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Abstract 

 

 A theoretical description of quantum mechanical steady states is developed. 

Applications for simple quantum mechanical systems described in terms of coupled 

level structures yield a formulation equivalent to time independent scattering theory. 

Applications to steady states of thermally relaxing systems leads to time independent 

scattering theory in Liouville space that is equivalent to the tetradic Green's function 

formalism. It provides however a direct route to derive particular forms of the Liouville 

equation applicable in steady state situations. The theory is applied to study the 

conduction properties in the super-exchange model of a metal-molecule-metal contact 

weakly coupled to the thermal environment. The energy resolved temperature 

dependent transmission probability, as well as its coherent (tunneling) and incoherent 

(activated) parts, are calculated using the Redfield approximation. These components 

depend differently on the energy gap (or barrier), on the temperature and on the bridge 

length. The coherent component is most important at low temperatures, large energy 

gaps and small chain lengths. The incoherent component dominates in the opposite 

limits. The integrated transmission provides a generalization of the Landauer 

conduction formula for small junctions in the presence of thermal relaxation. 
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1. Introduction 

 Consider a system of classical rate equations. A set of variables C satisfies 

kinetic equations of the general form 

 F(C)C ��
        (1) 

where the rates F are functions of the variables C. In many situations the set C is a 

continuous field (position dependent variable) and F contains differential and/or integral 

operators. As t ���  the system will approach equilibrium if the rate laws in (1) satisfy 

detailed balance. When the boundary conditions imposed on the system are not 

compatible with equilibrium the set (1) may approach a non-equilibrium steady state 

(this will always be the case if the rates F are linear in the variables C) in which a 

constant current is passing through the system. The steady state is described by the set 

of equations 

 0)( �CF          (2) 

together with boundary conditions (e.g. the values of some of the variables) that will 

characterize the non-equilibrium nature of the steady state. For example, the set of 

equations used to define the Lindeman mechanism in chemical kinetics[1,2] 

 ; BCAB

BA CB

kk

k k
A B B C�����
	 ������	������ �������        (3) 

is often analyzed under the boundary conditions CA=constant and CC=0, where Ci is the 

concentration of species i. Under these conditions a constant flux, 
� �

BABCABCAB kkCkk �/  is passing through the system. In analogy, a non-equilibrium 

steady state of a diffusion process described by ),(/),( 2 tCDttC rr ����
 may be 

characterized by given constant values of C(r ,t) on opposite ends of the system. The 

steady state diffusion flux is )(rssCD � , where Css(r) is the solution to 02 ��
CD  under 

the given boundary conditions. 

 Quantum mechanical problems are rarely treated in a similar way. Boundary 

value problems are encountered mostly in the solution of the time independent 

Scr � dinger equation, aimed at evaluating eigenstates of the system's Hamiltonian, which 

in themselves have no dynamical contents. Time dependent processes are treated as 

initial value problems. A prominent exception is the formulation of time independent 

scattering theory where the resulting wavefunctions can be interpreted as steady state 

solutions of a process characterized by a constant incoming flux. Scattering theory 

however is formulated in a particular framework in which incoming and outgoing 
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waves become flux-carrying eigenstates of the free particle Hamiltonian far from an 

interaction zone. A more general formulation of steady state quantum mechanics can 

use different basis sets, e.g. states that by themselves do not carry fluxes. We have 

recently shown[3] that such a formulation can lead to standard scattering theory results 

as well as other results usually obtained from solving initial value quantum mechanical 

problems. In another recent paper[4] we have used a similar approach within a density 

matrix formalism for the analysis of thermal effects in electron transfer problems. Yet 

another important example where this approach is useful (and where an early version 

was used[5]) is light scattering, where thermal effects near resonance may increase the 

yield of fluorescence at the expense of Raman scattering. The general principles 

regarding this approach are summarized in Appendix A. 

The purpose of the present paper is to point out, and to elucidate some subtle 

points in the application of the same approach within the quantum dynamical density 

matrix formalism. Our motivation is as in Ref. [4]: to develop a formalism for the 

description of steady state currents in metal-molecule-metal junctions, in particular in 

the presence of thermal interactions, and thereby to evaluate the conduction properties 

of such junctions. This paper focuses on technical aspects associated with the 

application of this technique. In a subsequent paper[6] we will use this approach to 

study the heat dissipation in a model for steady state charge transfer through a molecular 

bridge. 

 

2. Simple examples 

 To set the stage for the more complex problems discussed below we review in 

this section the application of the steady state technique to simple problems involving 

the decay of an initially prepared ("doorway") state interacting with a continuum. Figure 

1 shows the standard model for this process: The Hamiltonian is expressed in terms of 

an orthonormal basis 

 � �� ��������� ��������
j

jj
j

j jVjVjjEEH |0||0||||00| 000    (4) 

where the states { j}  constitute a quasi-continuous manifold, characterized by its density � 	

j jJ EEE )()( �� ,  which extends into energies far below and above E0. The 

coupling matrix elements *
jiij VV   are assumed to depend weakly on Ej and to vanish 

near the edges of the { j}  spectrum. Under these (and some other well known) conditions 
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an initial state ��� 0|)0(t�  evolves in time according to � �
tEtEit J )()2/1(

~
exp)(|)0( 000 ����	�
 ��  where )(

~
0000 EEE J

��  and where �
0J(E) and � 0J(E) are the real and (-)twice the imaginary parts of the function 

 � �� �� ���� �
j jjJ iEEVE �� 2

000 ||lim)(      (5) 

In particular,  � �
0

2
00

2
000 ||2)(||2)( EEJJj jjJ VEEVE � ! "#$ %&'&     (6) 

( || 0JV  is defined by this relation), is the well known golden rule expression for the 

decay rate of an initially prepared state coupled to a continuum, and is the main result of 

this model. Here and in the rest of the paper we have used capital characters to denote 

manifolds of states, while the corresponding lower case font denotes individual states. 

 In order to obtain this result from a steady state formulation we start from the 

equations of motion for the coefficients c of the expansion of a general solution of the 

time dependent Scr ( dinger equation for this model, )*+),-
jtctct j j |)(0|)()( 0 : 

 00,,0000 ; ciVciEccViciEc jjjjj jj ../0../ 11 .   (7) 

Consider the steady state obtained if the state 20|  was forced to evolve as if the 

coupling to the continuum did not exist while each of the states of the manifold { j}  is 

assigned a small damping term 35476 . This damping is an absorbing boundary condition 

that can be taken zero at the end of the calculation. The corresponding equations are 

 tiEeCtc 0
00 )( 89         (8) 

jjjjj cciVciEc
200, :;;;<=

       (9) 

)(0 tc given by (8) is now a driving term in  Eq. (9) for cj. The latter yields, at long time 

tiE
jj eCtc 0)( >? , with jC  given by 

 
2/)( 0

00, @
iEE

CV
C

j

j
j ABC        (10) 

The total flux through the systems is 

 J
j

j CCI 0
2

0
2

0 ||||lim DEFFG
HIIJKE LM NO       (11) 

implying a rate, 2
0 ||/ CI , equal to PRQ J. To reiterate, the procedure just described 

replaces the original Shr S dinger equation by an equation that incorporates two boundary 
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conditions: The driving term, Eq. (8), corresponds to a constant incoming flux while the 

absorbing boundary terms imposed on Eqs. (9) cause the (linear) system to approach a 

steady state as t ��� . The fact that an analysis of the relationship between given non-

equilibrium boundary conditions and the steady state flux sustained by them can yield 

information on rates is well known in kinetic theory. However, the steady state rate and 

the rate observed in a transient measurement are not always the same; for a discussion 

of this point see Ref. [4]. 

