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ABSTRACT 

The optimum experimental design for systems following the Bigelow model was 
studied by determining the sampling conditions that lead to a minimum 
confidence region for a number of observations equal to the number of 
parameters. For isothermal conditions, it was found that this corresponds to the 
sampling times when the fractional concentration of the decaying factor (vii) is 
equal to e-’ and that the experiments should be perjormed in the limit range of 
temperatures chosen. These results are identical to those described in the 
literature for a first-order Arrhenius model. For non-isothermal experiments with 
linearly increasing temperature, the optimal experimental design is obtained with 
a maximum heating rate, a minimum initial temperature and sampling times 
when the product of the fractional concentrations is e-’ (with nI ~0.70 and 
n2 E 0.19). The influence of the heating rate on the precision of the estimates is 
more significant for high z values and the influence of the initial temperature is 
more significant for low values of the heating rate. 0 1997 Elsevier Science 
Limited. 

NOMENCLATURE 

a Hunter colour scale value 
b Hunter colour scale value 
D ref Decimal reduction time at a reference temperature Tref (min) 
DT Decimal reduction time at a given temperature T (min) 

*To whom correspondence should be addressed. Fax: (351) 2 590351, E-mail: fernanda@ 
esb.ucp.pt. 
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Activation energy 
Matrix of the derivatives of the response function in order to the model 
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Reaction rate constant at a given temperature (min-‘) 
Hunter colour scale value 
Heating rate (“C/min) 
Number or concentration of a micro-organism or quality factor 
Number of experimental points 
Initial concentration of a component or quality factor 
Number of parameters 
Universal gas constant 
Temperature (“C) 
Initial temperature (“C) 
Time for the ith experiment (min) 
Reference temperature (“C) 
Normalised reaction rate evaluated at tj (min-‘) 
Maximum normalised reaction rate (min - ‘) 
Thermal death time parameter (“C) 

Greek symbols 
A Determinant of F (min-’ in eqn (2), min-‘“C-’ in eqns (6) and (14)) 
A max Modulus of the determinant of F for a fixed temperature profile 

( min-‘“C-‘) 
A opt Modulus of the determinant of F for optimal conditions (min-‘“C-‘) 

;3’ 
Fractional concentration for the ith experiment 
Vector of p parameters 

i Efficiency factor (%) 

INTRODUCTION 

Preservation of foods by thermal processing is based on reducing the number of 
vegetative organisms and bacterial spores. Frequently, the lethality desired or 
achieved in a given process is estimated using experimental kinetic data for the 
pathogens thermal death rate. Although the concepts and mathematics of process 
design and evaluation are not complex, the suitability of different mathematical 
models to describe the reality is a subject of concern and discussion. Even for the 
simplest options, the so-called TDT (or Bigelow) model and the first order (or 
Arrhenius) model, discussion still exists on the best alternative (e.g. Jonsson et al., 
1977; Manji and van de Voort, 198.5; Pflug, 1987; Ramaswamy et al., 1989). 

For more than 70 years, the model resulting from the empirical observations 
made by Bigelow (1921) has been the basis for the design of thermal processes used 
by the canning industry for low acid foods (Nunes et al., 1991). It is commonly 
accepted that at high temperatures and for relatively short times the logarithm of 
the number of viable cells decreases linearly with time, the slope being the recipro- 
cal of the decimal reduction time (D), and that the logarithm of D decreases linearly 
with temperature, the reciprocal of the slope being named the z value. The D value 
at a reference temperature (D& and the z value are the basis of the thermal death 
time method (TDT), which is the current standard in industrial practice for most 
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sterilisation processes (Nunes et al., 1991). Assessment of quality loss in thermally 
processed foods has involved in many cases the application of a similar kinetic 
model for quality indicators (e.g. Shin and Bhowmik (1995) have used this model to 
describe kinetics of colour change in pea puree). 

