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ABSTRACT 

The goal of this work was to increase the amount of acyclovir (ACV) in the basal 

epidermis, site of Herpes virus simplex infections, using microparticles as carriers. 

Poly(DL-lactic-co-glycolic acid) (PLGA)-microparticles loaded with acyclovir were 

prepared using a solvent evaporation technique. ACV distribution into porcine skin after 

topical application of microparticles, during 6, 24 and 88 h, was determined by 

horizontal slicing of the skin. ACV suspension served for comparison. The results 

showed that, at 6 and 24 h, the quantity of the drug in the basal epidermis, with the 

microparticles, is similar to that obtained with the acyclovir suspension. However, after 

88 h, the acyclovir reservoir in the basal epidermis was higher with microparticles 

compared with the control suspension. This fact could be explained by the controlled 

drug released produced by the vector in the basal epidermis. Besides, at 88 h the amount 

of acyclovir detected in the receptor chamber of the diffusion cells was much lower with 

the microparticles than with the suspension. This kind of carriers can improve acyclovir 

topical therapy since they increased drug retention in the basal epidermis and 

consequently increased the time intervals between doses. 
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1. INTRODUCTION 

Acyclovir (ACV), a synthetic analogue of 2’-deoxiguanosine, is one of the most 

effective and selective agents against viruses of the herpes group. ACV is active against 

herpes simplex virus type 1 (HSV-1), herpes simplex virus type 2 (HSV-2), varicella 

zoster virus, and in a less extent against Epstein-Barr virus and cytomegalovirus. The 

mechanism of action of this drug has been extensively studied, and its antiviral activity 

has been shown to result from the inhibition of herpesvirus DNA replication [1].  

ACV was effective against cutaneous infections due to HSV-1, whose target site is the 

basal epidermis. However, it has been suggested that ACV topical therapy has a low 

efficacy, due to the lack of penetration of an enough amount of drug to the target site 

[2]. In this way, Parry et al. [3] found a good relationship between the free drug 

concentration at the basal epidermis and the in vivo antiviral efficacy for a variety of 

ACV topical formulations. Consequently, the quantification of ACV within the different 

strata of the skin will be essential to determinate its effectiveness.  

The literature reports have documented different methodologies for quantifying drug 

amounts within the skin e.g. skin extraction measurements [4], horizontal stripping and 

sectioning [5], quantitative autoradiography and spectroscopic methods [6-7]. 

Horizontal sectioning on a freeze microtome provides information on drug localisation 

and allows to determinate the penetrant concentration-depth profile. For that reason, this 

method has been employed by several authors [3,8] in order to obtain the ACV 

concentration at different skin depths.  

The development of an effective ACV topical preparation prompted researchers to try 

several approaches. In some studies, superior antiviral activity was demonstrated using 

differents vehicles [9], percutaneous absorption enhancers [10] and iontophoresis [8]. 

Another possible strategy to achive site-specific drug delivery [11] would be the use of 
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particulate drug carriers (microparticles and nanoparticles). These carriers possess some 

advantages for the topical application, since the sustained release is important to supply 

the skin with the drug over a prolonged period of time. Indeed, Boutounne et al. [12] 

reported that chlorhexidine nanoparticles allowed to improve the drug permanence into 

the skin and to decrease the chrlorhexidine transdermal delivery. Also, Jenning et al. 

[13] showed that vitamin A loaded solid lipid nanoparticles delivered effectively the 

drug to the upper skin layers, but in the deeper skin strata the drug levels appeared not 

to increase. 

The objective of this work was to obtain a high quantity of ACV in the basal epidermis, 

where viral lesions are usually located, with the use of ACV loaded microparticles. For 

this purpose, the amount of ACV accumulated in the different strata of porcine skin was 

determinated and compared with a control suspension. Besides, the flux through the 

skin into the systemic circulation was evaluated with these formulations. This study also 

involves the preparation of PLGA microparticles containing ACV, their characterisation 

and their in vitro evaluation. 

 

2. MATERIALS AND METHODS 

2.1. Materials 

Acyclovir was a gift from Glaxo-Wellcome (Madrid, Spain). Poly (D,L-lactid-co-

glycolid acid) (PLGA) Resomer® RG 502 H, 12000 daltons MW, have been purchased 

from Boehringer Ingelheim (Ingelheim, Germany). Polyvinyl alcohol (PVA) MW 

115000 was supplied by BDH (Poole, England) and dichloromethane was provided by 

Prolabo (Fontenay, France). All other chemicals were obtained from Sigma (St. Louis, 

USA) and Merck (Darmstadt, Germany) and they were of HPLC analytical grade. 
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2.2. Preparation of microparticles 

ACV-containing microparticles were prepared using a solvent evaporation technique. 