 Next consider another example: a model for resonance scattering. Figure 2 

depicts a typical potential model for this problem, together with a corresponding energy 

level structure. The potential scattering problem, fig. 2a, corresponds to what we 

normally refer to as resonance tunneling: A particle with energy E0 approaches the 

double barrier structure from the left, and the transmission and reflection probabilities 

are evaluated as functions of E0. Fig. 2b provides an approximation to this model, based 

on the assumption that the scattering process is dominated by the interaction of the 

incident and scattered waves with the single resonant level �1|  in the well between the 

barriers. Fig. 2c is a generalization to the case with many intermediate states (or wells) 

that will be discussed later. Fig. 2b is also a model for absorption and resonance   

scattering of light: Here level �0|  represents a dressed state, e.g. the molecular ground 

state �g|  dressed by a photon so that ���	
gEE0 , while state 
1|  is the molecular 

excited state without the photon. The corresponding Hamiltonian is 

 VHH ��
0          (12) 

  ���� ������������ �
r

r
l

l r||rEl||lEEEH     |11||00|
0

100    (13) 

� � � � � �� ����������������� ����������
r

rr
l

ll r|V||rV |V||V l||V||lVV 11|011011 ,11,0,11,0
0

,11,  

           (14) 

Where }{ r  and }{ l  now denote the right and left continuous manifolds. The incident 

state �0| belongs to the }{ l  manifold but should be treated separately as discussed 

below. In collision theory �0|  represent an incoming wave while the other }{ l  states 

and the }{ r states correspond to outgoing waves. These incoming and outgoing waves 

carry momentum, but the formalism described here can use other representations, 

including one in which these states are standing waves.[3] 
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 A general solution of the Schr � dinger equation based on the Hamiltonian (12)-

(14) takes the form }{} ,{,1,0;|)()( rljjtct j j �����
, where the coefficients c 

satisfy 

11,0000 ciVciEc ����         (15) �	�			

r rrl ll cVicViciVciEc ,1,100,1111

�
     (16) 

11, ciVciEc llll ���         (17) 

11, ciVciEc rrrr ����         (18) 

In analogy to Eqs. (8) and (9) we study instead a set that would lead to a steady state at 

long time 

 000 ciEc ���          (19) 

 �������
r rrl ll cVicViciVciEc ,1,100,1111

�
     (20) 

 lllll cciVciEc )2/(11, ������       (21) 

rrrrr cciVciEc )2/(11, �����       (22) 

Note that while Eq. (15) is just one of equations (17) (since the incident state belongs to 

the manifold { ! } ), in Eq. (19) this state is given a special status as the one that drives 

the system (see also discussion at the end of this section). As t "$#  all coefficients c 

oscillate with this driving frequency 

 rljeCtc tiE
jj ,,1,0;)( 0 %% &       (23) 

using this in (20)-(22)leads to 

)()2/1()()(

)(
2/

010101

101,1
0

11,

EiEE

CEiCVi
iEE

CV
C

RRR

R
r

rr
r

r
r '()*+

+(,(-((
(* ./    (24) 

and similar equation for C0  and 12
l

llCVi ,1 . Using these results in (20) yields 

)()2/(
~

0110

00,1
1

EiEE

CV
C 3456        (25) 

where )()()( 010101 EEE RL 78797  and where )()(
~

010111 EEEE LR :;:;<  is the 

shifted resonance energy. Using (25) in the expression for Cr in (24) we get 

= > ? @
2

01

2

01

2
0

2
0,1

22
0

2
1,22

2/)(
~

||||
   

)2/()(

||
||||

EEE

cV

EE

V
Cc

r

r
rr ABCBCDD E   (26) 
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for the population of the r state with energy Er in the right continuous manifold. The 

steady-state flux to the right out of this level is given by 2|| rc�  and the corresponding 

rate rk �0  is obtained by dividing by 2
0 || c . In the limit ��� 0 this becomes 

        � � � �
2

01
2

01

2
0,1

0
2

,10
2/)(

~
||

  )(||2 
EEE

V
-EEVk rrr 	
�� ��    (27) 

while the total rate to the right is 

 � � � �
2

01
2

01

2
0,1

01R0
2/)(

~
||

  )( 
EEE

V
Ekk r rR ���

�����     (28) 

Similar expressions (e.g. � 1L replaces � 1R in (28)) are obtained for the leftward flux. 

The energy conservation implied by the delta-function in Eq. (27) is to be expected in 

the present case where no thermal dissipation is taking place. These expressions may be 

rewritten in symmetric forms more closely related to scattering theory. The rate into the 

right manifold per unit final energy is[7] 

� � � � )(
2/)(

~
||

 )()()( 02
01

2
01

2
0,1

100 EE
EEE

V
EEEkEk R

r
rrR � !�

 "# �$ %% && (29) 

on the other hand, this rate is related to the transmission coefficient '   by 

),()( 0
0

0 EE
mL

q
Ek R ()*        (30) 

where q0 is the incident carrier momentum, m - the carrier mass and where L is the 

normalization length. In terms of the 1-dimensional density of states(8) 

)2/()( 00 qLmEL +, -  this implies 

 . / 0 1 )(
2/)(

~
)()(

 )()(2),( 02
01

2

01

0101
000 EE

EEE

EE
EkEEE RL

RLel 2342
3355 6 78:9;

 (31) 

(The subscript "el" is used to denote the elastic character of the transmission process) 

The expression multiplying the delta function corresponds to the usual definition of 

transmission coefficient at energy E0 is  

 < = > ?
2

01

2

01

0101
00

2/)(
~

)()(
),()(

EEE

EE
EEdEE RL

elel @AB
@@CCED FF     (32) 

 Note that all the damping and shift terms in Eqs. (27)-(32) are evaluated at 

E=E0. A common approximation to the solution of Eqs. (19)-(22) is obtained by 

accounting for the interaction between level |1> and the }{ l  and }{ r  manifolds by 
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replacing the sums in Eq. (16) by appropriate damping and shift terms computed at 

E=E1. Eq. (20) is then replaced by 

 � � 1111100,1111 )()()2/1(
~

cEEciVcEic RL ��������     (33) 

When used in conjunction with tiEeCc 0
11 ��  (c.f. Eq. (23) this leads to an equation 

similar to (25), except that 	 1(E0) and 
 1(E0) are replaced by 	 1(E1) and 
 1(E1). This in 

turn leads to equations similar to (27)-(32) with similar substitutions. It is seen that this 

provides a good approximation only in resonant cases ( 10 EE � ) and in Markovian 

situations where 	  and 
  do not depend on E 

The generalization of this result to the case of N intermediate levels (Fig. 2c) 

follows the same steps. The Hamiltonian, Eqs. (12)-(14) is now  

 VHH �
0           

 � ����� ����� �������� �� r
r

l
l

N

n
n r||rEl||lEnnEEH     |||00|

01
00   (34) 

� �
� � � ���� ��������� ��������

��� ����������� ��� 
!!

