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Abstract

Recent experiments [1] on two–frequency parametrically excited surface waves produce an
intriguing “superlattice” wave pattern near a codimension–two bifurcation point where both
subharmonic and harmonic waves onset simultaneously, but with different spatial wavenumbers.
The superlattice pattern is synchronous with the forcing, spatially periodic on a large hexagonal
lattice, and exhibits small–scale triangular structure. Similar patterns have been shown to
exist as primary solution branches of a generic 12–dimensional D6+̇T2–equivariant bifurcation
problem, and may be stable if the nonlinear coefficients of the bifurcation problem satisfy
certain inequalities [2]. Here we use the spatial and temporal symmetries of the problem to
argue that weakly damped harmonic waves may be critical to understanding the stabilization of
this pattern in the Faraday system. We illustrate this mechanism by considering the equations
developed by Zhang and Viñals [3] for small amplitude, weakly damped surface waves on a
semi–infinite fluid layer. We compute the relevant nonlinear coefficients in the bifurcation
equations describing the onset of patterns for excitation frequency ratios of 2/3 and 6/7. For
the 2/3 case, we show that there is a fundamental difference in the pattern selection problems
for subharmonic and harmonic instabilities near the codimension–two point. Also, we find that
the 6/7 case is significantly different from the 2/3 case due to the presence of additional weakly
damped harmonic modes. These additional harmonic modes can result in a stabilization of the
superpatterns.

∗To appear in a special issue of Physica D dedicated to the memory of John David Crawford.
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1 Introduction

Faraday waves are parametrically excited on the free surface of a fluid layer when it is subjected to
a vertical vibration of sufficient strength. This pattern–forming hydrodynamic system has proven
to be an especially versatile one in laboratory experiments [4, 5], exhibiting the common patterns
familiar from convection (stripes, squares, hexagons, spirals), as well as more exotic patterns such
as triangles [6], quasipatterns [1, 7, 8], superlattice patterns [1, 9, 10], time–dependent rhombic
patterns [11] and localized waves [9, 12]. See [13] for a recent review paper on Faraday wave
pattern formation.

The temporal period of the Faraday waves is typically twice that of the vibration in the case of
purely sinusoidal forcing. The observation of this subharmonic response is attributed to Faraday [14]
and was first explained theoretically by Benjamin and Ursell’s linear stability analysis for inviscid,
potential flow [15]. More recently it has been shown that waves, synchronous with the forcing,
can be excited in thin layers of fluid vibrated at low frequency [16, 17, 18]; in certain viscoelastic
fluids [9]; and in fluids forced periodically, but with more than one frequency component [7, 19, 20].
In each of these Faraday systems it is possible to tune the forcing parameters in order to access
the transition between subharmonic and harmonic response. At this codimension–two point, both
instabilities set in simultaneously, but with different spatial wavenumbers.

Many of the experimental [6, 7, 10, 11, 12, 21, 22] and theoretical studies [3, 23, 24, 25] of
exotic patterns in the Faraday system attribute their formation near the codimension–two (or
“bicritical”) point to resonant triad interactions involving the critical or near–critical modes with
different spatial wavenumbers. In particular, the focus has been on spatial triads k1, k2 and
k3 = k1±k2, where |k1| = |k2| is the wavenumber of one critical mode, and |k3| is the wavenumber
of the other critical mode. The angle θr, which separates k1 and k2, is readily tuned by changing
the frequency components mω and nω of a two–frequency periodic forcing function. It has been
suggested, for example, that by tuning this angle, different types of exotic wave patterns may be
selected [7]. Such a simple mechanism for nonlinear pattern selection, which is based on examining
the linear instabilities of the spatially homogeneous state, is naturally attractive, but warrants
careful examination as we show.