The kinetic parameters of the mathematical models are estimated by regression of 
experimental data obtained in most cases with isothermal experiments. The use of 
non-isothermal methods was first introduced by Rogers (1963) and was reported for 
the study of reaction kinetics (Rhim et al., 1989a; Nunes et al., 1991) and for the 
kinetics of colour change (Rhim et al., 1989b). These methods have significant 
advantages: minimisation of experimental requirements, overcoming thermal lag 
problems and providing a dynamic situation closer to the reality of most thermal 
processes. In all cases cited above a first-order rate with an Arrhenius type depend- 
ency on temperature was considered. Linear temperature profiles are the most 
common because they are very easy to obtain experimentally. The Arrhenius equa- 
tion considers an exponential variation of the rate constant with the reciprocal of 
temperature and this eventually leads to an integral that does not have an exact 
analytical solution (Rhim et al., 1989a). This is a clear drawback of the method, as 
the error introduced by either approximate analytical solutions or by numerical 
resolution of the integral impairs the accuracy of the regression. Curiously, the 
Bigelow model would not have this problem, as the integration of the process 
equation when the rate constant varies exponentially with temperature (instead of 
its reciprocal) is straightforward (Miles and Mackey, 1994). Moreira et al. (1993) 
have compared isothermal and non-isothermal methods for estimation of mass 
diffusion kinetics with an Arrhenius type temperature dependency, using numerical 
integration. 

The estimation of kinetic parameters from experimental data involves the applica- 
tion of statistical methods in two phases: experimental design and data analysis. 
Although much more emphasis is often put on the latter, one should real&e that the 
general value of the information contained in the data is actually established when 
the experiment is designed and even a very careful data analysis is unable to recover 
information that is not present in the data (Bates and Watts, 1988). As Lenz and 
Lund (1980) stressed, much of the data currently found in the literature could have 
been obtained with considerable less effort by proper choice of experimental condi- 
tions. Furthermore, the quality of the experimental data greatly determines the 
quality of the parameters obtained in terms of precision and accuracy. This is of 
utmost importance if microbiological or chemical model parameters are then used 
in process design or assessment (Van Boekel, 1996). 

Box and Lucas (1959) proposed an optimum design criterion for nonlinear 
models, based on establishing the sampling conditions that lead to a minimum 
confidence region, for a standard situation of a number of observations (n) equal to 
the number of parameters (p), which is also known as the D-optimal design (Bates 
and Watts, 1988). This criterion was applied to a first order model with Arrhenius 
temperature dependency at isothermal conditions (Box and Lucas, 1959) and to 
diffusional processes with an Arrhenius temperature dependency at non-isothermal 
conditions (Oliveira et al., 1995). 

The main objective of this work was to establish the experimental conditions 
corresponding to the D-optimal design for systems described by the Bigelow model 
for both isothermal and non-isothermal experimental plans. 
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MATHEMATICAL METHODS 

For any choice of the design variable (i.e., the independent variable, t) the size of 
the parameters joint confidence region is proportional to the Jacobian ((FTF)(-“* of 
the derivative matrix F (where Fr V;j], with fij = i3r$/aOj evaluated at t = ti, with i 
ranging from 1 to IZ. q represents the system response and 8 a kinetic parameter). 
Thus a logical choice of the design criterion is to choose sampling points so that the 
size of this joint confidence region is minimised, that is, the determinant o=lFTFl 
should be maximised. According to Box and Lucas (1959), if a sequence of 12 
observations is to be designed for a p-parameter model, the D-optimal design can be 
simplified from the maximisation of D = lFTFl to the maximisation of A =mod(lFI), 
in the case where it =p (A denotes the modulus of the determinant of the matrix F). 
Atkinson and Hunter (1968) showed that for a number of observations higher than 
the number of parameters, the optimal design often corresponds to r replications of 
the optimal p sampling times (r = nip). 

In our work the initial concentration was not considered to be a model parameter. 
By logical reasoning, if one desires to estimate this value, the extra optimal sampling 
time would be zero. 

Isothermal conditions 

Single temperature 
The variation of the system response with time at a constant temperature T, for the 
Bigelow model, is given by: 

rl,= I$% 
I (1) 

where q is the fractional concentration of colony forming microbial units, or of a 
quality factor, at time ti, and DT is the decimal reduction time at the experimental 
temperature, T. According to the definition of A: 

Azmod( l$l)cmod ( tiln(lo)$fr’D” )=mod (_ rli ;r”’ ) (2) 

The optimum sampling time for estimating &, and corresponding rl value, was 
calculated analytically from the zero of the derivative of eqn (2) in relation to time. 