" !! !
r

N

n
rnnr

N

n
nn

l

N

n
lnnl

N

n

N

n
nn

r||nVn||rV |nVn||V

 l||nVn||lV|n|nVV

1
,,

1
0,,0

0 1
,,

1 1'
',

|00

'

 (35) 

 

where the coupling scheme is taken to be general, not necessarily nearest neighbor. The 

equations of motion equivalent to (20)-(22) are 

 #$#$#$$$% &&
r

rrn
l

lln
nn

nnnnnnn cVicVicViciVciEc ,
0

,
'

'',00,
'

   (36) 

 rljcciVciEc j

N

n
nnjjjj ,;)2/(

1
, ()*))( + ,-

    (37) 

 Going to steady state, as before, and eliminating the { . }  and { r}  manifolds from Eq. 

(36) using the same procedure as in (24), we get );( 00,
0 EEEecC nn
tiE

nn /00  132414445 6
'

'0',
'

'',00,0, )(0
n

nnn
nn

nnnnnn CEiCViCiVCiE    (38) 

where the self-energy matrix 7  is 

 
RLJEiE

iEE

VV
E

EEE

j

J
nn

J
nn

j

njjnJ
nn

R
nn

L
nnnn

,;)(
2

1
)(

2/
)(

)()()(

)(
',

)(
',

',,)(
',

0
)(
',0

)(
',0', 89:;8<:

8=
=<=8=

> ?   (39) 

Defining the vectors 
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 ����
�

����
������

�
����
��

0,

0,1

0

1

;

NN V

V

C

C ��
VC        (40) 

and the effective Hamiltonian matrix in the subspace of intermediate states 1...N 

 ',',',
)(
', nnnnnnn

N
nn VEH �		
 �        (41) 

equations (38) can be recast in the form 

 
�  � 

00
1)(

000
)(

0 CECE NN VHCVCH ������    (42) 

Eq. (42) gives the steady state amplitudes for all intermediate states { n} =1...N. The 

steady state rate is obtained from 2
0

2
0 ||/|| CCk rr ���  where tiE

rr ecC 0� is obtained 

from the steady state version of (37). This leads to 

 
2

'
0'',,0

02
,2

0
22

0
0

)(2

||
||

1

)2/()( ����
�� ���

��� ��
n n

n
N

nnnrr

n
nnr

r
r

VGVEE

CV
CEE

k

� �
!! "

   (43) 

Repeating the steps that lead from Eq. (27) to (31) we now get 

# $ # $
)()()()(

0,
)()()()(

0

000

)()(

)()(2),(

RNLN
N

n
nn

RNLN

r
rrLel

GGTrEEGGEE

EEkEEE %%&'%%&' &' (()*
*

++
+,.-/

 (44) 

So that the transmission coefficient is 

 0 1)()()()()( 0
)(

0
)(

0
)(

0
)(

0 EEGEEGTrE RNLN
Nel 223 45

   (45) 

in agreement with results obtained from standard scattering theory. We note in passing 

that if the { l}  and { r}  manifolds correspond to metal electrodes on the two sides of a 

molecular constriction represented by the states { n} , the corresponding conduction at 

zero bias is given by the Landauer formula[9,10] 

 )(
2

Fel E
e

g 6789          (46) 

where EF is the Fermi energy. 

Up to this point our discussion may be regarded as a reformulation of scattering 

theory. This reformulation has the important attribute that it is not restricted to use 

wavefunctions that satisfy the usual incoming and outgoing boundary conditions. 

Rather, any chosen state may be taken to drive the system and the consequences of this 
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driving may be studied. The need to reformulate scattering theory in this language arises 

from the nature of some applications, e.g. current in a metal-insulator-metal junction, 

where, in the weak coupling limit, representing a process in terms of 'left' and 'right' 

manifolds of standing wave states is natural.[11] This requires, as already noted, 

exercising some caution in distinguishing between the driving state and the manifold of 

states it belongs to. In the application described above, even though the state 
�0| formally belongs to the manifold }{ l , it has a special status as the state that drives 

the system into a non-equilibrium steady state. Any error due to double counting in 

sums over states of this manifold is negligible due to the huge number of such states. 

 

 

3. Steady state quantum mechanics of thermally relaxing systems 

 The effect of thermal dephasing and relaxation on the dynamics of a quantum 

system may be studied using a suitable density matrix formalism. Here we focus on 

scattering processes in which the scattering particle interacts with the thermal 

environment of the target. Raman scattering from molecules in solution and electron 

tunneling in metal-insulator-metal junctions where the metal electrons are modeled as 

free particles, are example of such processes.  

It is useful to see first how steady state phenomena are described within the 

density matrix framework in athermal situations. To this end consider again the system 

represented by the Hamiltonian (12)-(14). A set of dynamical equations equivalent to 

(15)-(18) may be written for elements of the density matrix, ji,
� . Formally they can be 

derived from (15)-(18) or from the Liouville equation  

 
� ���

,Hi
dt

d ��          (47) 

supplemented by the damping ( � ) terms. This leads to 

1,00,10,11,00,0 ��� iViV 	
��
       (48) 

�����
j

jjViiViE ,01,0,01,11,01,01,01,0 )( ����� �     (49) 

jjjjjj iViViE ,01,0,1,11,0,0,0,0 2/ ������ ������
    (50) 

�������
j

jj
j

jj ViViiViV ,11,1,,10,11,01,00,11,1 ����� �    (51) 

jj
j

jjjjjjj iVViiViE ,11,1,1
'

,'',1,00,1,1,1,1 2/ � ����� !"#!!!$%
  (52) 

jjjjjjjjjjjj iViViE ,'1,',1,11,',',',' &(''''' )*))+,
    (53) 
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Where ���� EEE ��
, . j' and j denote states from the }{ l  or }{ r  manifolds and the 

sums are over both manifolds. For any pair of indices ��� , the equation of motion for 
�	��
 �  is the complex conjugates of that for �� ,

� . 
 Within this Liouville formalism, what are the steady state equations that 

correspond to (19)-(22)? Recalling that the system is driven by the state �0|  and that at 

steady state all the amplitudes satisfy Eq. (23), imply that all � I,j are constants at steady 

state. This may suggests that a proper set of steady state equations is obtained from (48)

-(53) by (a) replacing Eq. (48) by � 0,0=constant and by setting all � �  on the left side of 

