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ABSTRACT 

The optimum experimental design for determining the kinetic parameters of the 
model resulting from the Weibull probability density junction was studied, by 
defining the sampling conditions that lead to a minimum confidence region of 
the estimates, for a number of observations equal to the number of parameters. 
It was found that for one single isothermal experiment the optimum sampling 
times corresponded always to fractional concentrations that are irrational 
numbers (approximately 0.70 and 0.19) whose product is exactly l/e’. The 
experimental determination of the equilibtium conversion (for growth kinetics) 
is vety important, but in some situations this is not possible, e.g. due to product 
degradation over the length of time required. Sampling times leading to a 
maximum precision were determined as a function of the maximum conversion 
(or yield) attainable. For studies of kinetic parameters over a range of 
temperatures, performed with a minimum of three isothermal experiments, it 
was proved that the optimum design consists of two experiments at one limit 
temperature with two sampling times (those corresponding to fractional 
concentrations of approximate[v 0.70 and 0.19) and another at the other limit 
temperature for a sampling time such that the fractional concentration is lie. 
Case studies are included for clarijication of the concepts and procedures. 

NOMENCLATURE 

c; Number or concentration of a component or quality factor at time t, 
Ci,,, Initial concentration of a component or quality factor 

C, Equilibrium concentration of a component or quality factor 
Ea Activation energy (kJ mol.- ‘) 

*Author to whom correspondence should be addressed. 
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E.D. 
LID 
F 
n 

P 
R 
T 
ti 

Uf 

Efficiency of the design (%) 
Ratio between bed length and diameter 
Matrix of the derivatives of the response function 
Number of experimental points 
Number of parameters 
Universal gas constant (kJ mol-’ K-‘) 
Temperature (“C) 
Sampling time of experiment i (min) 
Superficial velocity (m/s) 

Greek letters 

a 

r 

A max 

At 

re’ 

Scale parameter (min) 
Pre-exponential scale parameter (min) 
Shape parameter 
Modulus of the determinant of F (min-’ or min-’ ‘C-l) 
Modulus of the determinant of F for optimal conditions (min-’ or 
min-’ ‘C-l) 
Time lag between tl and tz (min) 
Fractional concentration for the experiment i 
Vector of p parameters 
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INTRODUCTION 

The Weibull distribution is one of many probability distribution functions used to 
describe the behaviour of systems or events that have some degree of variability. It 
was originally developed in 1939 by W. Weibull to statistically analyse the ultimate 
strengths of materials (Simon & Woeste, 1980). The probability density function of 
the Weibull distribution may be described as (Hahn & Shapiro, 1967): 

(1) 0, elsewhere 

with c( > 0 and fi > 0. The corresponding cumulative distribution is: 

F(t)= 
s 
’ f(t)dt= 1 -e-(t)” (2) 

0 

This model has an interesting potential for describing microbial, enzymatic and 
chemical degradation kinetics (failure of the system after a given time subjected to 
stress conditions), considering the scale parameter (u) as a reaction rate constant 
and the shape parameter (8) as a behaviour index. The model reduces to a first 
order decay/growth kinetics for p = 1 (see Fig. 1). As discussed by Hahn and 
Shapiro (1967) Nelson (1969) and Gacula and Kubala (1975), the failure rate for 
the Weibull model is an increasing function of time for fl> 1 and a decreasing 
function for p < 1. When /I = 1, the failure rate is constant. These authors also 
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emphasise that cc is a characteristic time to failure, as it corresponds to the 
lOO*(l -l/e) = 63.2 percentile of the distribution, regardless of the value of /3 (see 
Fig. l(b)). 