Range of temperatures 
Applying the temperature dependency relationship to eqn (1) for an isothermal 
experiment at temperature T;: 

(3) 

Deriving eqn (3) in relation to the model parameters, Dref and z, yields: 
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i 

t; Tref - Ti 
T,c,-T, - 

ti ln(10) 10 
D,,flO - 2 

arli 
I 

-= = _ VI; ln(qi) 

Wt?f DL &f 
(4) 

t; Tref - T, - 
T,,, -r, - 2 

arli tiln(10)2 10 
Dref10 7 I 

-= 
a.2 &fZ2 

(T,,,- T) 

(5) 

From eqns (4) and (5) the determinant A was built for two sampling times, t, and 
t2, the former being the sampling time for one experiment at T, and the latter for 
one experiment at T2. For the sake of simplification, A is indicated in terms of ye, 
and q2:- 

A=mod 

@I @I - _ 
8Dref a2 

= mod 
91 lrWr12 ln(q2)ln(10) 

aq2 aq2 &2fZ2 
V-T,) (6) 

- _ 
aDref a2 

The maximum value of A can be obtained by calculating analytically the zero values 
of the derivatives of eqn (6) in order to ql and q2, or by finding the conditions that 
maximise mod(T,- T,), mod(~,ln(~,)) and mod(~21n(~2)) simultaneously. 

Non-isothermal conditions 

Non-isothermal kinetic models are based on three equations: (i) the rate of reaction, 
(ii) the temperature dependency of the kinetic parameters, and (iii) the time- 
temperature relationship (Rhim et al., 1989a). For a constant heating rate, m, the 
latter is: 

T(t) = To+mt (7) 

where T,, is the initial temperature. The process equation becomes: 

Solving the integral analytically and rearranging: 
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i 

2 

rj;= 10 
- Drefm In (10) 

l$?! [ 1”‘1_1]} 

(9) 

Deriving this equation in relation to Dref and z: 

avli - Drefm ln(lO) 

* {(l~~‘-l)[~To-T,.efJ ln(lO)--z]+lO@/mt hr(lO)~ (11) 

These equations may be simplified if written in terms of vi: 

avli Vi ln(uri) 
-=- 

a&f D ref 

arli vi In (4) -=- 
a2 z2 

[To - T,,f]ln(lO) -z+ x$n!:)z 
I 

with 

X;=l- 
ln(rli)D,,fm 

(12) 

(13) 

ZlO = 

Xi is a dummy variable used for condensed notation. 
The determinant A is therefore: 

A=mod 
( 

VI Wdr12W2> X2WX2) 

DrefZ [ 

X1 ln(&> 

(X2-1) - (X1-1) 
(14) 

The two values of the response function that maximise A were determined numer- 
ically from eqn (14) using Mathematics@ (for Windows 2.2, enhanced version, 
Wolfram, 1993). 
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RESULTS AND DISCUSSION 

Optimal design for isothermal conditions 

Single temperature 
The optimal sampling conditions obtained from eqn (2) are: 

DT 
t= -; q=e-’ 

In( 10) 
(15) 

Thus, the best design will be to take a sample at the time when the concentration 
is 36.8% of the initial value. These results are identical to those obtained by Box 
and Lucas (1959) for a first order decay model, considering the relationship between 
DT and the reaction rate, kT, of the first-order model (Ramaswamy et al., 1989): 

In( 10) 
DT= ___ 

kT 
(16) 

Temperature range 
From eqn (6) for a range of temperatures, A is maximised when mod(T*- T,) is 
maximum (T, and T2 are the limits of the temperature range considered) and ql and 
q2 are both e- ’ at the respective temperature (that is, the sampling times at 
temperatures T, and T2 are such that the concentration has decreased to 36.8% in 
both cases). These results are evident from eqn (6) and the previous result for a 
single temperature. 

Considering the relationship between the z-value and the activation energy, E,, of 
the Arrhenius model (z = RTTJn( 10)/E,, Ramaswamy et al., 1989) and the relation 
between DT and kT expressed by eqn (16) it can be seen that the sampling times for 
a system following the Bigelow model over a range of temperatures are identical to 
the sampling times obtained by Box and Lucas (1959) for the optimal design of a 
system following the first-order decay model with an Arrhenius relationship. 