Eqs. (49)-(53) to zero. The resulting set of equations indeed describes a quantum 

mechanical steady state driven by a maintained constant population in state �0| . This 

is however not equivalent to the steady state described by Eqs. (19)-(22), which is 

driven by the fixed amplitude and phase of state  �0|  (c.f. Eq. (23)).  This can be easily 

realized by using Eqs. (19)-(22) together with *
, jiji cc��  to derive the following set of 

steady state equations 

 constant00 ��         (54) 

 ������
j

jjViiViE ,01,0,01,01,01,01,0 0 ���� �      (55) 

 jjjjj iViE ,01,0,1,0,0,0 )2/(0 ����� � �!!"
    (56) 

 #$#%$%&&
j

jj
j

jj ViViiViV ,11,1,,10,11,01,00,11,1 0 ''''' (    (57) 

 jj
j

jjjjjjj iVViiViE ,11,1,1
'

,'',1,00,1,1,1,1 )2/(0 )*))))) +,-+++../
 (58) 

 jjjjjjjjjjjj iViViE ,'1,',1,11,',',',' 0 0211111 3433556
   (59) 

Comparing to Eqs. (49)-(53) reveals that two terms, 1,11,0 7iV  from the RHS of Eq. (49) 

and jiV ,11,0 8  from the RHS of Eq. (50), are absent in Eqs. (55) and (56). Since 

equations (54)-(59) are equivalent to Eqs. (19)-(22) they would lead to the same results, 

e.g., Eqs. (27) and (28) as above. See also Appendix B. 

 It may seem peculiar that the set of equations (48)-(53), a formally rigorous 

representation of the Liouville equation (47) has to be replaced by the set (54)-(59) in 

which particular terms are missing. We should keep in mind however that we are 

dealing with a reformulation of scattering theory where states |0> and { |j>}  are 

normalized in an infinite volume. Therefore all matrix elements V0,1 or V1,j scale like 

2/19:
, where ;<=

 is the normalization volume. Therefore, in evaluating 
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transmission coefficients as in Eqs. (44)-(45) only terms of two kinds survive: either 

coupling of intermediate (bridge) states (here |1>) to the continuous manifolds that 

appear in damping and shift terms, e.g. JjV �2
,1 || , or coupling of the driving state |0> to 

an intermediate state, that appear in the influx term )(|| 0
2

0,1 EV � . Both combinations 

are independent of � . The terms discarded in Eqs. (54)-(59) are those that contribute 

terms like 2;|| 0,1 ��� �VL  that vanish in the limit �	��
 .[12] 

 Next consider a thermal system described by the Hamiltonian 

 FHH B ���
         (60) 

where H is the Hamiltonian (12)-(14) that corresponds to the generic model for 

resonance scattering of Fig. 2b, HB is thermal bath Hamiltonian and F – a system-bath 

coupling, here taken to be coupled diagonally to the resonance state �1|  

 |11|11 ���� FF .        (61) 

The exact form of F is not important, but in the present discussion we will assume that 

this coupling to the thermal environment is weak.(13) This coupling is characterized by 

its correlation function, whose Fourier transform satisfies the detailed balance relation 

� �
1

11111111 ;)()0()0()( �
�
��

�
��

�� ���� �� TktFFdteeFtFdte B
titi ����� �

 (62) 

where T is the temperature and kB   the Boltzmann constant. For specificity we will 

sometime use 

 ! "c
c

tFtF ##
$

/||exp
2

)0()( 1111 %&(')       (63) 

which becomes )(t*,+  in the Markovian, - c. 0, limit. 

 We write the Liouville equation / 011 ,
2

i345  in the form

 ]~,
~

[]~,[~ 666 FiHi 7789         (64) 

where we have applied the transformation tiHtiH BB ee :;< === ~ ; 

tiHtiH BB FeeFF >?@ ~
, and where the two terms on the RHS of (64) correspond to 

'deterministic' and 'thermal' contributions. In what follows we omit the tilde sign above 

the operators, keeping in mind that the following equations are written for the 

transformed operators. Our ultimate goal is to obtain the evolution of the reduced 

system's density matrix AB
BTrC . In other words, we want to find the steady state in 
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the �  subspace that is determined by the same boundary conditions as in Eqs. (19)-(22) 

that led to Eqs. (54)-(59) in the athermal case.  

It is easy to see that in the corresponding steady state equations the deterministic 

part of Eq. (64) leads again to Eqs. (54)-(59). These should be supplemented by terms 

arising from the interaction with the thermal bath, leading to 

constant00
��          (65) 

1,0,01,0,01,01,01,01,0 ],[0 ����� FiViiViE
j

jj �
���

����
    (66) 

jjjjjj FiiViE ,0,01,0,1,0,0,0 ],[)2/(0 		
			 �����
    (67) 

1,1,11,1,,10,11,01,00,11,1 ],[0 ������ FiViViiViV
j

jj
j

jj �
���

�
�

����
   (68) 

jjj
j

jjjjjjj FiiVViiViE ,1,11,1,1
'

,'',1,00,1,1,1,1 ],[)2/(0 �������� ����������
 (69) 

jjjjjjjjjjjj iViViE ,'1,',1,11,',',',' 0 ������� � ��!!"
    (70) 

where, as before, the index j corresponds to both the left and the right manifolds.  

Next we make a simplifying approximation by assuming that thermal 

interactions can be disregarded in the evolution of matrix elements of #  that involve the 

continuous manifolds }{ j . This implies that the commutators involving F in Eqs. (67) 

and (69) are neglected. (The absence of such a term in (70) is a consequence of the form 

(61) of F). The rational for making this approximation is based on the expectation that 

because our thermal interactions are localized in the subspace of intermediate (bridge) 

states (here |1>), disregarding them in Eqs. (67) and (69) should not affect the dynamics 

in the continuum, while the effect on the bridge dynamics should be weak in the weak 

coupling limit used below (see also Sect. 5). 

This in turn also implies that the procedure for replacing the sum over the { j}  

states (i.e. over the left and right manifolds) by damping terms can be done as if the 

thermal interactions were absent. This is an important technical detail, because it makes 

it possible to carry out this reduction procedure in the amplitude representation, starting 

from Eqs. (19)-(22), then use the reduced amplitude equations to evaluate the 

corresponding equations for the density matrix; see Appendix B. The resulting steady-

state equations are 
$ %

1,01,010,01,01,0101,0 ],[
2

1~
0 &&&&& FiiVEEi '(')''**+

   (71) 

1,11110,11,01,00,11,1 ],[0 ,,,,, FiiViV -.-/-001
    (72) 
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jjjjj iVEEi ,01,0,1,00,0 )2/()(0 ����� �������
    (73)

 jjjjjj iViVEEi ,111,1,1,00,1,11,1 2

1
)

~
(0 ����� ��	���

�

   (74) 

jjjjjjjjjjjj iViVEEi ,'1,',1,11,','',' )(0 �� ��������
   (75) 

where )( 011 E
���

  and where )(
~

0111 EEE ���  are defined above and in Appendix B. 

In Eq. (74) we took  ���� � .