The Weibull distribution was successfully applied to describe shelf-life failure 
(Gacula & Kubala, 1975; Schmidt & Bouma, 1992). Page (1949) developed an 
equation to describe thin-layer drying of shelled corn, similar to the Weibull proba- 
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Fig. 1. Effect of the shape parameter /I on (a) the Weibull probability density function, f(t), 
(b) the Weibull distribution function, F(t). 
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bilistic model that was later used to model thin-layer drying of yellow corn (Misra & 
Brooker, 1980; Li & Morey, 1984), of soybeans (White et al., 1981) of pigeon pea 
(Shepherd & Bhardwaj, 1988) and of adzuki beans (Tagawa et al., 1996). This model 
was also used to describe the drying kinetics of rough rice (Agrawal & Singh, 1977; 
Wang & Singh, 1978; Lu et al., 1994). Chhinnan (1984) evaluated four mathematical 
models, i.e., the exponential model, the diffusion model, an approximation of the 
diffusion model and the Page (Weibull) model, for describing thin-layer drying of 
in-shell pecans, recommending the Page (Weibull) equation for future modelling 
studies. Moreover, the Weibull distribution has been used to model failure of apple 
tissue under cyclic loading (McLaughlin & Pitt, 1984) grape pomace elutriation 
(Peraza et al., 1986) and water uptake and soluble solids losses during rehydration 
of dried apple pieces (Ilincanu et al., 1995). Machado et al. (1997) adequately 
described moisture uptake and soluble solid losses by breakfast cereals immersed in 
water or milk using the Weibull model, after unsuccessful attempts to use the Peleg 
(1988) the diffusion and the first order models. Recently, the Weibull model has 
also been used to describe microbial death kinetics under high-pressure conditions 
(Heinz & Knorr, 1996). 

As in any other model, the usefulness of the Weibull model for predictive or 
descriptive purposes greatly depends on the precision and accuracy of the model 
parameter estimates. Rigorous parameter estimation requires an adequate statistical 
analysis of experimental data, but also a careful experimental design. As stressed by 
Bates and Watts (1988), even very careful data analysis is unable to recover infor- 
mation that is not present in the experimental data. 

Box and Lucas (1959) proposed an optimum design criterion for non-linear 
models that allows the selection of sampling conditions that lead to a minimum 
confidence region, also known as D-optimal design (Bates & Watts, 1988). The 
rationale is that as the ‘real’ parameters of a system are probably contained in the 
error region of the estimates, the smaller this region the higher the precision. This 
criterion has been applied in different situations, such as, first order kinetics under 
isothermal conditions (Box & Lucas, 1959) diffusional processes under non-iso- 
thermal conditions (Oliveira et al., 1995) and the Thermal Death Time model under 
both isothermal and non-isothermal conditions (Cunha et al., 1997). 

The main objective of this work was to define the best experimental conditions 
according to the D-optimal design for systems that may be described by the Weibull 
probabilistic model. 

MATHEMATICAL METHODS 

For any choice of the design variable (i.e., the independent variable, t) the size of 
the parameters joint confidence region is proportional to the Jacobian 1 (FTF) 1 p1’2 
of the derivative matrix F (where Fr [j&l, with fi,l = axiKNj evaluated at t = ti with 
i ranging from 1 to n; x represents the system response and 8 is a kinetic parameter). 
Thus, a logical choice of the design criterion is to choose sampling points so that the 
size of this joint confidence region is minimised, that is, the determinant D = 1 FTF 1 
should be maximised. This can be done for a number of sampling times equal to the 
number of parameters to be estimated, which is the minimum possible. Atkinson 
and Hunter (1968) showed that for a number of observations greater than the 
number of parameters, the optimal design often corresponds to r replications of the 
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optimal p sampling times (r = n/p). According to Box and Lucas (1959) if a 
sequence of n observations is to be designed for a p-parameter model, in the case 
where n =p, the D-optimal design can be simplified from the maximisation of 
D z lFTF 1 to the maximisation of A = mod( IFI ) (A denotes the modulus of the 
determinant of the matrix F). Due to the complexity of the mathematical expres- 
sions of A derived for the Weibull model, there was no analytical solution, and 
therefore a numerical procedure was used. Numerical optimisation was performed 
using Mathematics@ for Windows-2.2 Enhanced Version (Wolfram, 1993). 