Silber and Skeldon [26] recently showed that whether or not resonant triads associated with the
bicritical point affect pattern selection depends on the temporal characteristics of the competing
instabilities. For instance, the bicritical point of laboratory experiments typically involves a sub-
harmonic mode (Floquet multiplier −1) and a harmonic mode (Floquet multiplier +1). On the
subharmonic side of the bicritical point, the onset pattern selection problem is strongly influenced
by the presence of the weakly damped harmonic mode. In contrast, on the harmonic side, the
onset pattern selection problem is completely insensitive to the presence of near critical subhar-
monic modes. These general ideas were demonstrated in [26] through a bifurcation analysis of a
hydrodynamic model of one–dimensional Faraday waves.

Here, we extend the bifurcation analysis in [26] to two–dimensional spatially–periodic pat-
terns and to higher forcing frequencies within the two–frequency forcing function. With the
experimentally–relevant higher forcing frequencies (e.g. 6ω and 7ω) employed in this paper, we
find the new possibility that spatially–resonant triads involving nearly critical harmonic modes
may influence the harmonic wave pattern selection problem. This is not an option for the lower
forcing frequencies (e.g. 1ω/2ω and 2ω/3ω) used in previous weakly nonlinear analyses of the
two–frequency Faraday problem [23, 26].
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We follow J.D. Crawford’s seminal work on Faraday waves [27, 28, 29, 30] by posing the pat-
tern selection problem in terms of a symmetry–breaking bifurcation of the trivial fixed–point of a
stroboscopic map. By restricting solutions to those that are spatially–periodic on some hexagonal
lattice we obtain a finite–dimensional bifurcation problem that can be analyzed using the meth-
ods of equivariant bifurcation theory [31]. For a review of this approach to hydrodynamic pattern
formation problems, see Crawford and Knobloch [32].

This formulation of the bifurcation problem allows us to address recent two–frequency Fara-
day wave experimental observations [1] of a transition between simple hexagons and the triangular
superlattice wave pattern depicted in Figure 1a. Specifically, we follow [2] and consider a bifur-
cation problem that is equivariant with respect to a twelve–dimensional irreducible representation
of D6+̇T2, which is analyzed in [33, 34]. The observed harmonic wave states correspond to pri-
mary transcritical branches of the generic bifurcation problem. In order for the observed hexagon–
superlattice pattern transition to be reproduced by the bifurcation problem, we must consider a
degenerate case in which the quadratic coefficient vanishes. Moreover, the cubic coefficients must
satisfy certain inequalities, e.g. certain combinations of nonlinear cross–coupling coefficients must
be small compared to the cubic self–coupling coefficient.

In this paper we compute the quadratic and cubic nonlinear coefficients in the bifurcation
problem from the Zhang–Viñals equations [23] which apply to deep layers of low viscosity fluids
subjected to a periodic acceleration. We show that the necessary inequalities for stable superlattice
patterns can be satisfied for the forcing frequencies employed in the experiments (6ω/7ω), and
that a resonant triad involving a weakly damped harmonic mode plays a key role in stabilizing
the superpattern. Specifically, we find that the presence of a near critical harmonic mode leads
to a cancellation in one of the cubic cross–coupling coefficients, causing this coefficient to become
small in magnitude as required. This selects a preferred angle θr for the superlattice patterns. In
other words, it suggests which of the countably infinite 12–dimensional irreducible representations
of D6+̇T2 is most pertinent to this Faraday wave problem.

The paper is organized as follows. Section 2.1 presents background linear stability results for
the two–frequency Faraday experiment, while section 2.2 reviews results from [26] on the influence
of spatio–temporally resonant triads on pattern selection. Section 2.3 then formulates the generic
bifurcation problem relevant to our investigation. The bifurcation results derived from the two–
frequency Faraday problem modeled by the Zhang–Viñals equations are presented in Section 3;
the coefficients of the leading nonlinear terms are evaluated numerically from expressions derived
perturbatively in the Appendix. We consider two different cases. In Section 3.2 we consider an
example involving forcing frequencies in ratio m/n = 2/3, focusing on differences between the
pattern selection problems for subharmonic and harmonic wave onset in a vicinity of the bicritical
point. Section 3.3 then turns to an example involving higher forcing frequencies in ratiom/n = 6/7,
and shows how weakly damped harmonic modes can stabilize harmonic wave superpatterns involving
the angle θr associated with a harmonic wave resonant triad. Finally, Section 4 concludes the paper
with a brief summary of our results and some discussion of issues we hope to address in the future.