The following points are notable: First, in the absence of thermal interactions, 

i.e. when the commutators involving F are absent in Eqs. (71) and (72), Eqs. (71)-(75) 

lead to (see Appendix B) the steady state result 

 � �
2

1
2

01

0,0
2

0,1
0j

2
,1,

)2/(
~

||
  )(||2 �� !

EE

V
-EEV jjj "#$%

"     (76) 

This will yield, e.g., Eq. (27) if applied to j & R (i.e., a state of the right manifold). 

Secondly, under our approximations, the two equations (71) and (72) that, 

together with the boundary condition ' 00=constant, describe a steady state in a damped 

and thermally relaxing two-level system, can be solved independently from Eqs. (73)-

(75).  

Third, the latter equations can be used to obtain a complete description of the 

scattering process: as before (*) j,j, which depends on the incident energy E0, the 

resonance energy E1 and the scattered energy Ej, is the steady state flux out of, hence 

also into, the final state j. This is a transmission flux for }{ rj +  and a reflection flux for 

}{ lj , . In the athermal situation (Eq. (76)) )(~ 0 jjj EE -./�0 1  This is no longer true in 

the thermal case.  

 For simplicity we will disregard in what follows the energy dependence of the 

functions 2436587:9 and D1(E) 1 Also, for simplicity of notation we will disregard the tilde 

above E1, keeping in mind that E1 represents the shifted resonance energy. Consider 

first Eqs. (73)-(75). Since these equations do not involve interaction with the heat bath, 

taking a trace over the bath states simply amounts to replacing ;  by <  everywhere in 

these equations. We focus on transitions into the 'right' manifold (e.g. in a metal-

insulator-metal junction we study transfer from a particular level =0|  on the metal on 

the left to the manifold of levels on the right). Eliminating < 0r using Eq. (73) yields 

 )Im(2 ,11,, rrrr V >? > @         (77) 
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  (78) 

where mnmn EEE �
, .  

To obtain ��� r,r we need to get � 0,1 and � 1,1 from Eqs. (71) and (72). Before 

imposing 0�� �  these equations describe the time evolution of a damped two-level 

system interacting with a heat bath; the corresponding Liouville equation is 

 � ����� |,11| 
2

],[],[ 1
0 ��������� FiVHi

�
     (79) 

where from here on we use 0H  to denote the zero order Hamiltonian in the 'system' 

subspace  

           |11||00| 100 �! "�! # EEH                 (80) 

and  

 |01||10| 0,11,0 $�%&$�%' VVV       (81) (  is the density operator in the system-bath space and [,] and { ,}  denote commutator and 

anticommutator respectively. To obtain the time evolution in the system subspace we 

follow the procedure of Ref.[4], which relies on the Redfield approximation.[14-16] 

This implies the assumption of weak coupling between the system and its thermal 

environment. As discussed in Ref.[4], this approximation can be invoked only in the 

representation that diagonalizes the effective system's Hamiltonian 

|11|)2/( 10 )�*+,-. iVHH eff . The procedure therefore includes transformation to the 

representation which diagonalizes this Hamiltonian, following the Redfield procedure in 

this representation then transforming back to the representation defined in terms of 

states /0| and 01| . It yields[4] 1 2
1,0',;

2

1
],[0

1

0

1

0
,,,',',1,'1,1

'
',0',

1 2

2121 344564633 7879:9 nnRVHi
n n

nnnnnnnnnnnnnn ;;<<;;>=  

 (82) 

where the prime on the commutator denotes that it has been modified by eliminating the 

terms incompatible with a steady-state driven by state ?0|  as discussed above, and 

where the tetradic elements 
4321 ,,, nnnnR  may be expressed in terms of the correlation 

function @A )0()( 1111 FtF . Solving (82) for the steady state defined by a fixed B
0,0 finally yields the steady-state values of C 0,1, C 1,0 and C 1,1; see Appendix C for more 

details. 
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 Having obtained explicit expressions for C 0,1 and C 11, Eqs. (77) and (78) can be 

used to obtain C 1,r and C rr . From these we get the energy resolved flux (or steady state 

rate) 0,0,0 / �� � rrrk ��  and the total flux �� ��
r rR kk 00 into the right manifold. 

Numerical results for these observables are shown below. The analytical expressions are 

very cumbersome, but can be simplified in the limit where the energy gap, E1-E0 is 

much larger than all other energy parameters in the system, i.e., E1-E0 »|V1,0|, � , � 1 ( 	  is 

defined in Eq. (63)). In this limit we get 


 �  
2/)(

||
||)(2

)2/()(

||
2

1
2

1

)(2
,12

,102
1

2
01

2
1,0

0

01 ��
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���� ��������� ���
r

EE
r

rrr
EE

eV
VEE

EE

V
k

�����  (83) 

and 

  1
)2/()(

|| )(

1
2

1
2

01

1
2

1,0
0

01 ��
� !" #$#$%

#
& ''( EER

R e
EE

V
k )*

    (84) 

We can also repeat the procedure of Eqs. (29)-(32) to find an expression for the 

transmission coefficient: + , + ,
 

2/)(

2/
)()(),(

2
1

2
1

)(

000

01 -.
/012 345456 77

EE

e
EEEEE

EE

el

89:;<<    (85) 

and 

  1)(),()( )(

1
000

01 =>
?@AB CDEE FFG

EE
el eEEEdEE HIJJJ

    (86) 

where, as before (c.f. Eq. (32)) 

 K L K L
2

01
2

01

11
0

2/)(
)(

EEE
E RL

el MNO
MMPQ

      (87) 

 

These results show clearly the coherent and the incoherent-activated components of the 

flux and the transmission. We note that similar results, but without the temperature 

dependent exponential, were obtained previously for the use of a similar model for 

resonance Raman scattering.[5] The erroneous absence of this term can be traced to the 

improper use of the Redfield approximation in a basis set that does not diagonalize the 

system's Hamiltonian, as explained above and in Reference [4] 

 Consider again the use of this system as a model for a molecular conductor 

bridging between two metal contacts. In the absence of thermal relaxation the 

conduction of the resulting junction is given by the Landauer formula (46). Here the 
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issue is more complex because the transmitted electron can carry energy different from 

E0. A generalization of Eq. (46) for the present situation can be obtained in the weak 

metal-bridge coupling limit where the current can be written in the form(17) 

� � � �
0 0 0 0

0 0

( , ) ( ) 1 ( ) ( ) 1 (
e

I dE dE E E f E f E e f E e f E�
� � � �� � �
	 � ��	 �� � � ��    (88) 

where f(E) is the Fermi Dirac distribution and �  is the potential drop between the right 

and left electrodes. For small bias and low enough temperature (so that 

( ) ~ ( ) ( )Ff E e f E e E E
��
� ��� � ) this leads to 

 � � 1 0

2
( )

0 0 1
1

( ) ( ) 1 1 ( ) E E
el

I e
g E E f E e ��

� � �
� �� �  !" #$ %& '(*)    (89) 

While this result was obtained for a simple model of a single state bridge in the weak 

coupling limit, its structure is characteristic, displaying an elastic tunneling and 

thermally activated components. 