If one considers that: (i) vi corresponds to (Ci -C,)l(Ci,i -C,), the fractional 
amount of a given component C, changing from an initial value (Cini) to a final 
equilibrium value (C,), at a time t, and that (ii) the time required to reach a certain 
value of q is represented by the continuous random variable z, with probability 
density function f(t), where f(t) is the Weibull distribution function, then q(t) can be 
defined as the probability of having a certain fractional amount of C for, at least, a 
specified time t, under specified experimental conditions. Therefore: 

q(t) = P(z > t) = 
s 

,: f(r)dr = 1 -F(t) 

Experiments conducted at a single temperature 

(3) 

Combining eqns (2) and (3) the response function estimated at time t,, can be 
expressed as: 

Cj=C, +(Ci”i-C,)rli=C,+(Ci,i-C,,)e~ $ i 1 ” (4) 

Following the procedure presented by Box and Lucas (19.59) the determinant, A, of 
the matrix of derivatives of the response function in order to the model parameters, 
was built for four time levels tO, tl, t2 and tj. For the sake of simplification, A is 
represented in terms of q: 

/ 

A=mod 

\ 

ace ace -- 
act ag 
ac, ac, - - 
a!2 ag 
x2 ac2 - - 
aa ag 
ac3 ac3 -- 
a@ ag 

= mod 
(Cini - Cxj2 

c( 

ac, ac, -- 
Wi,i acx 
ac, ac, - - 

aCi,i ac,x 
ac,, ac2 - - 

aCi,i ac, 
x3 ac, - - 

Xi,i ac, 

ln(rloh2 ln(u2) 
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xIn w/2) 

[ 1 Wd - - 

Mro) 
h - ~13) + q0 Moh3 M3) In [ I Wi3) 

h - 42) +?I Whh2 Mvl2) 

xIn Mh> 

[ 1 - ho--3)+v1 Mhh3 ln(r3) In 

Mr/3) 
W2) [ 1 - (vlo-yl2) 

MvlJ 

+ ~12 Wi2h3 Mv13) In [~]ho-%$ (5) 

As stressed by Cunha et al. (1997), when the initial concentration, Cini, is considered 
to be a model parameter one of the optimal sampling times would be equal to zero 
(the time at which the initial concentration is determined), leading to q. = 1. Thus: 

Similarly, when the equilibrium value is considered to be a model parameter, an 
optimal sampling time near infinity would be obtained, that is, y/3 = 0. Combining 
both results, the determinant A may be simplified as follows: 

A=mod 
Ccini - cco)’ In (q2) 

~1 lnMq2 ln(q,) ln - 
CI [ I) ln(yJ 

I (7) 

The optimal experimental design leading to a minimum confidence region was 
found by determining numerically the conversion values ql and y12 that maximise the 
modulus of A. Substituting these values back into eqn (4), the optimal sampling 
times, t, and t2, were obtained. 

There are some practical cases where it is impossible or unfeasible to reach the 
equilibrium value because the time required might be too long and/or the food may 
degrade. In these cases sub-optimal designs should be developed, taking into con- 
sideration the maximum measurable value of ‘C3’, that is, the minimum value of ‘Y/~‘. 
Having this in mind, the determinant A of the matrix of derivatives of the response 
function in order to the model parameters was built for three time levels tl, t2 and 
t3. For the sake of simplification, A was again represented in terms of a system 
response v], the fraction by which the yield ‘c’ falls short of its equilibrium value. 

Therefore, the values of Q and q2 that maximise the determinant in eqn (6) were 
also numerically obtained for different fixed values of q3, thus obtaining sub-optimal 
designs. 

