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Abstract

Current–voltage, IðV Þ, and current–magnetic field, IðhÞ, characteristics of a short molecular wire are studied in the

framework of a model which accounts for strong Coulomb repulsion between the transferred electrons. The given

approach avoids the fact that statistically the wire simultaneously transmits more than a single excess electron. First, we

address short molecular wire systems which exhibit a narrow peak in the IðV Þ-characteristics. Recent experimental data
of the peak current are well reproduced by our theory. In a second part, we study wires which contain paramagnetic

ions mediating the ET. With the focus being on the low-temperature region, a step-like behavior of the current versus

the magnetic field is predicted. � 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Initiated by the suggestion of Aviram and
Ratner [1] in the middle of the 1970s various
schemes have been proposed where single mole-
cules act as an active electronic device to achieve,
for example rectification and gating of a current
[2–8]. Meanwhile, the creation and characteriza-
tion of such nano-scaled single-molecule systems

became possible of what can really be understood
as the preliminary stage of molecular electronics.
The archetype of all the discussed systems repre-
sents a linear-chain molecule which interconnects
two micro-electrodes, thus forming a molecular
wire. If a voltage is applied the transfer of elec-
trons (or holes) can be controlled, and in this
manner one can construct the current–voltage,
IðV Þ, characteristics of a single molecule [9,10].
Once such a nano-structure has been formed, it
becomes necessary to understand all the molecular
properties which determine the IðV Þ-characteris-
tics. But at the same time one is also faced with
problems that relate to the molecule–electrode in-
teraction.
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The molecular properties mainly influence the
manner the charge moves through the wire. This
transport can take place either as an elastic elec-
tron transfer (ET) or as an inelastic transfer. If the
Fermi levels of the two leads are arranged between
the energetic positions of the HOMO and LUMO-
levels of the wire and if the characteristic time of
the hopping processes through the wire, shop,
strongly exceeds the characteristic time of the di-
rect wire-mediated tunneling, stun, the interelec-
trode current takes place as an elastic tunnel
process. In such a situation the conductivity de-
creases exponentially with an increase of the wire
length [9,11–13]. If the Fermi level is moved into
resonance with the LUMO-levels the conductance
oscillates with an increase of the wire [13,14].
Generally, the oscillations are caused by the di-
mensionality of the contacts and of the electrode,
by the number of contacts, and by the microscopic
geometry of the interface between the terminal
part of the wire and the electrodes [15]. If, how-
ever, shop � stun, the current is determined by in-
elastic hopping transitions. Now, the electron
tunneling is accompanied by energy dephasing at
the terminal sites [16–20] as well as in the internal
wire units [21–24].

In the case of elastic ET processes through the
wire the corresponding theoretical models are
more or less well established (see, e.g. [22]). Such a
complete description does not exist in the case of
hopping-like ET through the wire. This is in con-
trast to the description of ET reactions in donor-
bridge–acceptor systems where the bridge may be
given by a DNA fragment or a rigid oligopeptide.
Indeed, a unified description of the elastic (super-
exchange) and inelastic (sequential) ET exist for
the DNA [25,26] as well as the oligopeptide [27]. In
particular, it could be demonstrated that the se-
quential ET mechanism becomes more efficient
than the superexchange one if the number of
bridging units is increased.

However, it is insufficient to remain at a de-
scription of single electron motion. In the presence
of an electron reservoir given by the electrodes it
becomes necessary to discuss the simultaneous
motion of two or more excess electrons. Now, the
current within the wire is strongly influenced by a
Coulomb repulsion between the different and

simultaneously transferred electrons. Earlier the-
oretical studies carried out in the framework of a
Hartree approximation indicate that even in the
case of only two transferred electrons per wire the
current–voltage characteristics strongly differs
from that for a single transferred electron [28,29].
If the Coulomb electron–electron interaction is
described within the Hubbard model a compli-
cated nonlinear behavior of the wire mediated
current is obtained [12,30].

Besides the important influence of the internal
properties on the molecular wire conductivity
the latter is also affected by the interaction of the
terminal wire units with the micro-electrodes. The
static part of this interaction can be sufficiently
well described within the image force approxima-
tion [16,31,32]. It allows to estimate the polariza-
tion potential acting on the transferred electron
and, in this manner, to specify the energy profile of
the excess electron in the wire [23,33]. A micro-
scopic description is achieved if quantum-chemical
calculations are carried out on the molecule–metal
interface [34,35]. Alternatively, a description has
been proposed where the molecule and part of the
surface atoms perturbed by molecular absorption
define an ‘‘extended molecule’’ which in turn in-
teracts with the rest part of the electrode [34,36].

Of course, the progress in the field of transport
in a molecular wire strongly depends on a proper
comparison of all ideas and theoretical concepts
with experimental data, and in this manner the
progress depends on the way to measure the cur-
rent–voltage characteristics of different types of
molecules and molecular complexes. First at-
tempts to measure the current through a molecular
wire date back to 1990 [37]. Meanwhile, nano-
fabrication techniques have been developed to
contact single molecules [10,38], and starting from
1995 systematic measurements on the electron
conduction through a single bridging molecule
have been carried out [39–41].