100 mg of ACV were dispersed in 16% (w/v) polymer solution in dichloromethane. The 

resulting dispersion was added to 30 mL of a 0.5% PVA solution and homogenised 

using an ultraturrax® (Euro Turrax T20b IKA Labortechnik, Staufen, Germany) for 1 

minute. This mixture was stirred at 25ºC for at least 3 h until complete solvent 

evaporation. Microparticles were collected by centrifugation (3000 rpm for 10 min, 

Biofuge stratus Heraeus Instruments, Hanau, Germany), washed 3 times with distilled 

water, freeze-dried for 48 h (Virtis Genesis 12 EL, Gardines, NY) and stored at 4ºC.  

An ACV suspension in water containing 15 mg of drug was used as a control. The 

particle size and the polydispersity of the suspension were measured by laser light 

diffraction (Mastersizer® S, Malvern Instruments, UK). 

 

2.3. Microparticle characterisation 

2.3.1. Morphology and size of the microparticles  

For morphological examinations, microparticles were placed on sample holders, 16 nm 

gold-coated (Emitech K550, England) and then viewed with a Scanning Electron 

Microscopy (SEM; Scanning digital electron microscope DSM-940A, Zeiss, Germany). 

Microspheres diameter and size distribution were measured by laser light diffraction 

(Mastersizer® S, Malvern Instruments, UK). The average particle size was expressed as 

the volume mean diameter in micrometers. 

2.3.2. Determination of ACV content in the microparticles 

The ACV content in the PLGA microspheres was determinated by using a UV-

spectrophotometer (Diode-array HP 8452 AX, Waldbronn, Germany) at 252 nm. The 

ACV loaded microspheres were dissolved in 2 mL of dichloromethane, and the drug 
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was extracted twice with 6 mL of NaOH 10-4 M. The entrapment efficiency of ACV was 

calculated as the ratio of actually measured to theoretical (nominal) drug content in 

microspheres.  

2.3.3. In vitro ACV release studies 

In vitro drug release profiles were obtained by incubating the microparticles (approx. 5 

mg accurately weighed) in a 1.5 mL of phosphate-buffered saline (PBS) (pH 7.4) 

containing 0.02% sodium azide as a bacteriostatic agent. Incubation took place in 

rotating vials at 37ºC. At predetermined time intervals (1, 6 h and 1, 2, 4,7 days), the 

samples were centrifuged at 17000 rpm for 15 min, and ACV concentration in the 

supernatant was quantified by UV spectrophotometer at 252 nm.  

2.4. Skin permeation experiments 

Porcine ears were obtained from the local slaughterhouse and after cleaning them under 

cold running water, the outer region of the ear was cut. The whole skin was dermatomed 

(AESCULAP®, Tuttlingen, Germany) to 1.2 mm and immediately frozen at –20ºC. Skin 

was allowed to hydrate for 1 h before being mounted on the Franz type diffusion cells, 

with an available diffusion area of 1.76 cm2, (FDC-400, Grown Glass Company, 

Somerville, NY), with the stratum corneum facing the donor compartment. 

In this study, 1 mL of microparticles containing ACV (15 mg) or the drug suspension 

(15 mg) were placed, on the skin surface, in the donor chamber. The receptor chamber 

contained 11 mL of phosphate buffer solution (pH 7.4) consisted of 1.787 g of KH2PO4 

1/15 M and 9.531 g of Na2HPO4 1/15 M in 1 L with a ionic strength of 0.266 M. At 

given time intervals, 400 μL aliquots were collected and replaced with the same volume 

of fresh buffer. The receptor medium was maintained at 37±1ºC and stirred at 600 rpm 

using magnetic stirring bars. 
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The samples were analysed by high-performance liquid chromatography (HPLC 

Hewlett-Packard 1100) with ultraviolet detection (λ=252 nm). The column used was a 

reversed-phase 250X4 mm C8 LiChrospher Select B (5 μm) provided by Merck. The 

mobile phase consisted of acetonitrile/ammonium acetate (1:99). The flow-rate was 1.0 

mL min-1 and the temperature was 20ºC. The HPLC method for ACV quantification 

either in the skin or in the receptor compartment has been previously validated. The 

detector response was found to be linear in the concentration range 0.05 to 10 μg/mL 

(r>0.999). Accuracy and precision values were always below 5% and the limit of 

quantification of the method was 0.009 μg/mL. 