2 Background
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2.1 Linear Results

In the two-frequency Faraday wave problem a container of fluid is accelerated in the vertical direction
with an excitation of the form

g(t) = g0 + gz
(
cos(χ) cos(mωt) + sin(χ) cos(nωt+ φ)

)
. (1)

Here m and n are co–prime integers, so the forcing function is periodic with period T = 2π
ω
, and g0

is the usual gravitational acceleration. For small amplitude acceleration gz the surface of the fluid
remains flat and the fluid layer is merely translated up and down with the drive. For higher values
of gz waves are parametrically excited on the surface of the fluid layer.

Besson, Edwards and Tuckerman [20], starting with the Navier–Stokes equations for the free
boundary problem, determined the linear stability of the flat surface in the case that the fluid layer
has finite depth but is unbounded horizontally. They used a Floquet-Fourier ansatz and solved
the linear stability problem numerically to determine, for each spatial wavenumber k, the value of
gz where a Floquet multiplier first crosses the unit circle. The resulting neutral stability curves
show that the primary instability is to either subharmonic or harmonic waves depending on the
value of χ and the values of m and n. (Harmonic/subharmonic response is relative to the forcing
period T = 2π/ω.) Typically, if χ is small so that cos(χ) cos(mωt) is of greater significance than
sin(χ) cos(nωt + φ), then the response is harmonic if m is even and subharmonic if m is odd.
Similarly, if χ is close to π/2, the primary instability is (sub)harmonic if n is even (odd). At the so–
called bicritical point, χ = χc, both harmonic and subharmonic instabilities onset at the same value
of the excitation amplitude, but with different wavenumbers. The harmonic superlattice pattern
of Figure 1a, observed by Kudrolli, Pier and Gollub [1], was obtained near the bicritical point for
m/n = 6/7 forcing in (1). The pertinent neutral stability curve, computed using the experimental
fluid parameters, is given in Figure 1b.

2.2 Spatio–Temporally Resonant Triads

When the hydrodynamic problem is posed on a horizontally unbounded domain there is no pre-
ferred direction (in the horizontal) so that each critical wavenumber from linear analysis actually
corresponds to a circle of critical wavevectors. There are two such critical circles at the bicritical
point, as shown in Figure 2. In this situation it has been argued that resonant triads may play a
central role in the Faraday wave pattern selection problem [7, 6, 22, 23, 24]. Resonant triads are
comprised of three critical wavevectors that sum to zero; two examples are shown in Figure 2. In
the first example, km1

+km2
−kn = 0, and in the second example kn1

−kn2
−km = 0. Here them,n

subscripts indicate that the critical wavenumbers can be roughly associated with the mω and nω
excitation terms in (1). We identify with each resonant triad an angle θr ∈ (0, π2 ], which separates
the critical wavevectors with the same length. For instance, the angle in Figure 2b satisfies

cos
(θr
2

)
=

kn
2km

, (2)

while the angle in Figure 2c satisfies

sin
(θr
2

)
=

km
2kn

. (3)
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Figure 1: (a) Blow up of the experimental superlattice Faraday wave pattern described in [1]
(courtesy of Kudrolli, Pier and Gollub). The forcing function (1) has m/n = 6/7, χ = 61◦ and
φ = 20◦. Note that the pattern is periodic on a (large) hexagonal lattice, and that in each hexagonal
‘tile’ there is small triangular structure. (b) The corresponding neutral stability curve, calculated
from the full (linearized) hydrodynamic equations, for the experimental parameters reported in [1].
(Sub)harmonic resonance tongues are given by solid (dashed) lines. The neutral curves are com-
puted using the method described in [20].
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Figure 2: (a) A plot of a neutral stability curve gz(k) showing minima at k = km and k = kn. (b)
An associated spatially resonant triad km1