  

4. Flux through an N-site br idge 

 The steady state density matrix formalism described in the previous section is 

easily formulated also for more general situations. As an example we outline here the 

generalization of the model discussed above (transmission through one intermediate 

state to a model for transmission through N intermediate levels, Fig. 2c. We will 

continue to use the language corresponding to transport of non-interacting electrons 

through a simple molecular bridge connecting two simple metal electrodes. The metal 

electrodes are represented by the continuous manifolds of states }{ | +, lL  and 

}{ | -. rR . The molecular bridge now consists of N states, Nnn ,...,2,1;}{ | /0 . The 

Hamiltonian is 

 CMCBM  H  HF  HHH 11112       (90) 

where, as before FH B 3 represent the thermal environment and its coupling to the 

electronic system, HM is the bridge Hamiltonian 

44 5
6 776 8:9;;;8:9<8:9<

;<
1

1
,11,

1
0

0

|1||1|     ;     ||
N

n
nnnn

N

n
n

M

nnVnnVVnnEH

VHH

 (91) 

HC is the Hamiltonian for the metal electrodes, our scattering continua 

 = >@?A= >@?B
r

r
l

lC r||rEl||lEH        (92) 
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and HCM is the electrode - molecule coupling 

 
r|  |N  VN|  |rVVl||  V|  |lVV

VVH

rNNrrlll

r
r

l
lCM � ��� ��� ��� ��

����
,,,11,                11

(93) 

Note that in (91) and (93) we assume nearest neighbor coupling, and in particular the 

metal states are taken to be coupled only to the nearest molecular states, 1 and N. The 

molecule-thermal bath coupling is assumed to be of the form 

 ��� �
	� N

n
nn nnFF

1
, ||         (94) 

where the bath operators Fn,n are characterized by their average and correlation 

functions. For the present model we take 0, ���
nnF and ',',', )()()0( nnnnnn tCtFF ����� , 

where ��  detotes here equilibrium thermal average. As in Eq. (63) we sometimes use 

)/||exp()2()( 1
cc ttC ��� �� � . 

Our problem is again to compute the steady-state flux into a right-continuum 

level �r| , given that the system is driven by state �0| , a representative state of the L 

manifold. To this end we consider the Liouville equation 

 ],[],[ ��� FiHHHi CMCM ���� !      (95) 

where, without changing notation, F and "  now denote the transformed operators, 

)exp()exp()( tiHFtiHtF BB #$  and )exp()exp()( tiHtiHt BB %& '' . In (95) the first 

commutator corresponds to the deterministic part of the time evolution and the second – 

to the thermal part. In analogy with the development of Section 3, the deterministic part 

of the equations should be modified when applied to a steady state driven by (0| .[12] 

In fact, this part is most straightforwardly derived from the amplitude equations 

(analogs of (19)-(22)) 

 000 ciEc )*+
         (96) 

 ,----. /
0

,122,100,1111
l

llcViciVciVciEc0      (97) 

 1,...,2;11,11, 121112 3344 NnciVciVciEc nnnnnnnnn
5

   (98) 

 67778 99
r rrNNNNNNN cViciVciEc ,11,

:
     (99) 

 lllll cciVciEc )2/(11, ;<<<=>
      (100) 

rNNrrrr cciVciEc )2/(, ?@@@AB
      (101) 
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using the procedure described in Appendix B. For the thermal part, we assume (as in 

Eqs. (71)-(75)) that it can be omitted from all equations for density matrix elements 

involving �  or r states. The resulting equations for the time evolution of the density 

matrix are 

constant00 ��          (102) 

� �
nnNnRnL

nnnnnnnnn

Fi

iViViE

,0,0,1,

1,0,11,0,1,0,0,0

],[)2/()2/(

0 ����
����

��	��
		�

 ����

   (103) 

� �
',1'1',',1'1',',11,',11,',',', 0 nnnnnnnnnnnnnnnnnnnnnn VVVViiE �������� ������� ������ �  

',',,',',1,'1, ],[))(2/())(2/( nnnnNnNnRnnnnL Fi ������� �������
 (104) 

rNrNrrr iViE ,0,0,,0,0,0 )2/(0 ����� ���  !
     (105) 

" #
rnNnRnLNnrN

rnnnrnnnrnrnrn

iV

iViViE

,,1,,,

,11,,11,,,,

)2/()2/(

0 $%%$ $$$$
&'&(' ((()) **++,

   (106) 

rrNrrNrNNrrr iViV ,,,,,, 0 -/.... 010223
      (107) 

where 4 567
l llL EEV )(||2 0

2
,1 89  and : ;<=

r rrNR EEV )(||2 0
2

, >? . Associated with 

these are energy shifts of states 1 and N that were absorbed into E1 and EN. As before 

we will disregard the energy dependence of these widths and shifts. Note that equations 

similar to (105) - (107) exist also for elements involving the L manifold, however in 

what follows we focus on transmission into the R manifold. 

The following steps are identical to those taken to solve Eqs. (71)-(75). Again 

we note that these equations are grouped so that (102)-(104) describe a pumped (by the 

driving state @0| ) and damped thermally relaxing N level system, while (105)-(107) do 

not depend on the interaction with the heat bath. Consider first Eqs. (102)-(104). They 

are solved by carrying out the same reduction procedure (transforming to a 

representation in which the effective system's Hamiltonian is diagonal, following the 

Redfield procedure modified for steady-state and transforming back to the local, site 

state, representation) as described in Section 3 and in Appendix C. The final result is an 

equation similar to (82) 

)0'(...0',
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1
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1
],[0

0 0
,,,',',1,'1,,',
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where again the primed commutator is modified to satisfy the steady state 

restrictions[19] and where the tetradic elements 
4321 ,,, nnnnR  are linear combinations of 

Fourier and Fourier-Laplace transforms of the correlation functions �� )0()( ,, nnnn FtF  

(explicit expressions are given in Ref.[4]). Eqs. (108) (with � 0,0=constant) constitute a 

set of linear equations for the elements � n,n' of the reduced molecular density matrix, 

and in particular will yield explicit expressions for the elements � n,N , n=0...N that are 

needed below. 

Turning now to Eqs. (105)-(107), we note that they do not depend on the 

interaction with the heat bath, and can therefore be converted into equations for �  by 

tracing over the bath. In particular, taking this trace in Eqs. (105) and (106) leads to 

equations for �  elements that can be put into the form  

xyA ��          (109) 

where x and y are the vectors 
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and A is the matrix  
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           (111) 

In (111) the element marked 0
*
 is a zero that replaces a term 1,0iV�  in the original 

Liouville equation[12] (see also discussion below Eq. (59)). Solving for y and using 

(107) in the form )Im(2 ,, rNNrrr V  !  "  yields an expression for #%$ r,r in terms of the 

elements $ n,N , n=0,1,...,N , that were obtained before. This provides a straightforward 

numerical procedure for evaluating &%$ r,r, i.e., the energy resolved flux transmitted into 

the right manifold, i.e. into the right electrode.  
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 Examples of results predicted by this model (see Fig. 2c) for transmission 

through a thermally relaxing bridge are shown in Figures 3-5. Fig. 3 depicts the energy 

resolved transmission probability, � (E0,E) for electrons incident with energy E0 at 

several temperatures. The following model parameters were used: N=3, � E=En,0=En-

E0=3000cm-1, (n=1...3), Vn,n+1=200cm-1, � L=� R=160cm1 � c=0 and � =10cm-1. The 

transmitted flux plotted against E � E0 is seen to consist of two components: elastic 

tunneling at energy E=E0 and activated tunneling in an energy range corresponding to 

the bridge states. To avoid numerical problems, the displayed results were obtained at 

finite resolution by using � =10cm-1.  