 

2.5. Horizontal skin sectioning and drug extraction 

After permeation experiments, the skin was removed (1.76 cm2) and rinsed with 

distilled water. This procedure was repeated three times. Then, the skin was frozen in 

liquid nitrogen and cut with a freeze microtome (2800 Frigocut E, Reichert-Jung, 

Germany) in order to get horizontal slices of 30 μm. ACV was extracted from the slices 

with 200 μl of distilled water at 60ºC ± 5ºC for 15 min. After cooling, perchloric acid 

was added to precipitate proteins and the mixture was centrifuged at 8000 rpm (Biofuge 

stratus Heraeus Instruments, Germany). The extract was then analysed by HPLC. For 

the calibration procedure, blank samples of slices of skin were spiked with three 

different known amount of ACV solution, and after 3 h of contact, were extracted as 

previously described. The extraction recovery was measured comparing the amount of 

ACV added and extracted. The skin slices were from the different animals and from 

different depths. Satisfactory recoveries were obtained from all samples tested (>95%).  

ACV concentration was expressed as μg of ACV/cm3 of skin. 

2.6. Statistics 
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All data are presented as arithmetic mean values ± standard error (S.E.). Significant 

differences were analysed using Shapiro-Wilk, F-, and Student’s t-test, P ≤ 0.05 was 

considered significant [13]. 

 

3. RESULTS AND DISCUSION 

3.1. Microparticles characterisation 

Microparticles had unimodal distribution with diameters between 1 and 10 μm and a 

volume mean diameter of 4.7 ± 0.28 μm. SEM micrographs of the particles showed 

spherical and well individualized microspheres (Fig. 1). The encapsulation efficiency 

was 50±5% (62.5 μg ACV/mg polymer). 

The release profiles of ACV from PLGA microparticles were carried out in PBS pH 7.4, 

drug release within the first hour (also called burst release) was 80% of the actual 

loading, corresponding to 50 μg ACV/ mg polymer. After the burst, an additional 20% 

of the drug was released within 7 days (Fig. 2). The amount of ACV remaining in the 

microparticles after 7 days, (after dissolving the particles in dichloromethane and 

extracting the ACV with 6 mL of NaOH 10-4 M), was 3.07 ± 1.03 mg. These results 

suggest that most of ACV is located at the particles surface, although a part of ACV is 

entrapped within the particles. For topical application both features are of interest, since 

burst release can be useful to improve the initial penetration of the drug and sustained 

release becomes important to supply the skin with ACV over a prolonged period of 

time. 

Recently, several authors proposed microparticles loaded with ACV for ophthalmic 

administration. Conti et al. [14] achieved good encapsulation efficiencies by spray-

drying technique, although the mean particle size (7 μm) was bigger than the one 

presented in this work. Genta et al. [15] have also prepared acyclovir-loaded chitosan 
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microspheres by a W/O/W technique with similar size to ours, although the 

encapsulation efficiency was much lower (between 14.4 and 28.71%).  

3.2. Skin distribution of ACV loaded microparticles 

In a previous work [16-17] we have shown that PLGA microparticles can penetrate 

through stratum corneum and reached the basal epidermis, the target site of the HSV-1 

infection.  

ACV distribution into porcine skin, after topical application of microparticles during 6, 

24 and 88 h, was determined by horizontal slicing of the skin. ACV suspension in water 

served for comparison. The particle size of the drug in the suspension used was 8.65 ± 

0.24 μm with an unimodal distribution. In this case, the solubility of ACV at 37ºC was 

2.35 mg/mL.  

Porcine skin was chosen because it is structurally the most similar to human skin [18-

19] and it is well suited for representing the human skin permeability [20]. Jenning et al. 

[13] reported, using the light microscopy, that in the porcine skin, the upper 100 μm 

represent mainly the stratum corneum and upper layers of viable epidermis and between 

100-200 μm consists basically of viable epidermis and the dermis is located from 200 to 

500 μm. In the same way, Parry et al. [3] assumed that human skin has a thickness of 40 

μm for hydrated stratum corneum, 115 μm for the epidermis and 460 μm for the dermis. 

According to these data and to the skin morphology of the different slices, we assumed 

that basal epidermis (site of herpes virus lesions), it is located between 120-150 μm.