, km2
and kn = km1

+ km2
. (c) An associated spatially

resonant triad kn1
, kn2

and km = kn1
− kn2

.
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To illustrate the potential for resonant triads to influence pattern formation in parametrically
excited systems we consider a bifurcation problem involving the three critical Fourier modes associ-
ated with the resonant triads of Figure 2. Much of this discussion is a review of the key theoretical
ideas in [26]. Because of the periodic forcing of the system, it is natural to formulate the bifurca-
tion problem in terms of a stroboscopic map [27]. Specifically, we denote the free surface height
z = h(x, t) (x ∈ R

2) at time t = pT (p ∈ Z) by

h(x, pT ) = A(p)eikl1
·x +B(p)eikl2

·x + C(p)ei(kl1
+kl2

)·x + c.c.+ · · · . (4)

Here A,B and C are the complex amplitudes of the linear modes that are neutrally stable at the
bicritical point and which form a resonant triad. In this discussion we assume that the angle θr
between kl1 and kl2 is not π/3 so that the critical modes interact nonlinearly to generate other
modes on a rhombic (rather than hexagonal) lattice. These additional modes, denoted by · · · above,
are linearly damped at the bicritical point. We may then use the spatial reflection and translation
symmetries to determine the general form of the bifurcation equations that govern the dynamics
on a center manifold. Specifically, to cubic order, the codimension–two bifurcation problem takes
the form

A → σA+ αBC + (a|A|2 + b|B|2 + c|C|2)A
B → σB + αAC + (a|B|2 + b|A|2 + c|C|2)B (5)

C → µC + δAB + (d|A|2 + d|B|2 + e|C|2)C ,

where A is the complex conjugate of A, and the coefficients are all real. The Floquet multipliers σ
and µ are either +1 or −1 depending on whether the linear modes A, B, and C are harmonically
or subharmonically excited, respectively.

In deriving (5) we considered only the spatial symmetries associated with the resonant triad.
Following [27], we enforce the temporal symmetry associated with the triad through a normal
form transformation of (5). Specifically, there exists a near–identity nonlinear transformation that
removes all nonlinear terms in (5) which do not commute with LT , where L is the Jacobian matrix
associated with the linearized problem (see, for example, Crawford’s review paper on bifurcation
theory [35]). Here

L =



σ 0 0
0 σ 0
0 0 µ


 , (6)

where |σ| = |µ| = 1. The normal form symmetry may be interpreted in terms of time–translation.
Specifically, advancing by one period in time maps period–doubled modes to their negatives, e.g.
if µ = −1, then advancing one period takes C → −C.

In the case that µ = +1 (σ = ±1), the bifurcation problem (5) is already in normal form.
This observation is trivial if σ = +1. If σ = −1, then the normal form symmetry is equivalent
in action to that associated with the spatial translation symmetry x → x + d, where d satisfies
kl1 · d = kl2 · d = π.

In contrast, in the case that µ = −1, a normal form transformation removes the quadratic terms
in the bifurcation problem (5). The normal form of the bifurcation problem, through cubic order,
is then

A → σA+ (a|A|2 + b|B|2 + c|C|2)A
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B → σB + (a|B|2 + b|A|2 + c|C|2)B (7)

C → −C + (d|A|2 + d|B|2 + e|C|2)C .

We note that C = 0 is a dynamically–invariant subspace of (7). This is true to all orders of the
normal form since C = 0 is the fixed point subspace of a (spatio–)temporal symmetry. Specifically,
if σ = +1 then C = 0 is the fixed point subspace associated with the time translation by one–period,
i.e., (A,B,C) → (A,B,−C). And if σ = −1, then C = 0 is the fixed–point subspace associated
with the spatio–temporal symmetry involving time translation by one period followed by spatial
translation by d, where again kl1 · d = kl2 · d = π.