To have a better insight into the loss of precision in the parameter estimates due 
to the deviation of q3 from its optimum value (zero: Ci = C,), relative design 
efficiencies (E.D.) were computed for each value of q3, as defined by Neter et al. 
(1966): 

E.D.i = 
I(FTF)-‘I,i” “” 

I(FTF>- 'Ii 

) *loo= [($J]"'* 100 (8) 
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Set of isothermal experiments conducted over a range of temperatures 

As a rate parameter, c1 is temperature sensitive and l/a can be expected to follow an 
Arrhenius-type behaviour, as often found (Shepherd & Bhardwaj, 1988; Ilincanu et 
al., 1995; Machado et al., 1997): 

1 l [-cl] -z--e 

cli a0 
(9 

The p parameter should indicate the kinetic pattern and thus be temperature 
independent, particularly within a limited range of temperatures. This result has 
been verified in published works (Chhinnan, 1984; Ilincanu et al., 1995; Machado et 
al., 1997). Therefore, the kinetic parameters of the model for practical situations in 
food processing are ao, Ea and p, as non-isothermal conditions are the most usual. 
These parameters can however be determined by performing isothermal experi- 
ments at different temperatures covering the range of interest. For this case, the 
model is: 

In this situation, optimal designs require not only the selection of sampling times 
but also the selection of the temperatures that lead to a higher precision of the 
estimates. If isothermal experiments are performed, then one should select the most 
appropriate temperatures for the experiments and, for each temperature, the ade- 
quate sampling times. Non-isothermal experiments require the definition of both the 
temperature history and the sampling times but this case will not be analysed in this 
work. 

The sampling times for Cini and C,, in case they are taken as model parameters, 
were already approached (t = 0 and t-co, respectively). It is eventually necessary to 
analyse whether C, is temperature independent or not. The subsequent analysis 
refers only to the determination of the three kinetic parameters and therefore Cini 
and C, are taken as known constants in the mathematical handling. Following the 
previous procedure, the determinant, A, of the matrix of derivatives of the response 
function in order to the model parameters, cxo, Ea and p, was determined for three 
time levels tl, t2 and t3 and three temperature levels T,, T2 and T3, respectively, 
yielding: 

A=mod 
P(cini-Ca)3’11 lnhh lnh)q3 ln(q3) 

Q,RT, TZTJ 

x [TIT* ln(z)+TJ, h($$-)+T,T, In(E)]) (11) 

The optimal experimental design leading to a minimum confidence region for any 
combination of temperatures (T,, T2 and T3) was found by determining numerically 
the conversion values ql, q2 and q3 that maximise the modulus of A. Substituting 
these values back into eqn (lo), the corresponding optimal sampling times: tl, t2 and 
t3, were obtained. 
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RESULTS 

Experiments conducted at a single temperature 

As discussed in the ‘Mathematical methods’ section, the complexity of eqn (7) 
prevented an analytical solution and the optimal design for the Weibull probabilistic 
model was numerically computed for a large number of different sets of the model 
parameters c( (between 0.1 and 600 min) and j3 (between 0.1 and 5). It was found 
that the fractional concentrations at the sampling times that maximised A were 
independent of the model parameters. In all cases, the solution of the optimisation 
problem was a pair of irrational numbers, identical to those obtained by Cunha et al. 
(1998) for the optimal experimental design for systems following the Thermal Death 
Time model under nonisothermal conditions: y1 = 0.70322.. . and q2 = 0.19245.. . , 
which are such that their product is equal to l/e2. Figure 2 shows how the determi- 
nant A from eqn (7) typically evolves as a function of the fractional concentration 
values, with its maximum occurring at the referred values of ql and q2. The two 
sampling points are symmetrical in a logarithmic scale in relation to l/e (see Fig. 3), 
this point corresponding to the optimal sampling point obtained by Box and Lucas 
(1959) for the simple exponential model (equal to the Weibull model for p equal to 
1). It was further verified that if /3 is a known constant and c1 is the only parameter 
to be estimated, the optimal sampling time would also correspond to v] = l/e, inde- 
pendently of the value of p. It is noteworthy that the time lag between the two 
optimal sampling times decreases as the value of the shape parameter /I increases 
(see Fig. 3). Figure 4 shows the time lag between the optimal sampling times of the 
Weibull probabilistic model as a function of the model parameters CI and p. Each 
curve drawn indicates all pairs of c( and /3 that have the same time lag. Published 

.oo 

Fig. 2. Surface plot of A as a function of q1 and Q (eqn (7)). Maximum value of A is attained 
for v1 ~0.703 and q2 ~0.192. 
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values of LX and p are also included. In general, the kinetics reported on literature 
show a value of jl lower than 1 and a value of LY such that the time lag is, in most 
cases, larger than 20 min. However, for Heinz and Knorr (1996) data and for some 
of the data from Machado et al. (1997), the p is so high and/or c( is so small, that this 
period either becomes unpractical or may lead to a considerable experimental error 
in the independent variable, t, that is not accounted for in the present analysis (see 
Fig. 4). A case study will be presented in the next section to illustrate how to handle 
this problem. 