Fig. 3a showed the quantity of ACV detected, in the different strata of skin, 6 h after 

topical application of microparticles (15 mg of drug) and the control suspension (15 

mg). The amount of ACV found, until 180 μm of depth, was slightly higher with 

microparticles than with the control suspension. However, from 180 to 600 μm, there 

were no significant differences between the two formulations. The higher concentration 
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in the first layers of the skin, after microparticles application, could be explained by the 

occlusive effect, since microparticles produced a film, on the skin surface, which 

reduces the transepidermal water loss and favours drug penetration into the skin. 

According to these data, several authors [13,21] have observed the same feature using 

solid lipid nanoparticles. 

Fig. 3b showed the distribution profile of ACV in different skin layers at 24 h. The 

profiles obtained were similar to that reported at 6 h, but at 24 h the amount of the drug 

found in all depths was higher. At this time, no significant differences were found 

between the microparticles and the suspension. 

During the first 24 h of the experiment, the ACV concentration found into the skin, after 

microparticles application, is mainly due to the free ACV coming from the initial burst 

release. In order to evaluate the sustained release of these forms experiments at 88 h 

were carried out, since at this time, ACV loaded microparticles started to release the 

encapsulated drug. Besides, the integrity of the membrane barrier can not be confirmed 

for a longer period of time. To guarantee this integrity, the skin was observed by light 

microscopy before and after the permeation experiments, and no skin structural 

alterations were found. At 88 h, different profiles were obtained with microparticles and 

control suspension (Fig. 3c). Indeed, with microparticles, the amount of ACV 

accumulated in the different strata of skin showed a similar profile to that obtained at 6 

or 24 h, although the concentration of the drug in different layers was higher. However, 

with the ACV suspension, the distribution profile at 88 h was totally different, in this 

case the accumulation of ACV in the skin increased until 300 μm, and from this depth 

to 600 μm the profiles resulted practically constant versus depth. At the basal epidermis, 

(120-150 μm) targed site of herpes virus, the quantity of ACV found with 

microparticles was higher that with the suspension (significant differences, P ≤ 0.05, 
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were found) and this difference pointed out the relevance of this carrier system for ACV 

topical delivery.  

Several studies [1] have shown that at concentration of about 0.01 to 0.7 μg/mL, ACV 

can be useful for a 50% inhibition of the viral cytopathic effect (ID50). According to the 

results, tissue concentrations obtained after microparticles application were higher than 

the ID50 reported. 

The ACV concentration in the receptor side of the diffusion cells, from microparticles 

and control suspension, are shown in the Fig. 4. In both experiments, 15 mg ACV were 

applied to the skin. During the first 24 h, there were no differences in the amount of 

ACV in the receptor medium. Nevertheless, 88 h after topical application of both 

formulations, a 3.45 times higher drug concentration was measured for the control 

suspension compared to microparticles. These data were in agreement with the amount 

of ACV accumulated in the different strata of porcine skin, since at 88 h, the quantity of 

the drug found in deep strata (600 μm) was much higher with the control suspension 

than with microparticles (Fig. 3c). Consequently, this work showed that the use of ACV 

loaded microparticles increases drug retention in the basal epidermis and decreases the 

drug permeation through the skin. 

 

4. CONCLUSIONS 

ACV loaded PLGA microparticles, prepared using a solvent evaporation technique, 

yields uniform size microspheres and a good encapsulation efficiency. The distribution 

profile of ACV in different skin layers, after topical application of microparticles, at 6 

and 24 h are similar to that obtained with the control suspension. However, at 88 h the 

microparticles provided higher concentration of ACV in the basal epidermis than 
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control suspension. This result is in agreement with the greater ACV concentration 

found in the receptor compartment with the control suspension at 88 h. 

Consequently, microparticles represent a good delivery system to retard the release rate 

of ACV into the skin. Indeed, they could improve topical therapy by increasing the time 

intervals between doses. 
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Fig. 1. 
Figure 1. Scanning electron micrograph of ACV loaded microparticles (bar = 5 μm). 
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Fig. 2. 

Figure 2. In vitro release of ACV from PLGA microparticles in PBS at 37ºC 

(mean±S.D., n=3). 
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(c) 

Figure 3. Distribution of ACV, in porcine skin layers, following topical administration 

of microparticles (u) and control suspension (n) as a function of time:(a) 6 h (b) 24 h (c) 

88 h. Each point represents the mean value ± S.E. (n = 3).
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Figure 4. Amount of ACV permeated through porcine skin, as a function of time, from 

microparticles (u) and control suspension (n). Each point represents the mean ± S.E. of 

three experiments.  
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