 Obviously, the tunneling and activated components seen in Fig. 4 should depend 

differently on system parameters. To see this we have used the corresponding quantities 

� t  and � a obtained numerically as integrals over the corresponding peaks in Fig. 3. 

Figure 4 shows the dependence of these components as well as the overall transmission 

probability � (E0)=� t(E0)+ � a(E0) on temperature, using the same system's parameters as 

above. Figure 5 shows their behavior as functions of the bridge length N. It is seen that 

the tunneling component is temperature independent and decreases exponentially with 

increasing bridge length, while the activated component does not depend (in the range 

displayed) on the bridge length, and depends exponentially on the inverse temperature. 

The overall transmission probability shows the characteristic temperature and bridge 

length dependence already studied in Ref. [4]. In particular the apparent insensitivity of 

the activated component to bridge length holds only at the intermediate length regime, 

and actually reflects a dependence on N of the form 
� �

1
21 	


 N��  with 21 ���� [4]. It 

is also important to note that the insensitivity of the tunneling component to temperature 

is a property of the present model, appropriate for the weak thermal coupling case. 

(This roughly corresponds to the situation where either the energy gap, |E0,1|, or the 

'bandwidth' characterized by Vn,n+1 are much larger than level broadening due to thermal 

interactions). In the opposite limit we find[6] that destruction of coherence due to 

thermal interactions affects the tunneling probability in a way that depends on 

temperature.  

 For fixed system parameters, the relative importance of the coherent and 

incoherent transmission components changes with the distance from resonance. Both 

time and energy scale considerations suggest that as the energy gap � E becomes smaller 
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the relative importance of the incoherent component increases. This is indeed seen in 

Fig. 6 that shows the relative magnitudes of these components as functions of � E. It 

should be emphasized that close to resonance it is no longer possible to represent the 

overall transmission as an additive combinations of coherent and incoherent 

contributions. 
 

5. Summary and conclusions 

 In this paper we have developed frameworks for the description of steady states 

of open quantum mechanical systems. In the absence of thermal relaxation the 

developed formalism provides a reformulation of standard time independent scattering 

theory that is more flexible in the way in which the state that drives the system (the 

equivalent of the incoming wave in the standard formalism) is defined. When thermal 

interactions are included in the target model the theory yields a description of the 

scattering process in Liouville space yielding a scattered flux that includes a thermal 

incoherent component. We have used this approach in conjunction with the Redfield 

approximation to study tunneling through a metal-molecule-metal junction, including 

thermal relaxation and dephasing in the molecular component. We have found that zero 

bias conduction through such junctions involves both tunneling and activated 

components. This leads to a generalization of the Landauer formula of conduction to 

situations involving thermal interactions. The coherent tunneling and the incoherent 

activated components depend differently on the temperature, the barrier height and the 

molecular chain length. 

 These results capture the essential phenomenology of molecular conduction in 

the linear (ohmic) regime in the presence of thermal interactions. We should keep in 

mind that the simplifications used in constructing and analyzing Eqs. (102)-(107) (or 

(71)-(75)). These were the neglect of thermal interactions in all equations for density 

matrix elements involving states of the continuous manifolds (see paragraph below Eq. 

(70)) and the use of the Redfield approximation that limits the validity of our result to 

the weak thermal coupling limit. In particular, as noted in the previous section, the 

apparent insensitivity of the coherent part of the transmission to the thermal interactions 

holds (approximately) only in this limit. These issues will be discussed further in a 

subsequent publication. 
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Appendix A 

It is important to keep in mind that a "steady state" in an open system is not 

unique and depends on the choice of the boundary system. (In the general case of non-

linear equations even this does not guarantee uniqueness, but in our quantum 

mechanical applications the equations are linear so this will not be a point of concern). 

One should choose these boundary conditions so as to correspond to the physical 

realization that we want to describe. Suppose for example that Eq. (1), written explicitly 

as } )({ jjj CFC �

�

, represents a master equation that describes a transition from an 

initial state 0 to a final state N+1 through a state of intermediate states n=1,2,...N. The 

variables { Cj} , j=0,1,...N+1 may represent densities or probabilities. The N steady state 

equations NjCCF jj ,...,1,0)} ;({ 0
�� , obtained by replacing the equation for 0C

�

 by 

the boundary condition constant0
�C and the equation for 1�

NC
�

 by 01
��NC , can be 

used to obtain the corresponding steady state values of C1,...,CN. The steady state flux, 

Jss, can then be obtained as the rate at which population flows into (and out of) CN+1 and 

the corresponding steady state rate is Jss/C0. This or an equivalent procedure is often 

used to evaluate asymptotic (i.e. long time) decay rates of transient processes, provided 

that conditions for an early formation of a quasi steady-state situation are satisfied. (See 

Ref. [4] for a more detailed discussion of this point). 

 In the quantum mechanical examples discussed in Sect. 2 an analogous approach 

is taken, however it differs from the procedure just described in two important aspects. 

First, the variables C are quantum mechanical amplitudes, and do not describe 

completely the initial state. Therefore, the 'boundary condition' C0=constant is 

supplemented by the term )exp( 0tiE	 , see e.g. Eq. (8), that set the energy scale of the 

process studied. Second, while in many applications a continuum of states represent a 

bath whose state is not specified explicitly, in other situations a knowledge of the flux 

into a specific final state of a continuum is needed; for example in an experiment that 

monitors the final energy of an emitted photon or a scattered free particle. In the latter 

case each energy state of the continuum should be considered as a part of the system (in 

the classical analogy - as part of the N-state system discussed above) and the sink is 

introduced artificially by adding a small imaginary part to the corresponding energy, see 

e.g. Eq. (9). (The details of this imaginary addition do not affect the final result; it just 
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serves to set the correct directionality of the process in much the same as a similar term 

is used in the Green's function of scattering theory).   

Again, it should be emphasized that one could investigate in principle other 

steady states, for example a process where |C0| is given but the energy is not or 

processes where other Cj 's are restricted in some ways - if a relevant physical case 

could be identified. The particular procedure used in Section 2 is set so that state 0 plays 

the part of an incoming state, while { j}  is a manifold of outgoing states. Indeed we find 

in Section 2 that this approach reproduces basic results of scattering theory.  

