∗
j (~r

′) =
∑

i,j

GR
ij(E)φi(~r)φ

∗
j (~r

′) (3.7)

where

GR
ij(E) =

∑

µ

cµic
∗
µj

E+ − εi
, (3.8)

It is straightforward to prove that GR
ij(E) satisfies the following matrix equation:

∑

k

(E+Sik −Hik)G
R
kj(E) = δij (3.9)

The above equation is an infinite matrix equation involving orbital functions centered around every atom of the
molecular device.
Since we are interested only in the Green’s function in the “extended molecule”, we divide the system into three

parts correspond to the left electrode, the right electrode and the “extended molecule” and write down the above
equation in block matrix notation:





E+SLL −HLL E+SLM −HLM E+SLR −HLR

E+SML −HML E+SMM −HMM E+SMR −HMR

E+SRL −HRL E+SRM −HRM E+SRR −HRR



×





GR
LL GR

LM GR
LR

GR
ML GR

MM GR
MR

GR
RL GR

RM GR
RR



 =





ILL 0 0
0 IMM 0
0 0 IRR



 (3.10)

6



The short-range of the local orbital basis means that for any reasonable molecule size and electrode spacing, we can
neglect the inter-electrode block of the Hamiltonian and overlap matrix HLR(RL), SLR(RL) (this also means that we

neglect the direct tunneling between the two electrodes) and it is straightforward to solve GR
MM as:

GR
MM = {E+SMM −HMM − ΣR

L(E)− ΣR
R(E)}−1

ΣR
L(E) = (E+SML −HML)G

0;R
LL (E+SLM −HLM ),

ΣR
R(E) = (E+SMR −HMR)G

0;R
RR(E

+SRM −HRM ),

G0;R
LL = (E+SLL −HLL)

−1,

G0;R
RR = (E+SRR −HRR)

−1. (3.11)

Eq. (3.11) expresses the Green’s function in the molecule in terms of the Hamiltonian matrix element in the same
region, with the coupling to the left and right electrode included rigorously in terms of the self-energy operators ΣR

L(E)

and ΣR
R(E). Note again that due to the short-range nature of the basis set, only the finite block of G0;R

LL(RR) is needed

for the calculation of ΣR
L(R)(E) corresponding to the orbital basis in the left(right) electrode that have non-negligible

overlap with the orbital basis in the extended molecule. So the calculation of GR
MM involves matrix operations only

on finite matrices.
The matrix self-energy operator can be taken as the matrix elements of a non-local operator in real space:

ΣR
L;ij(E) =

∫ ∫

d~rd~r′φ∗i (~r)Σ
R
L(~r, ~r

′)φj(~r
′) (3.12)

=
∑

mn

(E+SML;im −HML;im)G0;R
LL;mn(E

+SLM ;nj −HLM ;nj)

=
∑

mn

[

∫

d~rφ∗i (~r)[E
+ −H ]φm(~r)]G0;R

LL;mn[

∫

d~r′φ∗n(~r
′)[E+ −H ]φj(~r

′)]

=

∫ ∫

d~rd~r′φ∗i (~r)
∑

mn

[E+ −H ]G0;R
LL;mnφm(~r)φ∗n(~r

′)[E+ −H ]φj(~r
′)

=

∫ ∫

d~rd~r′φ∗i (~r){[E
+ −H ]G0;R

LL (~r, ~r′)[E+ −H ]}φj(~r
′)

with the equation for ΣR
R taking the same form.

Using the analytic continuation rules of Langreth60, we can write down the corresponding “lesser” self-energy matrix
as:

Σ<
L;ij(E) =

∫

d~rd~r′φ∗i (~r)Σ
<
L (~r, ~r

′)φj(~r
′)

=
∑

mn

(E+SML;im −HML;im)G0;<
LL;mn(E

+SLM ;nj −HLM ;nj) (3.13)

Since the left electrode in taken to be in thermodynamic equilibrium, we have G0;<
LL (E) = i(G0;R

LL (E)−G0;A
LL (E))f(E−

µL) and therefore:

Σ<
L;ij(E) = i(ΣR

L;ij − ΣA
L;ij)f(E − µL) = iΓL;ijf(E − µL) (3.14)

where ΓL;ij = ΣR
L;ij − ΣA

L;ij and f(E − µL) =
1

1+e(E−µL)/kT is the Fermi distribution function. The equation for Σ<
R

follows by replacing L with R in the above equation.
Similarly from the kinetic equation Eq. (2.8), we can write down the correlation function in the

“extended molecule” in terms of the basis function φi as G<(~r, ~r′;E) =
∑

ij G
<
ij(E)φi(~r)φ

∗
j (~r

′) =
∫

d~r′′
∫

d~r′′′
∑

ik G
R
ik(E)φi(~r)φ

∗
k(~r

′′)Σ<(~r′′, ~r′′′;E)
∑

nj G
A
nj(E)φn(~r

′′′)φ∗j (~r
′). After rearranging the order of summa-

tion and integration and integrating over ~r′′ and ~r′′′, we getG<(~r, ~r′;E) =
∑

ij φi(~r)φ
∗
j (~r

′)
∑

knG
R
ik(E)Σ<

kn(E)GA
nj(E).