The present paper presents results on the elec-
tron motion through molecular wires which are
related to internal properties of the wire as well as
to the wire–electrode interaction. We will describe
inelastic ET, but with the restriction to short wires
(less than 10 wire units). Upon extending recent
quantum kinetic considerations and computations
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on a nonlinear inelastic interelectrode current
through a short molecular wire [23,24] we study in
which manner the wire-mediated current can be
controlled by steady electric and magnetic fields.
The specificity of dealing with ET reactions
through a short molecular wire lies in the very
strong influence of the electrodes and the Coulomb
repulsion (as in the case of ET through a single
molecule [33,42]). Both disturbances, however,

become less prominent if the length of the wire is
increased [23].

2. The basic theoretical model

For the following considerations we will employ
a quantum kinetic ET model which has been re-
cently proposed to study the inelastic interelectrode

(a)

(b)

(c)

Fig. 1. Kinetic scheme of the ET through a linear molecular wire. Each terminal wire unit is connected with the corresponding

electrode via the spacer (Sp) while the interior wire units are coupled by the bridging structures (B), see part (a). Due to the polarization

shift caused by the electrodes all intersite transfer rates assume different values even at V ¼ 0, see part (b). At a large voltage bias, the

backward transfer rates become much smaller than the corresponding forward transfer rates, i.e., rnþ1 � gn, part (c).
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current through a short molecular wire [23,24]. The
model is based on two main assumptions. First, the
model assumes that the electronic coupling be-
tween the localization sites of the excess electron in
the wire is weak compared to the electron–vibra-
tion interaction. This is typical for systems where
the localization sites of the electron are separated
by bridging ligands (e.g. oligoporphirin and poly-
thiophene structures [6] or transition metal com-
plexes [4], etc.). Accordingly, the ET through the
molecular wire takes place as an electron hopping
process characterized by rate expressions for the
transition from electrode a (b) to the wire (va and
vb), for the reverse processes (v�a and v�b), and for
the wire-internal site to site transitions (gn, rn, cf.
Fig. 1(a)). The second assumption our model is
based on, refers to the inter-electron Coulomb re-
pulsion. It is supposed to be so strong in a short
molecular wire that only a single electron can sta-
tistically be captured. Only if the excess electron
already present in the wire leaves the wire can a new
one enter. At room temperatures, such a blocking
takes place if the wire length does not exceed 30–40
�AA [23] (note that this estimate assumes a weak
electronic intersite coupling which is unable to
compensate the repulsion between the transferred
electrons). As a result, ET through a short molec-
ular wire proceeds as the motion of single electrons,
but on the background of a strong Coulomb re-
pulsion. If the wire does not contain paramagnetic
ions and if no external magnetic field is present the
following expression for the stationary interelec-
trode current (for any electron spin projection
r ¼ �1=2) is valid [23,24]; i.e.

I ¼ eW0J : ð1Þ
Here, e is the elementary charge, J denotes the net
electron flow through the wire, and

W0 ¼
YN
n¼1

ð1� PnÞ

gives the transmission factor taking notice of the
strong Coulomb repulsion between the transferred
electrons. The latter quantity can be expressed by
the single-electron populations Pn of the wire units
n ¼ 1; 2; . . . ;N (where N denotes the total number
of localization sites in the wire). Consequently, a
particular exclusion principle valid for short mo-

lecular wires results – the excess electron to be
transferred through the wire can only enter it if
any other excess electron already left the wire. 1

For the following considerations it is advanta-
geous to express W0 and J by the auxiliary quan-
tities Un � Pn=ð1� PnÞ, i.e. Pn ¼ Un=ð1þ UnÞ

W0 ¼
YN
n¼1

½1=ð1þ UnÞ
; ð2Þ

and

J ¼ va � v�aU1 ¼ g1U1 � r2U2 ¼ g2U2 � r3U3

¼ . . . ¼ v�bUN � vb: ð3Þ

For any given number N of wire units the quan-
tities Un are derived from the system of equation
(for further details see in [23]):

XN
m¼1
AnmUm ¼ Cn: ð4Þ

The elements of the transfer matrix A are given
by

Anm ¼ ½ðv�a þ g1Þdn;1 þ ðgn þ rnÞð1� dn;1Þð1� dn;N Þ
þ ðv�b þ rNÞdn;N 
dn;m � gn�1ð1� dn;1Þdn;mþ1
� rnþ1ð1� dn;N Þdn;m�1; ð5Þ

while

Cn ¼ vadn;1 þ vbdn;N : ð6Þ
Noting Eq. (5) together with the relations (3) the
net flow can be represented as

J ¼ 1

DetðNÞ ðvag1 � � � gN�1v�b � vbrN � � � r3r2v�aÞ;

ð7Þ
where DetðNÞ denotes the determinant of the
matrix A. In the case of a wire with two or three
sites the set (Un) are readily evaluated. For N ¼ 2
we obtain

U1 ¼
1

Detð2Þ ½vav�b þ ðva þ vbÞr2
;

U2 ¼
1

Detð2Þ ½v�avb þ ðva þ vbÞg1

ð8Þ

1 A similar exclusion principle has been already utilized to

explain interference effects in resonance tunneling in coupled

quantum wells [43].
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and for N ¼ 3, correspondingly,

U1 ¼
1

Detð3Þ ½vav�bðg2 þ r2Þ þ ðva þ vbÞr3r2
;