In growth kinetics, the equilibrium value (C,) is a very important parameter and 
should be evaluated at a sampling time near infinity, that is, at q = 0. However, 
sometimes the maximum attainable value of C is smaller than C,. In these situa- 
tions q3 is fixed by practical constraints and new optimal ql and y/2 values need to be 
calculated. It was found that as q3 increases, the optimal values of ql and q2 also 
increase and get closer (see Fig. 5(a)). The design efficiency (as computed from eqn 
(8)) strongly decreases when y13 increases (see Fig. 5(b)). It is also possible to 
translate this loss of efficiency in terms of the number of experimental data required 
to have the same precision of the estimates (i.e., same A). It is noteworthy that if, 

1/----‘---- - 
” ‘8, 
” ‘<, 

” 
;.--_--~- 

llzco.192 

0.1 : : : 
(--: :,:,:: : / 

time 

Fig. 3. Identification of the optimal sampling points for the Weibull probabilistic model, 
evaluated at different values of the shape parameter fl. 
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for example, one can only follow up a certain process until 50% of the total 
conversion (q3 = O-5), design efficiency will drop so strongly that in order to have the 
same precision the number of sampling points required would be approximately 18 
times larger, when compared to the full optimal design (see small graph in Fig. 
5(b)). Thus, even for relatively low values of q3, the application of optimal designs 
may not be enough to prevent significant loss of precision in the estimation of the 
model parameters. 

Set of isothermal experiments conducted over a range of temperatures 

The results of Box and Lucas (1959) for the first-order reaction model and those of 
Cunha et al. (1997) for the isothermal Thermal Death Time model, showed that 
when analysing a given system over a range of temperatures, an experiment should 

400 min 240 min 

0 0.2 0.4 0.6 0.8 1 2 3 4 5 
B 

Fig. 4. Time lag between the optimal sampling times of the Weibull probabilistic model as a 
function of the model parameters c( and /I. Each curve drawn indicates all pairs of c( and /I 
that have the same time lag (iso-time lag curves). Published values of CI and /I are indicated 
according to the following legend: *, Chhinnan (1984); q , Heinz and Knorr (1996); o, 
Ilincanu et al. (1995); A, Li and Morey (1984); l , Machado et al. (1997); o, Misra and 
Brooker (1980); +, Peraza et al. (1986); l , Shepherd and Bhardwaj (1988); and w, White 

et al. (1981). 
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be performed at each of the limit temperatures in order to obtain the maximum 
precision of the parameters of the model. Under those circumstances, sampling 
times corresponding to a conversion value equal to l/e, should be taken at each limit 
temperature. By analogy, and taking into consideration that the Weibull model 

4 1.0 _ e- __--- *.C 

0.8 :-,R-~ 
(CC- 

_-e-e _.-- 
.-- .- ..- 

f 
rll 

------T- 0.6 . -* 

.:- _.-* 
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q1= 0.703 .-- _ 
:- 

.f 

0.4 ,- ._==-*- r12 
- .-- 

> L-*-O 

rlz=o.192 
0.0 = VII I‘S * I ; 1 ,,,I ,,,,f ,‘,, 

0.0 0.2 0.4 0.6 0.8 1.0 

b) 