Comparing the coefficients of φi(~r)φ
∗
j (~r

′), we obtain the following matrix equation:

G<(E) = GR(E)Σ<(E)GA(E) (3.15)

If there is no inelastic scattering due to the electron-vibronic coupling, we get:
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Σ<(E) = Σ<
L (E) + Σ<

R(E) = iΓL(E)f(E − µL) + iΓR(E)f(E − µR) (3.16)

since there is no “lesser” self-energy operator associated with Vxc. And we can express the correlation function in
terms of the distribution in each electrodes:

G<(E) = i[GR(E)ΓL(E)GA(E)]f(E − µL) + i[GR(E)ΓR(E)GA(E)]f(E − µR) (3.17)

where the products within the brackets are matrix products. Every physical observable of interest can be computed
from the matrix correlation function G<

ij . In particular, the current density is:

J(~r) =

∫

dEJ(~r;E) = 1/2
∑

ij

∫

dEG<
ij(E) lim

~r′→~r
(∇

′

−∇)φi(~r)φ
∗
j (~r

′) (3.18)

The terminal current can be calculated numerically by integrating the current density J(~r) over the boundary
surface between the molecule and the electrodes or any cross sectional area in the “extended molecule” due to the
current continuity in the “extended molecule” region. But often it is more useful to compute the terminal current
directly from the matrix Green’s function and the matrix self-energy operators. This can be achieved by defining a
current operator, as in Caroli et al. 65 and Datta 20:

I(~r, ~r′;E) = e/h[H(~r)G<(~r, ~r′;E)−G<(~r′, ~r;E)H(~r′)] (3.19)

whose diagonal element gives the divergence of the current density:

I(~r, ~r;E) = ∇ · J(~r;E) (3.20)

The current over a surface enclosing the ”extended molecule” is written as:

Itot =

∫

dE

∮

S

dS∇ · J(~r;E)

=

∫

dE

∫

d~rI(~r, ~r;E)

= e/h

∫

dE

∫

d~r
∑

ij

[H(~r)G<
ij(E)φi(~r)φ

∗
j (~r)−G<

ij(E)φi(~r)φ
∗
j (~r)H(~r)]

= e/h

∫

dE
∑

ij

[HjiG
<
ij(E)−G<

ijHji]

= e/h

∫

dETr[HG<(E)−G<(E)H ] (3.21)

Now again we have transformed the integral over the coordinates to the matrix equation involving the Hamiltonian
and correlation function matrices. From here on the usual derivation using the matrix notation, often used in the
second-quantized form or with the semi-empirical Hamiltonian matrix, can be carried through without change and
we get the familiar final form for the terminal current in the matrix notation as20,55:

IL(R) = e/h

∫

dETr{ΓL(R)[f(E − µL(R))A(E) + iG<(E)]} (3.22)

where A(E) = i(GR(E)−GA(E)) and

I =
e

h

∫

dETr[ΓL(E)GR(E)ΓR(E)GA(E)][f(E − µL)− f(E − µR)] (3.23)

where

ΓL(E) = i(ΣR
L(E)− [ΣR

L(E)]†), (3.24)

ΓR(E) = i(ΣR
R(E)− [ΣR

R(E)]†) (3.25)

Note that in order to represent the coupling to the electrodes as self-energy operators, it is essential that the “extended
molecule” can be described by an effective single-particle theory. In other words, the Hamiltonian of the “extended
molecule” in its second-quantized form can be diagonalized. If the Hamiltonian describing the the “extended molecule”
contains product over four creation/annihilation operators, the simplified description of the electrodes using self-energy
operator breaks down and more complicated expressions are needed54,50.
The above formulae are powerful formal results. Its practical application will depend on the existence of efficient

algorithms for accurate evaluation of the Hamiltonian matrix elements over local orbital functions. In practice, a
Gaussian-type orbital basis is often used66.
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IV. SELF-CONSISTENT FORMULATION: DEVICE AT EQUILIBRIUM

A. Model of the molecular device

The present study considers a single molecule sandwiched between two semi-infinite metallic electrodes. In addition,
there can be atomic-scale features on the metal surface. In the above formulation of our matrix Green’s function
approach, we have not specified the form of the Hamiltonian operator. The specific form of the Hamiltonian comes
into play as we consider the self-consistent formulation.
The analysis presented here is based on the spin-extension of Kohn-Sham density-functional (DF) theory67–69 which

requires the solution of effective single-particle, Schrödinger-like equations with spin-dependent potentials:

Hσψσ
i (~r) = [−

1

2
∇2 + Vion(~r) +

∫

d3~r′
ρ(~r′)

|~r − ~r′|
+ V σ

xc(~r)]ψ
σ
i (~r) = εσi ψ

σ
i (~r),

V σ
xc(~r) =

δExc[ρ
α, ρβ ]

δρσ
, (4.1)

where σ = α, β and

ρ(~r) = ρα + ρβ ,

ρα(~r) =
∑

i

nα
i |ψ

α
i (~r)|

2, (4.2)

ρβ(~r) =
∑

i

nβ
i |ψ

β
i (~r)|

2.