Optimal design for non-isothermal conditions 

As the complexity of eqn (14) prevented a direct analytical solution, the optimal 
design for the non-isothermal Bigelow model was numerically computed for dif- 
ferent sets of the parameters Dref and z. The q, and Q values that maximised A were 
determined for different values of the heating rate, m and of the initial temperature, 
T,,. It was found that, for all conditions, the value of A increased with the heating 
rate and decreased with the initial temperature, up to a given limit. The values of m 
and To beyond which there was no significant increase in the value of A were 
considered to be the mathematically optimum conditions, regardless of their physi- 
cal realisability, and the corresponding value of A will be named Aopt. 

For these optimal conditions we have then found that for all the situations tested 
the sampling times t, and t2 were such that the fractional concentrations had exactly 
the same values. This solution of the optimisation problem was a pair of irrational 
numbers: vi = 0.70322 . . . and q2 = 0.19245 . . . . It was necessary to establish mathe- 
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matically if these would be the solutions for all possible combinations of the system 
parameters. When the solution of an optimisational problem (zero of a derivative) 
is irrational, it is sometimes possible to find simple implicit equations that character- 
ise the solution. By mathematical manipulations, we found that all pairs of ye, and y12 
values that verify the system: 

are solutions of the equation obtained by finding the zero of the derivative of eqn 
(14) in relation to time (this can be verified by replacing eqns (17) and (18) in eqn 
(14)). It is noteworthy that eqn (17) expresses that the two samplmg. pomts are 
symmetrical in a logarithmic scale in relation to e -’ (the optimum samphng time for 
a constant temperature).The feasibility of the optimal experimental design thus 
obtained needed careful consideration, as the values of m and To may be outside 
reasonable limits. Table 1 shows the results obtained for To = 20°C and it can clearly 
be seen that the optimal experimental design may lead to sampling times that are 
too small and heating rates that are too high to be physically feasible, although the 
choice of 7’,, is much more favourable than what could be used in microbial death 
kinetics. 

It is therefore necessary to analyse the sensitivity of the precision of the estimated 
parameters to the experimental conditions, m and T o, so that suboptimal designs can 

80 

60 

40 

Fig. 1. Influence of the initial temperature (TO) and of the heating rate (m) on the efficiency 
([) of the optimal design for the Bigelow model under non-isothermal conditions (Dref_ 

= 48 min, z = 59°C and Tref = 121°C). 
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Fig. 2. Influence of Dref and of the z-values on the efficiency (0 of the optimal design for 
Bigelow model under non-isothermal conditions (Tref = 121°C). 

the 

be defined. As the precision of the estimates is measured by the size of the confi- 
dence regions, it can be said that the ratio of the determinant A for a given situation 
to the optimum value, A (,rt, is a fractional measurement of the precision of that 
situation compared to the maximum possible precision. For this purpose we have 
defined an efficiency factor, < = Amax/Aopt *lOO, where AmaX is the maximum value of 
the determinant that verifies any given physical restriction (maximum m or mini- 
mum 7’“). A suboptimal design will be obtained by specifying the physical limits of 
m and T,, and then determining the sampling times for those conditions. 

The sensitivity of the regression precision to m and To for a given set of kinetic 
parameters (Dref = 48 min; z = 59°C Trer = 121°C - see Table 2) is shown in Fig. 1. 
It can be seen that a very good precision can be obtained when the initial tempera- 
ture is low. Increasing the heating rate improves the precision of suboptimal designs 

TABLE 1 
Optimal Sampling Times and Heating Rate for the Non-isothermal Bigelow Model, with 

Tref = 121°C and 7’,, = 20°C 

D,, (min) z (“CJ m (“Cimin) tl (min) t2 (mm) 

: :: 100000 20 2.7 0.019 3.1 0.0022 
80 10 100 0.82 0.90 
80 40 100000 0.0024 0.0027 
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TABLE 2 
Kinetic Data for the Variation of Some Foodstuff Properties, with Tref = 121°C (Adapted 

from Hallstrom et al., 1988”) 

2 (“C) D,t (min) 