U2 ¼
1

Detð3Þ ½vav�bg1 þ v�avbr3 þ ðva þ vbÞg1r3
;

U3 ¼
1

Detð3Þ ½v�avbðg2 þ r2Þ þ ðva þ vbÞg1g2
:

ð9Þ
The corresponding determinants read

Detð2Þ ¼ v�av�b þ v�ar2 þ v�bg1;

Detð3Þ ¼ v�av�bðg2 þ r2Þ þ v�ar3r2 þ v�bg1g2:

ð10Þ
Eqs. (1), (2), and (7) enable one to evaluate the
interelectrode current in those short molecular
wires where the current results from a hopping
mechanism of ET. The specifics of the electrode–
molecular wire–electrode nano-structure is given
by the single-electron transfer rates gn, rn, va, v�a,
and vb, v�b. Just such types of short molecular
wires are expected to be the best candidates for an
experimental observation of inelastic currents. If
magnetic interactions are important the spin-state
dependence of the rates have to be taken into ac-
count, cf. the examples in [17,18]. We will discuss
this question in Section 4 of this paper.

3. Nonlinear properties of an interelectrode current

It has been already demonstrated before in [23]
that the current–voltage characteristics of the
electrode–molecular wire–electrode nano-structure
become nonlinear if the Coulomb repulsion be-
tween the transferred electrons is accounted for.
First, there is a rising of the current with increasing
voltage towards a saturation. Second, an abrupt
decrease of the current appears if the voltage is
increased further. This nonlinear behavior follows
from the electrode wire model including the aver-
aged polarization. In particular, it becomes possi-
ble to present an analytical expression for the
current which is valid at any voltage bias. In this
model the abrupt decrease of the current is origi-
nated by the decrease of the transmission factor
W0, see Eq. (2). The following considerations are

devoted to a detailed inspection of this important
blocking phenomenon.

3.1. Interelectrode current at large voltages

To determine the interelectrode current the
basic Eqs. (1), (2), and (7) have to be specified by
concrete expressions for the transfer rates. We re-
strict ourself to the consideration of a regular wire
and use the same rate expressions as in [23]; i.e. the
Jortner form of the ET-transfer rates [44]. The
intersite transfer rates read

rnþ1 ¼ exp½�ðEn � Enþ1Þ=kBT 
gn; gn ¼ a0Umn ;

Umn ¼ exp½�S coth �hx0=2kBT 

� f½1þ nBðx0Þ
=nBðx0Þgmn=2

� Ijmnj 2S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nBðx0Þð1þ nB½x0Þ


p� �
: ð11Þ

The electrode–wire and wire–electrode transfer
rates (for electrode a) have the form

va ¼ exp½�DEa=kBT 
v�a;

and

v�a ¼ v0½1� nFðDEaÞ
U0; ð12Þ
respectively. Both expressions are valid in a similar
form for b replacing a. In Eq. (11) we introduced
the Bose distribution nBðx0Þ ¼ ½expð�hx0=kBT Þ�
1
�1 while in Eq. (12), nFðDEaðbÞÞ ¼ ½expðDEaðbÞ=
kBT Þ þ 1
�1 is the Fermi distribution functions.
Furthermore, x0 denotes the frequency of an ac-
tive vibrational mode strongly coupled to a heat
bath, we introduce DEa ¼ E1 � EF � eV , DEb ¼
EN � EF where V is the applied voltage bias, EF is
the Fermi-level energy, we set S � k=�hx0 (k is the
reorganization energy), and ImðzÞ gives the modi-
fied Bessel function. The voltage and temperature
independent constants introduced in Eqs. (11) and
(12) are given as

a0 ¼ 2pjVs�sj2=�h2x0; v0 ¼ ð2pjVs�ej2=�hEFÞC;
ð13Þ

where Vs�s and Vs�e are electron couplings between
neighboring wire sites and between the terminal
sites of the wire and the nearest surface metal
atom, respectively. The newly introduced factor C
accounts for the properties of the electrode metal
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surface as well as the structure of the terminal wire
unit. To specify this factor it becomes necessary to
perform detailed quantum-chemical calculations.
A simple estimate is possible in the framework of
the electron gas model and for a cubic metal. It
yields C � ðackFÞ3=4p where ac is the crystallo-
graphic cell constant and kF denotes the Fermi-
vector. Assuming EF � 5 eV and thus kF � 108 cm/
s, one obtains C � 1.

Of particular importance for the ET reaction
are the parameters

mn � ðEn � Enþ1Þ=�hx0 ð14Þ

which define (in units �hx0) an energy bias between
the electronic localization sites. If mn > 0 the
backward site to site transfer rates rnþ1 become
smaller than the corresponding forward transfer
rates gn. The electrostatic potential along the wire
assumes with mn > 0 the form

En ¼ E0 þ eV ð1� xn=LÞ þ EðiÞðxnÞ: ð15Þ
This expression shows that the site energy of the
transferred electron (at wire unit n) is the sum of
unperturbed LUMO-level energy, i.e., E0, the lin-
ear ramp, and the polarization shift

EðiÞðxnÞ ¼ �13:5

e
K
2

1

xn
þ 1

L� xn

� �
þ1

2

X1
m¼1
K2m

(

� K
1

Lmþ xn
þ 1

Lðmþ1Þ� xn

� �
� 2

Lm


 �)
:

ð16Þ

This expression follows from a general form of the
image-force potential originated by metallic plates
[16,45]. Note, that EðiÞðxnÞ is given in eV, while the
total length of the wire L ¼ 2d þ ðN � 1Þc and the
positions of electron localization xn ¼ d þ ðn� 1Þc
(cf. Fig. 1(a)) are taken in �AA. In Eq. (16) we in-
troduced K � ðee � eÞ=ðee þ eÞ with ee and e as the
electrode and interelectrode medium permittivities,
respectively. Eq. (16) defines a complicated non-
monotonic potential profile for the transferred
electron within the wire. However, for a large ap-
plied voltage the linear ramp can compensate the
decrease of energy caused by the electrodes (Fig. 2)
so that the property mn > 0 is satisfied for all wire
units. Now, the forward rates substantially exceed

the corresponding backward rates. Fig. 1(c) illus-
trates such a situation indicating the small transfer
rates by dashed arrows. Consequently, a large
voltage bias V leads to an unidirectional left-to-
right ET through the wire.

Fig. 3 nicely depicts that the increase of the
current generally results from the increase of the
flow. However, the decrease of the current which
takes place if V is further increased, completely
results from that of the transmission factor W0.
Comparing Fig. 3(a) with Fig. 3(b) one notices the
large difference with respect to the magnitude of
the flow saturation as well as with respect to the
peak (plateau) of the current. The behavior shown
in Figs. 3(a) and (b) is originated by a large dif-
ference with respect to the reorganization energy k
(or by the dimensionless parameters S ¼ k=�hx0

with fixed vibrational frequency x0). This different
behavior can be explained in noting that the peak
(plateau) of the current appears if a resonant

Fig. 2. Formation of the overall potential profile for the

transferred electron. The position of the electron is given via the

dimensionless distance x=L. The electronic energies En are ar-

ranged relative to the unperturbed LUMO-level E0. Calcula-
tions have been done in using Eqs. (15) and (16), E0 ¼ 0, e ¼ 4

and ee ¼ 1000.
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tunneling from the left electrode to the corre-
sponding terminal wire unit is switched on [23].
This resonant ET occurs at voltages where DEa �
eðd=LÞðVres � V Þ6 0. Here, we used

Vres ¼ DEL=ed ð17Þ
and DE � E0 � EF þ EðiÞðx1Þ (cf. Fig. 1(b)). We can
therefore conclude that for expðDEa=kBT Þ � 1 and
exp½�ðEn � Enþ1Þ=kBT 
 � 1 with V > Vres the fol-
lowing inequalities for the electrode–wire and
wire–electrode transfer rates result; i.e. va � v�a,
v�b � vb as well as for the wire-internal rate con-

stants, gn � rnþ1, respectively. These inequalities
indicate that one can utilize at large V the ap-
proximation of vanishing backflow, i.e.,

v�a ¼ r2 ¼ r3 ¼ � � � ¼ rN ¼ vb ¼ 0: ð18Þ

Noting the relations (3) we next derive the sim-
plified, large voltage expressions

UN ’ va=v�b; Un ’ va=gn ðn ¼ 1; 2; . . . ;N � 1Þ;
ð19Þ

while

J ’ va; W0 ’
1

1þ va=v�b

� �YN�1
n¼1

1

1þ va=gn

� �
:

ð20Þ
It is not difficult to determine the dependency of
the current on the applied voltage within these
approximations. Let the vibration energy �hx0 ex-
ceed the thermal energy kBT so that nBð�hx0Þ � 1.
In this case – and if S is not too large – the ar-
gument of Bessel function appearing in Eq. (11)
reduces to a small value and thus the asymptotic
form ImðzÞ � ðz=2Þm=Cðm þ 1Þ [46], with CðxÞ the
Gamma-function, becomes valid independently of
the particular value of m. Correspondingly, Eq.
(11) reduces to the expression [47]

Umn � e�SSmn=Cðmn þ 1Þ; ð21Þ
with mn given in Eq. (14). It follows from Eqs. (12),
(20) and (21) that the flow J possess a maximum,
Jmax ¼ v0 expð�SÞ. Therefore, if v0 is fixed, the
flow increases if S decreases, cf. Figs. 3(a) and (b).

To analyze the abrupt decrease of the current in
more detail we note that the quantity

va=gn ¼ ðCðmn þ 1Þ=SmnÞf�1nFðDEaÞ;
with f � a0=v0; ð22Þ

which specifies the transmission factor W0, cf.
Eq. (20), strongly increases with increasing value
mn. Actually, at large V when mn � 1 we can take
the asymptotic expansion Cðm þ 1Þ �

ffiffiffiffiffiffiffiffiffiffi
2p=m

p
mm

expð�mÞ which allows us to reduce Eq. (22) to
the simpler form

va=gn ¼ f�1
ffiffiffiffiffiffiffiffiffiffiffiffi
2p=mn

p
expð�mnÞ exp½mnðln mn � ln SÞ
:

ð23Þ

(a)

(b)

Fig. 3. Formation of the current through a wire with five units.