E.D.(%) 
No. of replicates 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 

7l3 

0.0 0.2 0.4 0.6 0.8 1.0 

Fig. 5. D-optimal design for the Weibull probabilistic model when the maximum conversion 
value (11~) falls short of equilibrium (r/3 = 0): (a) optimal sampling values; (b) efficiency of the 
sub-optimal designs. The number of replicates required to have the same precision (small 

plot) is computed as the reciprocal of the efficiency index. 
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under these conditions has three parameters, it would be expected that there should 
be an experiment at each of the limit temperatures, with a third data point being 
taken at any given temperature between Tmin and T,,. In order to analyse this 
situation, A (from eqn (11)) was maximised considering T1 = Tmi”, T3 = T,,, and 
covering different values of T2, ranging from Tmin to T,,,. Furthermore, the effect 
of changing T1 from Tmin to T,,,, was also assessed. Figcure 6 shows how the design 
efficiency typically evolves with sampling temperature using T3 = T,,, and it can be 
clearly seen that the best design is T1 = T2 = Tmin with T3 = T,,,, T1 = Tmin with 
T2 = T3 = T,,,, or T2 = Tmin with T1 = T3 = T,,,. Lower efficiency values were 
obtained whenever Tmin < T3 < T,,,, whatever the values of T1 and T2. Maximisation 
of A in order to ql, q2 and y3, for T1 = T2, yielded the following optimal design: 
yll = 0.70322.. ., yl?; = 0.19245.. . and q3 = l/e. Thus, when considering a range of 
temperatures, two sampling points should be taken at an extreme temperature, 
corresponding to fractional concentrations of O-70322.. . and O-19245.. . The 
remaining sample should be taken at the other extreme temperature at the time 
when the fractional concentration of l/e is expected. 

T, = 

E.D. (%) 

Tz = T,,,,,,,T1 =T3 = 
TI =Tz = T,,,,,,, T3 =T,, I 

T ml,,, T2 =4 = ‘La, \ 

T mpx 

Fig. 6. Efficiency of the D-optimal design for the Weibull probabilistic model with an 
Arrhenius temperature dependency of the scale parameter a, as a function of the sampling 

temperatures T, and T, for T3 = T,,. 
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CASE STUDIES 

To clarify the application of some of these concepts in food research, some case 
studies are presented using data from literature. 

Separation of grape pomace in a fluidised bed 

To model the simultaneous effect of drying and separation of grape pomace in a 
fluidised bed, Peraza et al. (1986) have used the Weibull model, as mentioned in the 
introduction. In this work, they have measured as a response function the grape skin 
fraction in the bed at any time (q) and modelled grape pomace elutriation as a 
function of fluidisation velocity (ur) and length/diameter ratio (L/D) of the fluidised 
bed. For the case where ur = 5.0 m/s and L/D = 4, the Weibull model yielded the 
following parameters: x = 26.275 min and p = 4.701. If one would intend to perform 
the same study using an optimal design, samples should be taken at t, ~21.0 min 
(time at which ~~0.703) and at t 2 ~29.2 min (time at which v] ~0*192), the time lag 
between ti and t2 (At) being therefore 8.2 min. From an experimental point of view, 
these sampling times are perfectly feasible. The heuristic experimental design used 
by Peraza et al. (1986) was based on six sampling points equally spaced in time, with 
a time lag of 5 min (t = 5, 10, 15, 20, 25 and 30 min); comparing this design with the 
corresponding optimal sampling procedure (three replicates taken at t = 21.0 min 
and three at t = 29.2 min), its efficiency (eqn (8)) would be approximately 52%. 
This means that the heuristic design used by Peraza et al. (1986) would require twice 
as many points as the optimum design to have roughly the same precision of the 
parameters estimated. 

Soluble solids losses during rebydration 

Considering a different situation, Machado et al. (1997) have modelled the soluble 
solid losses by puffed breakfast cereals immersed in water at 55°C where the 
Weibull model yielded the following parameters: c( = 1.04 min and /I = 0.4. To per- 
form the same study using an optimal design, according to those values, samples 
should be taken at t, ~0.08 min and at t2 - -3.62 min, with a resulting time lag of 
3.54 min. While the time lag between sampling times appears to be experimentally 
manageable, the first sampling time may be unfeasible. If this requirement becomes 
an experimental hurdle, the optimal design cannot be applied. However, sub-opti- 
mal designs may be defined, for a pre-selected first sampling time (t,), if the 
determinant in eqn (7) is maximised as a function of t2 only (and thus as a function 
of the time lag between samples). Figure 7 shows the results obtained for values of 
t, up to 5 min, together with the respective design efficiency (eqn (8)). If: for 
example, one decides to establish a first sampling time equal to 2 min, the second 
sampling point should be taken at approximately 10.4 min (At z 8.4 min; see Fig. 7) 
with corresponding fractional concentration values of 0.27 and 0.08, respectively. 
The resulting efficiency would however be around 40% (see Fig. 7). 