Chemical changes 
Non-enzymatic browning 
Denaturation of proteins 
Lysine 

Vitamin destruction 
In general 
Thiamine 
Ascorbic acid (vit. C) 
Pantothenic acid 
Riboflavin (vit. B,) 
Folic acid 

Enzyme inactivation 
In general 
Peroxidase 
Lipases (from Pseudomonas) 
Proteases (from p frourosceus) 
Proteases (from Pseudomonas) 

Micro-organisms 
B. stearothetmophilus 
B. subtilis 
B. cereus 
B. megaterium 
C. botulinurn 
C. perfiingens 
C. sporogenes 
C. sporogenes (PA 3679) 
C. thermosaccharolyticum 
C. nigrtficans 

Cooking value: overall quality estimation 
Peas 
Sugar beets 
Whole corn 
Broccoli 
Squash 
Carrots 
Green beans 
Potatoes 

Colour 
Chlorophyll (spinach, pea puree) 
Carotenoids (paprika) 
Betamin (beetroots) 

17-39 
5-10 
21 

20-30 
20-30 

:: 
28 
37 

7.55 l-10 
26-37 2-3 
25-37 1.2-1.7’ 
20-35 4-27’ 
32 0.5-1.7b 

7-13 
6.8-13 
9.7 
8.8 
8-12 
10 
9-13 
10.6 
1.7-10 
8-10 

17-28 12.5 

32: i.40 
44 4:4 
23 1.5 

:i29 :.t 
21 1:2 

38-80 

:99 

0.4-40 
5 
750 

100-l 000 
38-380 
245 
250-6 400 
2 800 
2 800 

3.5-6.8 
0.4-0.76 
0.038-0.065 
0.04 
0.1-0.3 

0.15-2.6 
0.48-1.4 
3-22 
2-3 

14-350 
0.038 
48 

“Table 1.4, from page 25, with permission of Chapman & Hall. International Thomson 
Publishing Services Ltd 
bAt D 150; ‘at DIZO-~~. 
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significantly, but for high initial temperatures very high heating rates would be 
required, which can only be achieved in special equipment (such as a thermo- 
resistometer). The effect of the kinetic parameters on the sensitivity is shown in Fig. 
2, for a given set of experimental conditions (m = l”C/min, T,, = 20°C). It can be 
seen that for a low initial temperature high precisions are obtained in virtually every 
range of Dref and z. of interest, as the efficiency of the suboptimal design only 
decreases in the area where z is very high and Dref is low, but this does not occur in 
food processing: quality factors have high z but also high Dref while micro-organisms 
show low Drtlf, but low z as well. The magnitude of kinetic parameters found in 
literature is shown in Table 2, from the values collected by HallstrGm et al. (1988). 
It can be concluded that the efficiency of the suboptimal design needs to be con- 
sidered only if there is a restriction on the initial temperature, either because the 
model does not apply at low temperatures (which is the obvious case of microbial 
thermal death), or because the heating medium cannot be initiated at a low tem- 
perature (this is the case of thermostatic oil baths). 

It should be stressed that the choice of the reference temperature does not show 
any effect on the optimal design. 

Reaction rate concept 

The thermal degradation rate is influenced by the kinetic parameters (Dref and z) 
and by the experimental conditions (T,, and m). Figure 3(a) shows the kinetic 
patterns for generic values of these four parameters and indicates the influence of 
each parameter on the curve. Evidently the shape of this curve is directly influenced 
by the changes on the rate of thermal degradation. To study if optimal and sub- 
optimal designs implied any given type of shape, the reaction rate was calculated 
from the model equations: 

7;D- 7‘ III 

-10 i 
mt, + r,, - T,,, 2 1 -1 z - 10 

z 2 Drcfm ln( 10) 

where v*; is the reaction rate at the sampling time t,. Figure 3(b) represents the 
reaction rates corresponding to the curves of Fig. 3(a), showing that there is a 
maximum rate at the time where the decay curve has an inflection point. 