 

Appendix B 

 Here we show that the density matrix equations (54)-(59), or Eqs. (71)-(75) 

without the terms involving F lead to Eq. (76). First we show that Eqs. (71)-(75) are 

consistent with the amplitude equations. The latter are (cf. Eqs. (19)-(22) with { j}  

standing for both { r}  and {
�
}  manifolds) 

 000 ciEc ���
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j jjcViciVciEc ,100,1111
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 jjjjj cciVciEc )2/(11, �			
�
      (114) 

At steady state (Eq.(23)) Eq. (114) becomes 

 0)2/()( 11,0 �
jjjj cciVcEEi �       (115) 

Inserting cj from (115) into (113) and using Eq. (24) yields 

 1100,1111 )2/1(
~
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where )()()(||2)( 01010
2

1011 EEEEVE RLj jj ����� ����� ��  and where 
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~

0111 EEE ���  and � �� 
j jj EEVPPE )/(||)( 0

2
101 )()( 0101 EE RL !"!# . (PP 

stands for Principal Part). Using *
, jiji cc$%  and focusing on steady state this yields 
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jjjjjjjjjjjj iViVEEi ,'1,',1,11,','',' )(0 ������� ��������
   (121) 

Next we use Eqs. (117)-(121) to derive Eqs. (27) and hence (28). Using (121) with j= j' 

yields 

 
� �

jjjj V 11Im2 	
 	 �         (122) 

Also, Eqs. (118)-(121) lead to (with 101,0
~~
EEE � ) 
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We note in passing that comparing Eqs. (118) and (57) suggests the following identity 

 1101,11,1,,1 )( !!! EViVi
j

jj
j

jj "#$%&%#      (126) 

Eqs. (124) and (125) yield after some algebra 

 ' (
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2

1,0
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2
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Using (127) in (122) leads to Eq. (27). 

 

 

Appendix C 

Here we outline the procedure used to obtain system's density matrix elements from 

Eqs. (71)-(72) within the Redfield approximation. First we find the transformation that 

diagonalizes |11|)2/( 10 1324567 iVHH eff . In the new representation, defined in terms 

of eigenstates 8a|  and 8b|  (with corresponding eigenvalues Ea-(1/2)i 9 a and Eb-(1/2)i 9 b) 

the  overall system-bath Hamiltonian is FHH B
eff :: , where ; < ; <

||2/||2/ bb-iEaa-iEH bbaa
eff =3>?@=3>?A     (128) 

and 

|||||||| ,,,, abFbaFbbFaaFF abbabbaa BDCEBDCEBDCEBDCF   (129) 

with  
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1,1
1,0

,,1,1,1,1, ~
2

||
   ;   ~

2

||

2

1
     ;   ~

2

||

2

1
F

E

V
FFF

E
FF

E
F abbabbaa ��������� �	������� �

��   (130) 
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In this representation the Liouville equation ],[],[ ��� FiHi eff ����  is reduced to four 

equations for the system's density matrix � 'n,n' (n,n'=a,b) using a variation of the Redfield 

formalism[4] (we use � ' to denote this density matrix in the diagonal basis). The difference 

from the standard procedure[16] lies in the fact that in the Redfield theory � �
tiEt kjkj ,, exp)( ��  with kjkj EEE ��

,  is assumed 'slow', while, as discussed above, at 

steady state kj ,
�  does not depend on time, so such a transformation is not needed. We get �  ! "
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Where  
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and where, in the Markovian ( 4 c 5 0) limit of Eq. (63) 

baba
iE

EEEdFFe ba 678 9:7<;
;=
=

,1,11,1 ;)()0(, >>? @    (134) 

Also in Eq. (132) T/keK B
E ab 1    with , AACB DE

. 

Eq. (132) is a set of linear differential equations for elements of F '. Transforming 

back to the representation spanned by states G0| and H1|  we get 

I J
1,0',;

2
1

],[0
1

0

1

0
,,,',',1,'1,1

'
',0',

1 2

2121 KLLMNLNKK OPOQCQ nnRVHi
n n

nnnnnnnnnnnnnn RRSSRRUT (135) 

where the prime on the commutator denotes that it has been modified by eliminating the 

terms incompatible with a steady state driven by state V0| ; see discussion below Eqs. (54)-

(59). The explicit expressions for the R elements are quite cumbersome, but are easily 

calculated for any choice of model parameters. The desired steady state solution is obtained 

by solving the set of equations (135) (excluding n=n'=0) for a constant W 0,0 



 27

Again, explicit general results for �  are cumbersome but numerical results are easily 

computed. Simple expressions can be obtained in the limit where the energy gap is larger 

than all the other parameters, i.e. E1-E0 »|V1,0|, � , � 1. We get  

0,0
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2
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2
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2
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1,1 )2/(
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      (136)  
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In the same limiting case 
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so that � �
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Inserting (136) and (139) into (78) and (77) and taking the limit ��� 0 leads to Eqs. (83) and 

(84). To obtain (84) we use 
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Note that (84) could also be obtained by using Eqs. (70) and (126) to get  
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and then using Eq. (139) for * 1,1. We were able to carry this procedure also to the next 

order  in the small parameter  2
1,0
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for the energy resolved flux, and 
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for the total flux. 
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Figure Captions 

 

Fig. 1. A standard model for the decay of a prepared state coupled to a continuum 

 

Fig. 2. Models for resonance scattering: (a) A double barrier structure with a quasi 

bound level in the intermediate well. (b) A standard approximation for resonance 

scattering from the potential (a), taking only the quasi-bound level in the well into 

account. The free particle states on the two sides of the barrier are depicted as 

continuous manifolds. (c) Same as (b), for a multi-well structure. 

 

Fig. 3. Energy resolved transmission through a molecular bridge represented by the 

model of Fig 2c (N=3), supplemented by coupling to a heat bath as described in the text. 

The incident energy is E0 and the transmission is depicted as a function of the 

transmitted energy for several temperatures. The curves showing increasing inelastic 

transmission near the bridge energy (E-E0~3000cm-1) corresponds to the temperatures 

T=0, 300, 400, 500K, respectively. See text for the other parameters used in this 

calculation. 

 

Fig. 4. The integrated elastic (dotted line) and activated (dashed line) components of the 

transmission, and the total transmission probability (full line) displayed as function of 

inverse temperature. Parameters are as in Fig. 3. 

 

Fig. 5. The integrated elastic (dotted line) and inelastic (dashed line) components of the 

transmission, and the total transmission probability (full line) displayed as function of 

bridge length. Parameters are as in Fig. 3. 

 

Fig. 6. Left panels: the integrated elastic (dotted line) and inelastic (dashed line) 

components of the transmission, and the total transmission probability (full line) displayed 

as functions of the distance � E from resonance. Right panels: The ratio R=� a/ �  between the 

activated component and the total transmission showing that far from resonance elastic 

transmission dominates. T=300K. Parameters are as in Fig. 3 except that the thermal 

coupling �  is 10cm-1 (as in Fig. 2) in the upper panels and is 100cm-1 in the bottom panels. 

 