The current and the flow are measured in units of I0 � 10�6Is
(Is � ev0) and J0 � 10�6v0, respectively. The rise of the current
is caused by the rise of the flow while the transmission factor is

ruling the current decrease. The maximal value of the current

corresponds either to the peak value, part (a) or to the plateau,

part (b). Calculations have been done based on Eqs. (1), (2), (4),

(5), (6), (7), (11) and (12). The remaining parameters are

DE0 � E0 � EF ¼ 0:82 eV, x0 ¼ 500 cm�1, e ¼ 4, ee ¼ 1000,

f ¼ 0:3, d ¼ 2 �AA, c ¼ 7 �AA, L ¼ 32 �AA.
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In passing we remark that we also used the fact
that for V > Vres one can set nFðDEaÞ � 1. It can be
recognized that a sudden drop of va=gn occurs if
mn > S. Let us take into consideration that mn gives
the mean number of vibrations accompanying the
jump of the transferred electron from the nth to
the ðnþ 1Þth wire unit, cf. definition Eq. (14). If
more quanta are involved the jump efficiency be-
comes less efficient. For large V, mn is also large
and thus the forward transfer rate gn is small. This
fact indicates that the limiting step of the ET
through the wire are the hops between the wire
units. As a result, the transferred electron is slowed
down within the wire, the site populations Pn in-
crease and thus the transmission factor becomes
drastically reduced. Hence, the current is blocked.
The inequality mn > S is identical to En � Enþ1 > k,
which states that the decrease of the current with
the rise of the V occurs if the driving force of the
site to site ET process induced by the applied
electric field starts to exceed the corresponding
reorganization energy.

3.2. Current through a wire with two electronic
localization sites

According to Eqs. (20) and (23) a control of the
interelectrode current eq. (1) can be achieved by an
alteration of the parameters f and S. Increasing
any of these parameters the formation of the pla-
teau becomes easier, see [23] where the influence of
the parameter f has been discussed, and also in
Figs. 3(a) and (b) with curves valid for different S.
A large value of mn and, thus, of the driving force
for the site to site transitions is reached if a wire
with a large distance between neighboring sites is
taken. Now, the blocking of the current might be
observed at a smaller voltage compared to the case
of a wire with more units. Fig. 4 depicts the form
of the nonlinear current through a wire with two
sites. The calculations are carried out by use of Eq.
(1) with the form of the flow J given by

J ¼ vav�bg1 � v�avbr2
v�av�b þ v�ar2 þ v�bg1

ð24Þ

and the transmission factor reads

W0 ¼ ½ð1þ U1Þð1þ U2Þ
�1: ð25Þ

Here, U1 and U2 are given by Eqs. (8) and (10).
The expressions for J and Un can be simplified if
one notes that for V P Vres the rates vb and r2 as-
sume very small values. By use of the condition
vb � 0, r2 � 0 it follows that

J ¼ va
g1

g1 þ v�a
; U1 ¼

va
g1 þ v�a

;

U2 ¼
va
v�b

� �
g1

g1 þ v�a
:

ð26Þ

According to the expression of J we may conclude
that in the resonance region V > Vres the flow can
assume a plateau (it occurs if g1 � v�a and thus
J � va � v0 expð�SÞ), followed by an decrease
which is originated by the sudden drop of the
forward site to site transfer rate g1 (it occurs when
g1 � v�a and thus J � ðva=v�aÞg1). The simplified
expression (26) is sufficient for an evaluation of the
current in the vicinity of its maximum as well as
for V > Vres. It follows from Eqs. (1) and (26) that
in the case when the flow has a plateau, i.e., at
g1 � v�a, the current emerges as

I ¼ eva
1

1þ va=g1

� �
1

1þ va=v�b

� �

�
eg1

1þva=v�b
if va � g1;

eva
1þva=v�b

if g1 � va:

(
ð27Þ

Fig. 4. Formation of the peak current through a wire with two

sites of electron localization for the transferred electrons. The

peak current is expressed via the quantity Is � ev0. Calculations
have been done based on Eqs. (24) and (25) and in taking e ¼ 4,

ee ¼ 1000, T ¼ 60 K when d ¼ 3:2 �AA, c ¼ 16:7 �AA, f ¼ 0:5,

S ¼ 12, x0 ¼ 355 cm�1, DE0 ¼ 0:76 eV.
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Eq. (27) refers to the case when only a one-way ET
is realized through the wire.

Fig. 4 depicts the IðV Þ-characteristics for two
identical electrodes and a wire with two identical
units. In contrast to the case of a five-units wire, cf.
Fig. 3(a), we can choose the set of parameters if
the current peak is reached at V ¼ 2 eV (the cor-
responding value for N ¼ 5 is V ¼ 4 eV). Besides,
for N ¼ 2 the width became much more smaller
compared to N ¼ 5. In Fig. 4, the localization sites
of the transferred electron correspond to the po-
sition of the terminal atoms contacting the elec-
trode surface (e.g. sulfur or carbon atoms, see the
discussion in [36,41,42]) while the remaining part
of wire modulates the bridging system. Note that
our theory predicts a rather narrow peak in the
IðV Þ-characteristics. A similar narrow peak has
been observed in experiments using a nanopore
system doped with molecules which are responsi-
ble for a nonvanishing conduction of the nanopore
[40].