Here nσ
i is the occupation number of the spin orbital ψσ

i . For our system, the occupation of the eigenstate is governed
by the metal Fermi-level EF , so at low temperature, nσ

i = Θ(εσi − EF ). In the valence-only calculations, the ionic
potential Vion(~r) is represented by the non-local pseudopotential Vps(~r, ~r

′), and the wavefuctions considered are the
valence pseudo-orbitals.
The spin-density functional theory (SDF) is the necessary generalization in the presence of magnetic field. If

the external potential is only of electrostatic nature, as in our case due to the atomic nuclei, the DF formalism
shows that it is possible to determine the system property using a functional that depends on the density alone
and not the spin-densities. The main advantage of the SDF over the DF formalism is that the greater flexibility of
the SDF formalism introduced by the spin dependence allows us to build more of the physics into the approximate
functional. For example, the SDF formalism can give a reasonable description of the bond-breaking in molecules by
allowing electrons of different spins to have different spatial density distribution. It also provides a better description
of the open-shell molecules in satisfying the requirement (Hund’s rule) that a state with a larger spin tends to be
favored energetically. In addition, spin-orbit coupling effects can be included. As a result, the SDF formalism yields
significantly better results for molecules and solids than the spin-unpolarized counterpart52,68. Our use of the SDF
formalism here follows that of the unrestricted Hartree-Fock method in molecular calculations70 in that we neglect
the off-diagonal part of the spin density matrix, so the wavefunctions of the α- and β- electrons are decoupled from
each other except for the spin-dependence in the exchange-correlation potential67(for molecules with even number
of electrons and singlet spin states, the spin-unrestricted procedure usually leads to the same result as the spin-
restricted one). This breaks the rotational invariance in the spin space, and therefore cannot handle situations where
the correlation between different spin channels are important, e.g., the formation of a local magnetic moment at the
molecule (the Kondo effect)71–73. These effects don’t seem to be important, at least when the coupling between the
molecule and the metal is strong.
We will consider both the local spin-density approximation (LSDA) and its generalized-gradient approximation

(GGA), the exchange-correlation energy of which takes the following form:

Exc[nα, nβ] =

∫

d3rf(ρα, ρβ , γαα, γαβ , γββ),

γαα = |∇nα|
2, (4.3)

γαβ = ∇nα · ∇nβ ,

γββ = |∇nβ |
2
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B. The self-consistent formulation

The starting point of computing the nonlinear transport characteristics of the molecular device, is then to com-
pute the self-consistent charge and potential distribution of the device at equilibrium. This problem is equivalent
to calculating the electronic structure of the metal-molecule-metal junction, which is the generalization of the famil-
iar chemisorption problem where we consider the adsorption of a single isolated molecule onto one metal surface.
Chemisorption is an important part of surface physics/chemistry and substantial theoretical studies exist in the lit-
erature, using the wavefunction23 or Green’s function formulation49,74–77,79,78, and working in real space23,77 or in
finite basis expansion74–76 or combinations of the two49,79,78. Our method is similar to these methods in many details.
However, the uniqueness of our approach is that we use the finite basis expansion from the beginning, which allows us
to separate the entire system naturally into different parts according to their geometrical arrangement, the treatment
of which can then be improved independent of each other. This allows us to use existing, well-established techniques
for treating the component systems—the molecules and the surface or the bulk— directly in the study of molecular
devices with little change.
As explained in the above, instead of solving the Kohn-Sham equation directly, we approximate the single-particle

wavefunction by an expansion in a finite set of local orbital basis functions and solve the matrix Green’s function
Gσ

ij(Z) as the solution of the matrix equation:

∑

k

(ZSik −Hσ
ik)G

σ
kj(Z) = δij (4.4)

Here Z is an arbitrary complex energy. From the spectral representation relation:

Gσ
ij(Z) =

∑

µ

cσµic
σ∗
µj

Z − εi
, (4.5)

we can obtain the density matrix ρσij , which is defined as

ρσij =
∑

µ

nσ
µc

σ
µic

σ∗
µj (4.6)

by performing the following contour integration in the complex energy plane:

ρσij =
1

2πi

∫

C

dZGσ
ij(Z), (4.7)

where the integration contour encloses the real energy axis from the energy of the lowest occupied state up to the
Fermi energy EF

64,80. A typical integration contour is shown in Fig. (2). The advantage of integrating along the
complex energy contour is that by moving away from the real energy axis, the sharp features in the density-of-states
are smoothed, therefore allowing for accurate integration with a small integration mesh80.
The electronic charge density ρσ(~r), which is needed for the evaluation of Hσ

ij , can be computed according to

ρσ(~r) =
∑

i,j

ρσijφi(~r)φ
∗
j (~r) (4.8)

We can also obtain the local density of states (DOS), defined as

nσ(~r, E) =
∑

µ

|ψσ
µ(~r)|

2δ(E − εµ)