Figure 4 shows the initial reaction rate and the reaction rates of the two sub- 
optimal sampling times for several designs, normalised with the maximum reaction 
rate in each case, so that all designs fall in the same curves. It can be seen that 
sampling designs of high efficiency have low initial reaction rates and that the 
reaction rate of the first sampling point is lower than that of the second sampling 
point. In these cases (< > 80%), the maximum reaction rate occurs between the two 
sampling points. Situations where the initial reaction rate is high have very low 
design efficiencies and the first sampling point has a higher reaction rate than the 
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second. Designs of high efficiency in terms of precision therefore lead to a curve of 
concentration versus time showing a clear shoulder, with the inflection point in 
between the two sampling times. 

CASE STUDY 

To clarify the application of these concepts in food research, a case study is pro- 
vided, using literature data. Shin and Bhowmik (1995) studied the kinetics of total 
colour retention (-La/b, from the Hunter colour scale) and the kinetics of C. 
botulinurn spores thermal death in the thermal processing of pea puree. These 
quality and safety indicators show very different degradation (or death) rates and 
therefore provide a good basis for a case study. The system parameters are shown 
in Table 3. 

0.8 

rl 
0.6 

0.3 

v* (min) 

0.2 

0.1 

0.0 

(4 

time (min) 

time (min) 

Fig. 3. (a) Some typical thermal degradation profiles for the Bigelow model under non- 
isothermal conditions as influenced by the kinetic parameters (Dref and z) and by the 
experimental conditions (expressed in terms of To and m). (b) Corresponding normalized 

reaction rate profiles. The arrows indicate the effect of increasing the different parameters. 
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v* 1.0 
I 

vklx 
0.8 

0.6 

0.4 

0.2 

0.0 

0 20 40 60 80 100 

r (%I 

Fig. 4. Influence of the normalized reaction rates taken at each of the optimal sampling times 
and for t = 0 on the efficiency (0 of the optimal design for the Bigelow model under non- 

isothermal conditions. 

A 0.20 

T 

Optimal solution 
q=1/e 

0.16 

0.12 

0.08 

0.04 

0.00 

Clabirlium 
botulinum 

0.01 0.1 1 10 

time (mitt) 

100 1000 

Fig. 5. The design locus for the microbial and colour systems (Shin and Bhowmik, 1995) 
assuming the Bigelow model for a single temperature (T = 110°C). (The value of A for the 

colour system was multiplied by 25 for the sake of clearness). 



124 L. A4. Cunha et al. 

Isothermal conditions 

For the optimal sampling time for a single experiment, 110°C was considered. Dllo 
was calculated (0, r0(microbiar) = 2.7 min; D, 10(colourj = 51.9 min) and then by applica- 
tion of eqn (15) each of the optimal sampling times was obtained. Figure 5 shows 
the value of A as a function of the time at which the sample is taken, to visualise the 
maximum precision that is obtained with a sampling time where the conversion is 
l/e (1.2 and 22.5 min for microbial and quality factors, respectively). 

Considering that one would wish to verify the system parameters Dref and z, in the 
temperature range 100 to 120°C eqn (6) is used to calculate A. The optimal design 
implies performing one experiment at 100°C and another at 120°C and for each 
obtaining a sample at the time when the fractional concentration at that tempera- 
ture is l/e. The optimum sampling times are therefore different for the two factors. 

0.8 

0.6 

0.4 
_A 
,/ 

1 1-2 

0.2 

0.0 
0.0 0.2 '0.4 

/ 
0.6 0.8 1.0 

/ t12 
lie 

Fig. 6. Contour plot of A in the space of q, and q2 for the isothermal conditions in a range 
of temperatures - eqn 6 (Dref = 28.58 min, z = 42.87”C, T, = 100°C and T2 = 120°C) (darker 

areas correspond to lower values of A). 
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TABLE 3 
Optimal Sampling Times for Kinetic Studies of Microbial Death and Colour Degradation in 
Pea Puree (Shin and Bhowmik, 1995) with the Bigelow Model at Isothermal Conditions (for 

a Range of Temperatures 100°C < T i 120°C) 
-- 

System D I>) I OW 2 (“CI T (“C) t:’ (mir!) 
- 

100 1 I .75 
Clustridium hotulinum 0.21 10.00 
spores 120 0.12 

100 38.55 
Total colour (-La/h) 28.58 42.87 

120 13.15 
- 

“11, = l/e in all cases. 