4. Low temperature current in presence of a

magnetic field

In this section we study inelastic ET reactions
through a short molecular wire for the case where
the wire units contain paramagnetic ions. For an
example of such units we refer to metalloporphy-
rin molecules and metal–ligand compounds [4,48].
In such a case, the specific properties of the para-
magnetic ions can come into play if a low tem-
perature region is chosen where the Zeeman
splitting of the spin levels in the magnetic field is
comparable to the thermal energy kBT . In [17,18],
the particular case has been studied where two
nonmagnetic electron localization sites in the wire
are connected by a bridging system and just this
system contains one or two coupled paramagnetic
ions.

Here, we consider the somewhat different situ-
ation of a wire with two sites each with a para-
magnetic ion. Ligands surrounding the ions create
a crystal field which is responsible for the forma-
tion of a definite electronic configuration for each
ion. The ions are separated by a nonmagnetic
bridging system. We restrict ourself to the case

where each paramagnetic ion has a ‘‘frozen’’ an-
gular momentum in the ground state so that the
ion spin S and its projection M represent good
quantum number. Additionally, it will be assumed
that each ion has a number of electrons in its in-
completely filled shell equal to or larger than the
number of one-electron states in this shell. As an
example, we refer to the ions Mn2þ;Fe3þ, and
Ni2þ. The first two ions posses an electronic con-
figuration (in the cubic field) t32ge

2
g with the ion spin

S ¼ 5=2 while the electronic configuration of Ni2þ

is t62ge
2
g with S¼ 1. The addition of a single electron

changes the above-mentioned configurations into
t42ge

2
g and t62ge

3
g, respectively. The corresponding

spins become equal to S0 ¼ 2 and S0 ¼ 1=2 [48].
Let us consider the formation of a current at

V > Vres and at low temperatures. In this case the
conditions in Eq. (18) are satisfied in an excellent
manner and, correspondingly, only one-way ET
proceeds through the wire. Furthermore, we as-
sume that rate for the electrode–site transitions va
and v�b strongly exceed the forward site to site rate
g1 and, additionally, v�b � va. Such an inequality
can become valid even for the case of identical wire
units where, e.g. the left and the right spacers, Sp1
and Sp2, have a different atomic structure, cf. in-
sertion in Fig. 5. Bearing in mind the above-given
inequalities and utilizing Eq. (27) one derives
Iþ1=2 ¼ I�1=2 ¼ I ¼ eg1 where Ir is the partial
component of the current corresponding any spin-
projection r of the transferred electron.

If a magnetic field h is applied, a discrimination
between the two components Iþ1=2 and I�1=2 takes
place and thus Ir ¼ eg1r. To derive an expression
for the total current Itot ¼

P
r Ir we have to note

that the characteristic value of the magnetic en-
ergy, lBgh (lB and g are the Bohr magneton and g-
factor, respectively), is very small compared to the
Fermi-level EF. Hence, the inequality lBgh� EF
indicates that an applied magnetic field has a
negligible effect on the electrons in the electrodes
[49]. We thus can ignore this magnetic energy.
Below we will utilize such a model for an electron–
vibration coupling which results in an expression
for the forward site to site transition rate similar to
that of Eq. (11). The magnetic energy lBgh is as-
sumed to be small compared with the character-
istic vibrational energy �hx0. As a result the
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magnetic field dependence of the factor Um can
safely be neglected.

For the following we will assume that the mo-
lecular wire consists of two identical units with
identical paramagnetic ions. Furthermore, we set
S1 ¼ S2 ¼ S for the spin values of the ions, and
provide that the transferred electron can be cap-
tured by the paramagnetic ions in the course of the
ET through the wire. And finally we suppose that
the electronic coupling between the sites occurs via
the superexchange mechanism. In this case, the
spin dependence of the site to site coupling Vs�s,
which specifies the parameter a0, Eq. (13), is given

by the well-known expression Vs�s ¼ V �
bN 2
GbN b1V1 b1 ,

see e.g. [11,49]. Here GbN b1 is the Green function of
the bridge of N units while V1 b1ðV2 bN Þ denotes the
coupling between the first (second) paramagnetic
ion and the adjacent b1th (bN )th bridge unit. The
bridge should be a nonmagnetic system and thus
only the couplings V1 b1 and V2 bN depend on the
spin states of the paramagnetic ions. Noting that
the considered paramagnetic ions reduce their spin
from S to S � 1=2 if an extra electron is captured
we can take the expressions for the matrix ele-
ments V1 b1 and V2 bN given in [18]. Denoting the
spin projection of the reduced ion by M 0

1ð2Þ (where
�ðS � 1=2Þ6M 0

1ð2Þ 6 ðS � 1=2Þ) and the spin pro-
jection of the nonreduced ion via M1ð2Þ (where
�S6M1ð2Þ 6 S) one derives

Vs�s ¼ V 0
s�sF ðr; M1;M 0

2; M
0
1;M2Þ: ð28Þ

Here, V 0
s�s is the reduced matrix element which is

independent on the spin-projection of the electron
and the ions. This dependence is contained in the
factor

F ðr;M1;M 0
2;M

0
1;M2Þ¼C

ðS�1=2ÞM 0
2

ð1=2ÞrSM2

�CðS�1=2ÞM 0
1

ð1=2ÞrSM1
drþM1;M 0

1
drþM2;M 0

2
;

ð29Þ

where the CjMj1m1 j2m2 are the Clebsch–Gordon coef-
ficients [50]. The expression (28) allows us to rep-
resent the total current as