=
∑

µ

∑

i,j

cσµic
σ∗
µjφi(~r)φ

∗
j (~r)δ(E − εµ), (4.9)

from the following equation:

nσ(~r, E) = −
1

π
lim

δ→0+

∑

i,j

Imag[Gσ
ij(E + iδ)]φi(~r)φ

∗
j (~r) (4.10)

and the total density of states
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nσ(E) =

∫

d3rnσ(~r, E) = −
1

π
lim

δ→0+

∑

i,j

Imag[Gσ
i,j(E + iδ)]Sji = −

1

π
Tr{Imag[GS]} (4.11)

We can also obtain the projection of the total density of states into the molecular region as

nσ
Mol(E) = −

1

π
Tr{Imag[GS]|Mol} (4.12)

where the trace is taken with respect to the orbital indices of the molecule. The transmission coefficient through the
molecule is determined from:

T (E) = Tr{ΓLG
RΓRG

A},

ΓL = i(ΣR
L − (ΣR

L)
†), (4.13)

ΓR = i(ΣR
R − (ΣR

R)
†).

From here on, we avoid writing down explicitly the spin indices unless otherwise noted, with the understanding that
we need to solve the Green’s function corresponding to each spin direction and the total transmission is the summation
over the two spin channels.
The self-consistent computation is greatly simplified by realizing that due to the metallic screening within the

electrode, the charge and potential perturbation induced by the adsorption of the molecule extends over only a finite
region into the electrodes, practically only the region including the surface metal atoms closest to the molecule25.
The charge and potential distributions beyond this region are the same as that of the bimetallic interfaces without
the molecules. It is this region—the molecule plus the perturbed surface atoms— that enters the above matrix
Green’s formulation and is called the “extended molecule”. The computation of the Green’s function of the left and
right electrodes then depends only on the charge and potential distribution of the bimetallic interfaces, which can
be calculated separately and need to be calculated only once. Note that in this formulation we have neglected the
long-range charge perturbation to the metal surface due to the presence of nonzero electric field in the “extended
molecule”. This long-range charge perturbation could be important if we want to compute quantities that increase
with distance such as the dipole moment associated with the adsorbed molecule. Since we are mostly interested in
the electrostatic potential in the “extended molecule” region which is inversely proportional to distance, no significant
error will be introduced by neglecting these long-range charge perturbations23,25.
The device characteristic is determined only by the electronic processes in the finite “extended molecule” region.

In the MGF formalism, the effects of the contacts enter in two different ways: (1) as the infinite electron source and
drain, the contacts inject electrons into and absorb electrons from the molecule, the occupation of the single-particle
states within which is set by the electrochemical potential of the contacts. The self-energy operators describe this
interaction between the molecular states with the continuum of states in the contacts, which of course depends on the
band structure of the metal. (2) as the boundary condition, the charge and potential distribution in the “extended
molecule” must join the charge and potential distribution deep within the interior of the contacts. Since the metallic
electrodes are described well by the local-density-approximation, we assume only the exchange-correlation term in
the “extended molecule” region may have a nonlocal form. So only the determination of the electrostatic potential is
constrained by the long-range coulomb interaction such that it joins to the bulk value at regions beyond the “extended
molecule”. The exchange-correlation potential depends only on the charge distribution in the “extended molecule”
region, so it is irrelevant when we discuss the constraint of the boundary condition on potential imposed by the
presence of the electrodes.
Note that the unperturbed part of the contacts are the semi-infinite crystal with the perturbed surface atoms

removed. Its Green’s function G0;R
LL(RR) can be calculated from that of the semi-infinite crystal using the “reduced

space” idea of Williams, Feibelman and Lang64, which is essentially a two-component version of our MGF equation
(Eq. (3.10)). In this approach, we deal with the following two-by-two block matrix equation:

(

E+SLL(RR) −HLL(RR) E+SL(R)P −HL(R)P

E+SPL(R) −HPL(R) E+SPP −HPP

)

×

(

GR
S;LL(RR) GR

S;L(R)P

GR
S;PL(R) GR

S;PP

)

=

(

IS;LL(RR) 0
0 IS;PP

)

(4.14)

where we have separated the semi-infinite surface into two parts with P denoting the region of the semi-infinite surface
that is included in the “extended molecule” and L(R) denoting the region of the semi-infinite surface corresponding
to the unperturbed part of the left (right) electrode. From the above equation, we get:

G0;R
LL(RR) = (E+SLL(RR) −HLL(RR))

−1 (4.15)

= GR
S;LL(RR) −GR

S;L(R)P {G
R
S;PP }

−1GR
S;PL(R)
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where again only matrix operations over finite matrices are involved due to the shore-range nature of the basis
functions.
The problem associated with the long-range electrostatic potential is commonly attacked using the scattering theory

of electronic structure by writing down the Hamiltonian of the total system as a summation of an unperturbed part
and a localized perturbation23,49,76,78, which is then solved using the Dyson equation,