The results are shown in Table 3. Figure 6 visualises the precision of the sampling 
design. Contour plots of iso-A values are shown for the fractional concentration at 
the sampling time used in the experiment at 100°C versus that of the experiment at 
120°C showing the maximum A when both are equal to l/e. It is important to note 

C botulinurn 

spores 

60 

Colour (-La/b) 

16 

Fig. 7. Influence of the heating rate (m) and of the initial temperature (T,) on the efficiency 
(<) of the optimal design for the Bigelow model under non-isothermal conditions, for two 

biological systems from pea puree (Shin and Bhowmik, 1995). 
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that for the microbial death kinetics, the sampling time at 120°C is too low. Non- 
isothermal methods might therefore be preferable. 

Non-isothermal conditions 

To establish the optimal design for a non-isothermal experiment, the physical limits 
of a Julabo heating oil (Julabo thermal H, JULABO Labortechnik GMBH, Seel- 
bath, Germany) were considered. The minimum recommended temperature is 50°C 
and the maximum heating rate is lCC/min. 

Figure 7 shows the efficiency of suboptimal designs for several combinations of 
heating rate and initial temperature. For the microbial death kinetics the initial 
temperature does not affect the efficiency too much. For an initial temperature of 
85°C very high efficiencies are obtained using heating rates above 4Wmin. Low 
initial temperatures should not be considered, as the microbial thermal death model 
does not obviously apply at 50°C. For the quality factor (colour change), however, 
high initial temperatures cause a significant loss of efficiency in the precision, which 
only the highest heating rates could compensate somewhat. However, this would 
imply a very short initial sampling time, specially for the microbial death rate, which 
is not physically reasonable. Therefore, this figure shows that the experiments for 
determining the kinetic parameters for the microbial system and for the quality 
system should not be the same. For the former, high initial temperature should be 
used, and for the latter the lowest initial temperature is recommended. In these 
conditions, heating rates around 4 to 8”C/min are good enough to have optimum 
precision. 

For instance, for the loss of colour, the initial temperature of 50°C and the 
heating rate of 8”C/min would have as optimum sampling times 10.4 and 14.0 
minutes, with design efficiency close to 100%. For the microbial death kinetics, the 
initial temperature of 85°C and heating rate of 4”C/min would give a design effi- 
ciency close to lOO%, but the sampling times would be 5.2 and 6.9 minutes. These 
values are very close and the error in the measurement of time, which is not 
accounted in this statistical analysis, is an additional source of error. It would be 
best to use a heating rate of l”C/min, with sampling times of 15.1 and 21.6 minutes, 
although the efficiency in the precision would then be around 93%. If the microbial 
death kinetics could be considered from 80°C onwards, then the initial temperature 
of 80°C with a heating rate of l”C/min would have close to 100% efficiency, with 
sampling times of 19.9 and 26.5 minutes. The final temperature (temperature at the 
second sampling time) would be around 107°C which is relatively low. A more 
reasonable design in relation to process temperatures would include higher initial 
temperatures and would have decreased precision. For instance, for a high initial 
temperature of 100°C and a heating rate of l”C/min, the sampling times are 3.6 and 
7.9 minutes and the efficiency is only 48%. 

CONCLUSIONS 

The D-optimal experimental designs for the Bigelow model and the first-order/ 
Arrhenius decay model under isothermal conditions are identical: this implies that 
experimental data obtained by the application of optimal design may be used to 
estimate the parameters of each model with similar precision. 
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Non-isothermal experiments using linearly increasing temperature histories should 
be started at the lowest possible temperature and use the highest possible heating 
rate. This is particularly important if the reaction under study has a low sensitivity 
to temperature (high z-values). When high heating rates may be applied, the effect 
of the initial temperature becomes less important. 

High efficiencies of the precision (above 80% of the maximum possible precision, 
quantified in terms of the size of the confidence region) imply a low initial reaction 
rate and that the maximum reaction rate occurs between the two sampling points. 

These conclusions should not be generalised for other kinetics. It is curious to 
note, for instance, that in a similar study conducted for diffusional processes where 
the influence of the temperature in the mass transfer rate is much lower, optimal 
results were obtained at intermediate heating rates, with both high and low heating 
rates decreasing the design efficiency (Oliveira et al., 1995). 
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