Itot ¼ e
X

r

g1r ¼ eg01gðhÞ: ð30Þ

The quantity g01 is defined by Eq. (11) with the low-
temperature expression for the factor Um, Eq. (21),
and with the parameter a0, Eq. (13), where Vs�s ¼
V 0
s�s. In the low-temperature limit under consider-
ation the main temperature dependence of the
current together with the dependence on magnetic
field is given by the factor

gðhÞ ¼
X

r

X
M1;M 0

1

X
M2;M 0

2

W ðM 0
1;M2Þ

� jF ðr; M1;M 0
2; M

0
1;M2Þj2: ð31Þ

The quantity W ðM 0
1;M2Þ defines the weight of

the spin states of a pair of paramagnetic ions for
the case that the transferred electron is captured by

Fig. 5. Step-like formation of a low-temperature interelectrode

current mediated by the wire of two units. The units contain

identical paramagnetic ions with frozen angular momenta and

with spins S1 ¼ S2 ¼ S. The quantization axis z is directed along
the magnetic field h ¼ h1, and the magnetic field h2 is oriented

either parallel to h1 or antiparallel. Calculations have been done

based on Eqs. (31)–(33) and with S ¼ 5=2, g ¼ 2, K ¼ 10�4 eV;

solid and dashed line correspond to the temperatures T ¼ 10�5

and T ¼ 3� 10�5 eV, respectively.
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the first ion. We restrict ourself to the case of fast
spin-relaxation within each ion and obtain

W ðM 0
1;M2Þ ¼ Z�1 exp½�EmagðM 0

1;M2Þ=kBT 
;

Z ¼
XS�1=2

M 0
1
¼�ðS�1=2Þ

XS
M2¼�S

exp½�EmagðM 0
1;M2Þ=kBT 
;

ð32Þ

where EmagðM 0
1;M2Þ is the magnetic energy of the

ions. Providing that the frozen angular momentum
of the ion is in its ground state, we can omit the
spin–orbit interaction in the ground state. This
interaction becomes important, however, when an
extra electron is captured by the ion. In the sim-
plest case, the spin–orbit interaction leads to a
modification of g-factor as well as to an appear-
ance of a single-ion anisotropy [51]. Below we
consider the case of a weak alteration of the g-
factor but take into consideration the contribution
caused by the single-ion anisotropy. This allows us
to represent the magnetic energy in the form, see
also [18],

EmagðM 0
1;M2Þ ¼ lBg½h1M 0

1þ signðh2Þh2M2
þKðM 0
1Þ

2;

ð33Þ
where K > 0 is the anisotropy constant, and h1 and
h2 are the magnetic field-strengths acting on the
separate paramagnetic ions.

Fig. 5 shows a steplike IðV Þ-characteristics de-
pending on the direction of the magnetic fields. The
appearance of plateaus can be explained in the fol-
lowing manner. At low temperatures as considered,
only a small part of EmagðM 0

1;M2Þ gives the main
contribution to the current. If K ¼ 0 the corre-
sponding energy is EmagðM 0

1 ¼ �ðS � 1=2Þ; M2 ¼
�SÞ (h1 "" h2) or EmagðM 0

1 ¼ �ðS � 1=2Þ; M2 ¼ SÞ
(h1 "# h2). Thus, the projections M 0

1 ¼ �ðS � 1=2Þ
for the first and M2 ¼ �SðSÞ for the second ion de-
fine the predominant ET channels. If a single-ion
anisotropy is added (with K > 0) it gives rise to a
magnetic energy as soon as the absolute value of the
M 0

1th projection increases. Hence, each plateau re-
flects the competition between the Zeeman energy
and the energy of the single-ion anisotropy. The
magnetic field-strength hswitch at which the plateau
with a particular projection M 0

1 merges to the pla-
teau with the projectionM 0

1 � 1 can be derived from

the condition EmagðM 0
1;M2 ¼ �SÞ ¼ EmagðM 0

1 � 1;
M2 ¼ �SÞ (the signs ‘‘þ’’ and ‘‘�’’ indicate the cases
h1 "" h2 and h1 "# h2, respectively). This yields

hswitch ¼ Kð1� 2M 0
1Þ=lBg: ð34Þ

This switching field does not depend on the pro-
jection of the second ion since its magnetic energy
consists of only the Zeeman energy. It follows
from condition hswitch > 0 that each plateau is
characterized by a definite spin-projectionM 0

1 from
the possible region

�1=2PM 0
1 P � ðS � 1=2Þ: ð35Þ

This inequality allows us to determine the number
of plateaus which exactly corresponds to the
number of negative projections of the M 0

1. If we
chose S ¼ 5=2 (Mn2þ and Fe3þ paramagnetic ions)
we can only observe two plateaus corresponding to
the ET channels with M 0

1 ¼ �1;M2 ¼ �5=2 and
M 0

1 ¼ �2;M2 ¼ �5=2 (h1 "" h2), or alternatively to
ET channels with M 0

1 ¼ �1;M2 ¼ þ5=2 and M 0
1 ¼

�2;M2 ¼ þ5=2 (h1 "# h2). With increasing tem-
perature, there exists no channel which assumes an
appreciable weight to the current different from
others; thus the plateaus become smeared out, cf.
the dashed lines in Fig. 5.