H = H0 +∆V eff = −
1

2
∇2 + V 0(~r) + ∆V eff , (4.16)

G = G0 +G0∆V effG (4.17)

where the change in the effective potential is:

∆V eff [ρ] = ∆V ion +

∫

d3~r
′ [ρ(~r′)− ρ0(~r′)]

|~r − ~r′|
+ Vxc[ρ(~r)]− Vxc[ρ

0(~r)] (4.18)

In the above formulation, the “reference potential” V 0 and the “reference charge density” ρ0 are those obtained from
the self-consistent calculation of the bimetallic interfaces (without the molecule). In this way, ∆V eff is nonzero only
within the “extended molecule”. ∆V ion is the ionic potential due to the atomic ions in the isolated molecule plus
any changes in the ionic potential that may be caused by the surface reconstruction and/or the modification of the
molecular structure upon the adsorption onto the surfaces (any such structural relaxation is taken as occuring only
in the “extended molecule”).
Since the MGF formalism allows us to calculate the Green’s function of the “extended molecule” given the potential

within the same region, we want to transform the above equation into a form that better suits our purpose. Since
the exchange-correlation potential in the “extended molecule” doesn’t depend on the charge distribution outside this
region, we don’t need to include it in the choice of V 0. This will also allow us to use different approximation schemes
for the exchange-correlation potential in different part of the total system. Instead of calculating the change in the
potential, we take a more constructive approach to get the potential directly and write down the Hamiltonian of the
“extended molecule” as:

Hσ = −
1

2
∇2 + V 0(~r) + V ion(~r)− V ion,0 +

∫

d3~r
′ [ρ(~r′)− ρ0(~r′)]

|~r − ~r′|
+ V σ

xc(~r),

= −
1

2
∇2 + V ext,0(~r) + V ion(~r) +

∫

d3~r
′ ρ(~r′)

|~r − ~r′|
+ V σ

xc(~r), (4.19)

where

V ext,0(~r) = V 0(~r)− V ion,0 −

∫

d3~r
′ ρ0(~r

′

)

|~r − ~r′ |
(4.20)

Here V ext,0(~r) represents the electrostatic potential due to the charge (ionic and electronic) distribution in the contact
region, .i.e., outside the “extended molecule”. Since the contact region is charge neutral as a whole, V ext,0(~r) decays
fast away from the contact region. If sufficient number of metal surface atoms are included into the “extended
molecule”, V ext,0(~r) will be negligible within the molecule part.
In principle, a separate self-consistent calculation of the bimetallic interface without the adsorption of the molecule

needs to be performed81. For electrodes made from the same material, the results are practically the superposition
of two separate surface calculations. For electrodes made from different materials, boundary conditions on the
electrostatic potential will be imposed which line up the Fermi-levels of the two electrodes81. Such a calculation
will give us both the self-consistent charge and potential distribution in the region that we take to be beyond the
range of admolecule perturbation, from which we can also get the corresponding surface Green’s function G0

LL and
G0

RR. However, their exact value will depend on the particular model of the surface and the choice of the boundary
between the perturbed and unperturbed surface region. Since the exact nature of the contact is almost never known
in most experiments on molecular devices, and since the change in the electronic structure of the molecule is mainly
determined by the local interaction between the molecule and the neighbor surface atoms that are included in the
“extended molecule”, a good description of the contact can be obtained if we calculate the potential and the Green’s
function of the unperturbed part of the electrodes using values obtained from bulk calculations (for electrodes made
from different materials, an additional linear potential term corresponding to the work function difference across the
electrodes will need to be added to the bulk values for electrostatic potential calculations). This greatly simplifies
the calculation while allowing meaningful quantitative comparison between theory and experiments. In particular,
we note that satisfactory description of the charge and potential distribution in the bulk can be obtained without
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performing fully self-consistent calculations, for example, using the overlapping-atomic-potential model82, muffin-
type approximations83 or tight-binding parameters. This approximate treatment of contacts can always be improved
without affecting other parts of the calculation.
Given the Hamiltonian of Eq. (4.19), the matrix elements entering the Fock matrix in Eq. (3.6) can then be separated

into the core, Coulomb and exchange-correlation matrix as usual in the molecular density-functional calculations84:

Hσ
ij = Hcore

ij + Jij + F σ
xc;ij (4.21)

where Hcore
ij is the summation of the kinetic-energy, the ionic potential and the “external potential” matrices, and

Jij is the Coulomb matrix:

Jij =
∑

kl

ρkl(ij|kl),

ρkl = ραkl + ρβkl (4.22)

where we have used the conventional notation for the electron repulsion integrals (ERI). For exchange-correlation
energy of the functional form as Eq. (4.3), the exchange-correlation potential and their matrix elements are given by:

V α
xc[ρ

α, ρβ] =
∂f [ρα, ρβ]

∂ρα
, (4.23)