Microbial death kinetics under high pressure 

Heinz and Knorr (1996) used the Weibull model to describe microbial death 
kinetics under high pressure conditions. Taking the example at a temperature of 
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Fig. 7. Sub-optimal designs when fixing the values of tr, for Machado et al. (1997) parameters 
concerning the loss of soluble solids by puffed breakfast cereals immersed in water at 55°C. 
The plot gives the Ar (f2-fr) values for any tr in the left axis and the corresponding 
efficiencies of the design in the right axis. (0) Optimal sampling conditions: tr = 0.08 min; 

Ar = 3.55 min and E.D. = 100%. 

40°C and a pressure of 250 MPa the parameters reported were: a = 4.819 min and 
p = 4. To perform experiments using an optimal design, samples should be taken at 
ti ~3.71 min and at t2 ~5.46 min, with a resulting ti of 1.75 min. This time lag is 
relatively small and thus a larger lag may be preferred. Sub-optimal conditions were 
studied for this situation, constraining the value of the time lag and maximising the 
determinant in eqn (7) in order to one of the sampling times only, for values of b 
up to 5 min. Figure 8 shows the results obtained. If, for example, one decides to 
select a time lag of 2.5 min, the first sample should be taken at ~3.26 min (there- 
fore, t2 = 5.76 min), and the efficiency of this sub-optimal design would be around 
85% (see Fig. 8). 

For many experimental studies, the initial concentration (Cini) is not necessarily 
measured at t = 0, as the factor under study shows high stability over a given period 
of time. However, there are systems and/or variables for which Cini must be mea- 
sured exactIy at t = 0, as the factor will change over a short period of time. Under 
these circumstances, care should be taken when the minimum At is too high, as the 
first sampling time might be lower than L\t and t, is a time lag to zero. This is shown 
by the shaded part of the graph. 

CONCLUSIONS 

The optimal experimental design for determining the Weibull model parameters 
with the minimum possible error region for a number of points equal to the number 
of parameters at a constant temperature T consists of taking a sample at the time 
such that the fractional concentration is Q = O-70322.. . and another when 



Optimal design of experiments for the Weibull model 189 

t1 bw E.D. (%) 

100 

80 

60 

40 

20 

0 
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

At(min) 

Fig. 8. Sub-optimal designs when fixing time lag between the two sampling points, for Heinz 
and Knorr (1996) parameters concerning the death kinetics of Bacillus subtilis at 40°C and 
250 MPa. The plot gives the t,-value for any At (t2 = t,+ At) in the left axis and the corre- 
sponding efficiencies of the design in the right axis. The shaded area indicates designs that 
may not be logical, as t, is lower than At. (0) Optimal sampling conditions: tl = 3.71 min; 

At = 1.75 min and E.D. = 100%. 

q2 = 0.19245.. . ) with qI*q2 = l/e2. Assuming that l/a follows an Arrhenius-type tem- 
perature dependency and /3 is independent of temperature, the optima1 
experimental design to determine the system parameters for temperature dependent 
situations with isothermal experiments consists of two experiments, performed at the 
limit temperatures of the range of interest. In one, two samples should be taken, 
one when the conversion is uI = 0.70322.. . and another when q2 = O-19245.. . , while 
in the other experiment one sample should be taken where u3 = l/e. 

The initial concentration and the equilibrium concentration (if different from 
zero) should be determined by analysing samples, respectively, at time zero and at 
a significantly large time so that q is constant (Ci-C,). 
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