To understand the strong decrease of the cur-
rent if the direction of h2 is changed we refer to the
analysis of the saturated currents (last plateaus),
M 0

1 ¼ �2;M2 ¼ �5=2 (h1 "" h2) and M 0
1 ¼ �2;

M2 ¼ þ5=2 (h1 "# h2). A detailed inspection of the
corresponding Clebsch–Gordon coefficients shows
that spin-dependent factor in Eq. (30) simplifies to

gðhÞ ¼ ð2SÞ2

ð2S þ 1Þ2
; ðh1 "" h2Þ;

gðhÞ ¼ 2S

ð2S þ 1Þ2
; ðh1 "# h2Þ;

ð36Þ

and thus the ratio of the saturated currents is equal
to 2S. The small current at h1 "# h2 compared to
h1 "" h2 can be explained by the fact that the
probability to transfer an electron between the
ions with parallel spins is somewhat larger than for
the transfer between the ions having an opposite
spin direction. This behavior is reflected in the
different form of the corresponding Clebsch–Gor-
don coefficients.
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5. Conclusions

The focus of the present contribution has been
on a detailed study of the IðV Þ and IðhÞ charac-
teristics, respectively, of a short molecular wire and
for the case where incoherent ET-transfer is re-
sponsible for the interelectrode current. The fac-
tors which substantially control the current are the
polarization effect of the electrodes and the Cou-
lomb repulsion between different transferred elec-
trons. The image forces decrease the LUMO-levels
of the wire units and in this manner reduce the gap
between the levels of the terminal wire unit and the
electrode Fermi-level up to some tenths of eV. For
example, in the case of a wire with two units as
depicted in Fig. 4 the gap of the isolated wire
DE0 ¼ 0:76 eV is reduced to DE ¼ DE0 þ EðiÞ

ðx1Þ ¼ 0:27 eV. Just this gap determines the volt-
age V ¼ Vpeak at which the maximal (peak) current
is reached.

Moreover, the influence of the Coulomb re-
pulsion between different transferred electrons has
been statistically accounted for via the transmis-
sion factor W0. It vanishes if only a single wire unit
is completely occupied by the transferred electron
because such a state is unable to conduct a further
excess electron – until the first electron leaves the
wire. Just the decreasing part of the (nonlinear)
current as shown in Figs. 3 and 4 is originated by
W0. The concrete run of the IðV Þ curve follows
from the competition between all single-electron
transfer rates, see Fig. 1(a).

In Fig. 4 we showed the important case of a
current which has a rather narrow peak in the vi-
cinity V ¼ Vpeak � 1:9 eV. A similar behavior has
been observed in the experiments on a molecule
which contains a nitroamine redox center [40]. The
given explanation for the observed IðV Þ-charac-
teristics are based on quantum-chemical calcula-
tions on the electronic energy level structure of the
neutral molecule as well as for the presence of a
single and two excess electrons in the molecule
[42]. According to the obtained decrease of the
LUMO-levels related to the presence of a single
excess electron a second one should preferably
enter the molecule. However, there is a serious
problem within such an explanation, because no
mechanism which may compensate the Coulomb

repulsion between the two excess electrons has
been accounted for. In condensed media, however,
such a mechanism results from a polarization of
the surrounding medium. In the case of ET
through a single molecule in a nanopore system,
for example, one has to take into consideration not
only the polarization of the nanopore itself but of
the electrodes as well.

In our approach, the polarization effects sub-
stantially reduce the gap between the LUMO-le-
vel energies and the Fermi-energy, while the
strong Coulomb repulsion blocks the simulta-
neous presence of two transferred electrons in the
wire. This very blocking effect is responsible for
the sudden decrease of the current and thus for its
peak behavior. Let us estimate a peak value of
the current represented in Fig. 4 where Ipeak ¼ 1:5
�10�7 Is and Is ¼ ev0 with v0 given by Eq. (13).
To estimate v0 we take EF ¼ 5 eV. The coupling
Vs�e between the terminal unit and the surface
atom may strongly vary in dependency on the
distance d as well as on structural and energetic
characteristics of the unit and the surface. For
example, the estimations carried out in the
Newns–Anderson model indicate [52] that in the
case of a p-benzene-dithiol wire Vs�e � 0:25 eV.
For our rough estimations we take Vs�e � ð0:1–
0:5Þ eV. It yields v0 � ð1013 � 1014Þ s�1, and thus
Ipeak � ð0:1–1Þ pA per a single wire. To compare
this value with experimental results we take the
data of [40]. The measured peak current through
a certain area (nanopore) is found to be
I ðareaÞexp ¼ 1:03 nA, while the common current den-
sity is around 53 A=cm

2
. Therefore, the area may

be estimated as �0:2� 10�10 cm2. Let the contact
area which is related to a single conducting
molecule amount ð20–30Þ �AA

2
, then the observed

current I ðareaÞexp ¼ 1:03 nA is caused by �ð103–104Þ
molecules, i.e., an experimental peak current
through a single molecule occurs at about (0.1–1)
pA. This very value for Ipeak is consistently pre-
dicted by our theory.

For the case of the magnetic field influence on
the low-temperature current our discussion has
concentrated only on the IðhÞ-characteristics.
More extended calculations will be carried out if
data on respective low-temperature experiments
become available.
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