Fα
xc;ij =

∫

V α
xcφ

∗
i (~r)φj(~r)d

3~r (4.24)

and similarly for V β
xc and F β

xc;ij .
At this point the outline of the calculation of the equilibrium property of molecular devices using the self-consistent

matrix Green’s function method is complete:
(1) A judgment is made as to the set of atomic sites on the electrode surfaces which are included into the “extended
molecule”.
(2) A judgment is made as to the set of atomic sites on the electrode surfaces which are considered to be coupled to
the “extended molecule”.
(3) A basis set φi(~r) is chosen for the atoms within the “extended molecule”.
(4) The Hamiltonian matrix of the unperturbed part of the electrodes and also the coupling between them and the
“extended molecule” is determined from either the self-consistent bulk charge/potential distribution or from an ap-
proximate construction such as the tight-binding model. The corresponding surface Green’s function and self-energy
matrix is then calculated at a preselected numerical energy integration mesh.
(5) The “external potential” V ext,0 and its matrix elements V ext,0

ij are calculated either from a self-consistent sur-

face/bulk calculation or by approximate construction. Also calculated are the matrix elements of the kinetic energy
operator and the ionic potentials. Together they give the core Hamiltonian matrix.
(6) An initial guess is made for the spin density matrix ρσMM of the “extended molecule”. A natural choice for the
initial guess is the density matrix of the free “extended molecule”. An even better one is the density matrix of the
free “extended molecule” under the action of the “external potential” V ext,0.
(7) Calculate the Coulomb and exchange-correlation part of the Fock matrix. For Gaussian-type orbital (GTO) basis,
the Coulomb matrix elements can be calculated analytically. The existence of efficient algorithms for this operation
is the main strength of GTO over other choices of local atomic orbital functions such as Slater-type orbitals (STO).
The calculation of the exchange-correlation matrix elements must be performed numerically over the 3-d molecular
volume due to the rather complicated form of the exchange-correlation potential (Eq. (4.3)).
(8) Eq. (4.4) is then solved to obtain Gσ

MM (Z) for each Z of the numerical integration mesh. The corresponding
density-matrix ρσMM is then recalculated via the numerical integration over the complex energy contour using Eq.
(4.7).
(9) Repeat step (7) and (8) until the input density or Fock matrix agrees with the output density or Fock matrix
within a preset range. Due to the long-range nature of Coulomb interaction and the “heterogeneous” character of
the “extended molecule”, strong oscillations often occur in the iteration process, therefore acceleration methods for
self-consistent convergence are generally needed for the self-consistent process to converge85.
(10) The electronic density of states, charge transfer, electrostatic potential and transmission coefficients are then
calculated and analyzed.
Note the above procedures are almost identical to that of calculating the electronic structure of the free “extended

molecule” under some external potential V ext,0, the only exception being that at each iteration, instead of diagonalizing
the Fock matrices, we integrate along the complex energy contour to obtain the density matrix ρij for the next iteration
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(see the program flow-chart of Fig. 3). In particular, given the density matrix ρij , the computation of the Hamiltonian
matrix Hσ

ij is the same as that of the free “extended molecule” under the “external” potential V ext,0(~r) which, like the
self-energy operator, depends only on the charge and potential distributions obtained from the separate surface/bulk
calculations and needs to be calculated only once. Since the above step is the computationally most demanding one in
our self-consistent calculation, this allows us to take advantage of the full repertoire of molecular electronic structure
calculations. In practice, this step can be replaced by call to any existing high-quality quantum-chemical software
such as Gaussian 9886.

V. SELF-CONSISTENT FORMULATION: DEVICE OUT OF EQUILIBRIUM

A. The meaning of the voltage drop

Given the charge ρ0 and the electrostatic potential V 0
es distribution of the device at equilibrium, applying an external

bias will in general change the charge density and correspondingly the electrostatic potential (see Fig. 4), which are
related through the Poisson equation:

∇2Ves(~r) = ρ(~r), (5.1)

∇2V 0
es(~r) = ρ0(~r), (5.2)

or

∇2δVes(~r) = δρ(~r) (5.3)

where δVes = Ves − V 0
es and δρ = ρ− ρ0. The boundary condition on δVes is then:

δVes(~r)|L = VL, δVes(~r)|R = VR (5.4)

where VL(R) is the change of the electrostatic potential in the interior of the left (right) electrodes when current is

flowing. VR − VL =W could in general be different from V while µR − µL = eV 87. δVes describes the “voltage drop”
across the molecule. The solution of Eq. (5.4) can be separated into two parts, which also makes its physical meaning
clear:

δVes(~r) = Vbias(~r) +

∫

d~r′
δρ(~r′)

|~r − ~r|
(5.5)

where Vbias(~r) is the solution of

∇2Vbias(~r) = 0,

Vbias(~r)|L = VL, Vbias(~r)|R = VR (5.6)

Note this is of the same form as we will obtain for the bare biased bimetallic interfaces. As is the case of the bare
bimetallic interface, Vbias is linear. The final electrostatic potential is then given by:

Ves(~r) = V 0
es(~r) + Vbias(~r) +

∫

d~r′
δρ(~r′)

|~r − ~r|
(5.7)

where δρ is the charge redistribution in the “extended molecule” due to the applied bias. Written in this form, we see
that Vbias doesn’t depend on the property of the “extended molecule”, but only reflects the change in the boundary
condition due to the applied bias and that is why we have used the subscript Vbias. The charge transfer δρ is the
charge redistribution within the “extended molecule” induced by this “applied bias” Vbias.
In this way, we can reach some qualitative conclusions about the voltage drop and the current-voltage characteristics

of the molecular device. Obviously if the geometry of the molecule and the arrangement of the electrodes are such
that the system is perfectly symmetric with respect to mirror reflection across the plane crossing the middle of the
molecule, the current-voltage characteristic will be symmetric with respect to the bias. This can be seen from the
above formula where changing the sign of V : V → −V is equivalent to changing the coordinate z → −z where we
assume current flows along z axis. Since the choice of left or right is simply a matter of convention, the magnitude
of the current flowing through the device can’t change. Again in the symmetric case, since the charge neutrality is
maintained in the “extended molecule”

∫

d~rδρ(~r) = 0, δρ(~r) must be zero at the plane crossing the middle, so we
expect the voltage drop will be close to the linear form in the middle of the molecule, and deviate from it as we move
away from the middle towards the boundary set by the metal surface.
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B. The self-consistent formulation

Note the equilibrium electrostatic potential V 0
es is related to the equilibrium charge distribution ρ0 through the

following equation:

V 0
es(~r) = V ext,0(~r) + V ion(~r) +

∫

d~r′
ρ0(~r′)

|~r − ~r|
(5.8)

From Eq. (5.7), the electrostatic potential at nonzero bias V 0
es is thus:

Ves(~r) = Vbias(~r) + V ext,0(~r) + V ion(~r) +

∫

d~r′
ρ(~r′)

|~r − ~r|
(5.9)

Defining V ext(~r) = Vbias(~r) + V ext,0(~r), we can write down the Hamiltonian of the molecular device at nonzero bias
in the same form as that at equilibrium (Eq. (4.19)):

Hσ = −
1

2
∇2 + V ext(~r) + V ion(~r) +

∫

d3~r
′ ρ(~r′)

|~r − ~r′|
+ V σ

xc(~r), (5.10)

Again V ext can be regarded as the electrostatic potential due to the charge distribution outside the “extended
molecule”. The addition of Vbias reflects the change in the boundary condition in this electrostatic potential28,88,89.
For device out of equilibrium, the central quantity is the matrix correlation function G<

ij(E), which is computed
using the KKB equation:

G<(E) = i[GR(E)ΓL(E)GA(E)]f(E − µL) + i[GR(E)ΓR(E)GA(E)]f(E − µR) (5.11)

The self-consistent calculation then proceeds by computing the input density matrix to the next iteration from the
correlation function computed in the current iteration:

ρ(~r) =
∑

ij

ρijφi(~r)φ
∗
j (~r)

=

∫

dE

2πi
G<(~r, ~r;E)

=
∑

ij

∫

dE

2πi
G<

ij(E)φi(~r)φ
∗
j (~r) (5.12)

or in the matrix formulation:

ρij =

∫

dE

2πi
G<

ij(E) (5.13)

The density matrix is nothing but the energy integration of the matrix correlation function. To see better the physical
meaning of this, we divide both sides of Eq. (5.11) by:

A(E) = i(GR(E)−GA(E)) = GR(E)(ΓL(E) + ΓR(E))GA(E) (5.14)

and get:

−iG<(E)

A(E)
= f(E − µL)γL + f(E − µR)γR,

γL = GR(E)ΓL(E)GA(E)/A, (5.15)

γR = GR(E)ΓR(E)GA(E)/A.

where the division of matrices is defined such that [A
B
]ij =

Aij

Bij
. Since the correlation function −iG< describes the

number of electrons at energy E and the spectral function A describes the density of states at energy E, the above
equation essentially says that the probability of the states at energy E being occupied in the molecule equals the
probability of it being occupied in the left electrode multiplying the escape rate γL from the left electrode to the
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molecule plus the probability of it being occupied in the right electrode multiplying the escape rate γR from the right
electrode to the molecule.
Note the integration contour appearing in Eq. (5.13) is along the real energy axis rather than in the complex energy

plane. Unlike the retarded Green’s function, the correlation Green’s function G<(E) is not analytic away from the
real energy axis. This would have increased significantly the computational cost of the energy integration. However,
for energy sufficiently lower than both µL and µR, say E < µL(R) − 10kT , we have f(E − µL(R)) ≈ 1 and Eq. (5.11)
reduces to:

G<(E) = i[GR(E)ΓL(E)GA(E)] + i[GR(E)ΓR(E)GA(E)] (5.16)

Comparing with Eq. (5.14), we have:

G<(E) = iA(E) = −2iImag[GR(E)] (5.17)

Consequently the integration over the energy in Eq. (5.13) can be split into two parts:

ρij =
1

2πi

∫

C

dZGij(Z) +
1

2πi

∫ Emax

Emin

dEG<
ij(E) (5.18)

where the first term represents integration along the same complex contour as that in Fig. (2) with the upper energy
cutoff replaced by Emin and the second term represents integration along real energy axis from Emin to Emax. Here
Emin(max) is chosen such that for E < Emin, f(E −µL(R)) ≈ 1 and for E > Emax,f(E −µL(R)) ≈ 0. The integration
along the real energy axis can be performed using fine integration grids since the range of integration is not much
larger than eV .
It is clear from the above discussion that the only difference between the self-consistent formulation for device out

of equilibrium and for device at equilibrium lies in the way of calculating the density matrix (Eq. (5.18)). At nonzero
bias, the retarded Green’s function alone is no longer adequate for describing the observable property of the system.
Instead, at each iteration, we need to calculate the correlation function from the retarded Green’s function, the energy
integration of which gives the input density matrix for the next iteration. All other procedures remain the same. After
self-consistency is achieved, we can calculate the terminal current using Eq. (3.21) or Eq. (3.22) and also the current
density using Eq. (3.18). As a result, calculating current transport in molecular electronic devices is no more difficult
than solving a molecular chemisorption problem, both conceptually and computationally.

VI. CONCLUSION

Modeling transport at the molecular scale requires a microscopic knowledge of the electronic structure of both
the molecule and the surface which has to be considered in the context of an open system exchanging particles
and energy with the external contacts. This complicates substantially the computational procedure and raises new
questions about the theoretical basis. Although a first-principles theory of transport at the molecular scale doesn’t
yet exist, we have shown that the Non-equilibrium Green’s Function Formalism of quantum transport combined with
the density-functional theory of electronic structure provides a sound basis on which further works may be based.
Since the electronic process in such molecular devices is mainly determined by the interaction between the molecule

and the surface atoms closest to it, it is highly desirable to separate the treatment of the physical processes in this
“extended molecule” region from that in the rest of the system since in general the exact atomic geometry of the contact
is not known. In addition, as we have described, the treatment of the contact is best chosen to make the description
of the physical processes in the “extended molecule” consistent. This is conveniently dealt with within the matrix
Green’s function approach using expansion in finite set of local orbital functions, where the effect of the contacts is
taken into account using self-energy operators ΣL(R). In addition, by introducing an “external potential” V ext which
describes the electrostatic potential due to the charge distribution outside the “extended molecule”, we have shown
rigorously that the electronic and transport property of the molecular device can be determined from the electronic
processes in the “extended molecule” alone, given the knowledge of V ext and ΣL(R). This allows the highly accurate
and efficient techniques developed for molecular electronic structure computation to be used for studying transport
through molecules with little change. We believe such an approach will greatly accelerate theoretical/computational
research on molecular electronic devices.
Besides the computational advantage, the use of the local orbital basis sets and the techniques of molecular electronic

structure theory will also greatly facilitate the interpretation of the result of computation using the language of
qualitative molecular orbital theory which has provided the rationalization of the intuitive picture of bonding and
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orbital interactions in molecules24,90. Traditionally such discussion has relied on semi-empirical theories such as the
Extended Hückel type of theory. The advancement of density-functional theory in quantum chemistry has made
the use of self-consistent Kohn-Sham orbitals in such molecular orbital theory highly desirable91,92. For molecular
electronic devices, the orbitals involved are those of the molecule and the surface atoms closest to it. Much of the
physics can then be understood in terms of the orbital interactions after the effect of self-consistent charge transfer
and potential distribution has been included. Such an approach has been taken recently by the present authors to
study the equilibrium property of the molecular device formed by the phenyldithiolate molecule bridging two gold
contacts93. Further work on nonlinear transport through molecules is under investigation94.
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Notes added after proof : After the completion of this manuscript, we became aware of two recent publications by

Guo and coworkers95,96 which use a formalism based on NEGF and density functional theory similar to that described
here. However, there is significant difference in detail between our approach and theirs.
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FIG. 1. Illustration of typical molecular devices.

FIG. 2. Integration contour in the complex energy plane. The cutoff energy E0 should be below the lowest occupied states
of the system considered.
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FIG. 3. Program flow chart of the self-consistent Matrix Green’s function (MGF) approach to molecular device calculation.
Note that besides the introduction of Vext and the self-energy operator ΣL(R), the only difference with the conventional molecular
electronic structure calculation lies in the calculation of the density-matrix given the molecular Fock matrix. See the discussion
in the main text.
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FIG. 4. (a) Schematic illustration of the electrostatic potential profile V 0
es in the absence of applied bias. V 0

es joins to the
bulk values in the interior of the contacts. The exact value of V 0

es should be obtained from the self-consistent calculation of the
metal-molecule-metal junction as described in the main text. (b) Schematic illustration of the electrostatic potential profile
Ves in the presence of applied bias V . Note the changes in the boundary condition of Ves under bias. (c) Difference in the
electrostatic potential δVes = Ves −V 0

es in the presence and absence of applied bias V . Full line shows the linear “applied bias”
Vbias while dotted line shows the true δVes including the effect of the self-consistent charge redistribution δρ under bias (see
Eq. (5.5) and discussions thererein).
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