We now examine (5) more closely in the case that µ = +1 so that we cannot remove the
quadratic nonlinearities by normal form transformation. We focus on a detuning from the bicritical
point such that the C mode is weakly damped, while the A,B modes are neutrally stable. In this
case, |σ| = 1, µ < 1, we can further reduce the bifurcation problem to one involving the critical
modes A and B, with C constrained to the center manifold: C = δ

(1−µ)AB + · · ·. We then obtain

the reduced bifurcation problem

A → σA+ a|A|2A+ β(θr)|B|2A
B → σB + a|B|2B + β(θr)|A|2B , (8)

where the cross–coupling coefficient is

β(θr) = b+
αδ

(1− µ)
. (9)

We see that in this case, the near critical spatio–temporally resonant mode C in (5) can contribute
significantly to the cross-coupling coefficient β(θr) since 0 < 1 − µ ≪ 1 in (9). For example, for
µ sufficiently close to 1, the second term in (9) dominates and β(θr) becomes large in magnitude.
However, we also point out that if b and αδ have opposite signs, then β(θr) could actually vanish
for some µ−1 > 0. Examples of these two very different situations are given in sections 3.2 and 3.3,
respectively.

We contrast the above with what happens when µ = −1 at the bicritical point. In this case
α = δ = 0 in the normal form (7) and C = 0 is an invariant subspace with associated dynamics of the
form (8) with β(θr) = b. In this case, the triad is spatially resonant, but not temporally resonant,
and the cross–coupling coefficient is insensitive to any parameter proximity to the bicritical point.

These observations about β(θr) are important for understanding which patterns might be ob-
servable near onset since branching direction and stability of patterns are determined by various
nonlinear (cross–coupling) coefficients in the amplitude equations. We discuss this further at the
end of Section 2.3.

Finally we note that similar results to the µ = −1 case above apply when there are weakly
damped modes with complex Floquet multipliers. Specifically, these modes do not contribute sig-
nificantly to the cubic cross–coupling coefficient β(θ), even when they are spatially resonant with the
critical modes. Only damped modes with Floquet multiplier µ sufficiently close to +1 contribute.
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2.3 Hexagonal Lattice Bifurcation Problem

The analysis of the previous section led to certain conclusions about the nonlinear coefficients in
the general rhombic lattice bifurcation problem

v1 → σv1 + (a|v1|2 + β(θ)|v2|2)v1
v2 → σv2 + (a|v2|2 + β(θ)|v1|2)v2. (10)

Here v1, v2 are the complex amplitudes of two critical Fourier modes with wavevectors k1, k2

(|k1| = |k2| = kc) that are separated by an angle θ ∈ (0, π2 ] (θ 6= π
3 ). In particular, it follows

from (9) that if a weakly damped harmonic mode is removed via center manifold reduction, then
β(θ) may become large in magnitude when the spatial resonance condition is met, i.e. when θ = θr.
This is in contrast to the situation where there are weakly damped subharmonic modes, which have
no special influence on the pattern selection problem at onset.

We now lay the framework for examining possible implications of these results for stability of har-
monic hexagonal and triangular superpatterns. We follow [2] and introduce the twelve–dimensional
D6+̇T2–equivariant bifurcation problems that enable us to determine the relative stability of simple
hexagonal patterns, stripe patterns and certain rhombic and superlattice patterns. We make use of
bifurcation results derived in [2, 33, 34], which apply when there is a single critical wavenumber kc,
to demonstrate how the magnitude of the cross–coupling terms are pivotal in determining pattern
stability. As before, we consider a stroboscopic map, but now restrict analysis to patterns that are
doubly–periodic on some hexagonal lattice. For instance, the free surface height takes the form

h(x, pT ) =
∑

m∈Z2

ĥm(p)ei(m1k1+m2k2)·x + c.c. (11)

at time t = pT , where k1,k2 ∈ R
2 generate a hexagonal dual lattice (|k1| = |k2| and k1 · k2 =

− 1
2 |k1|2); see Figure 3.
The twelve–dimensional irreducible representations of D6+̇T2 apply to the bifurcation problem

when there are twelve integer pairs (m1,m2) in (11) such that |m1k1 + m2k2| = kc, where kc is
the critical wavenumber of the instability at the bifurcation point. See Figure 3 for an example.
Following [33] we will associate with each twelve–dimensional irreducible representation an integer
pair (n1, n2); in particular n1 and n2 are co–prime, n1 > n2 > n1/2 > 0, and n1 + n2 is not a
multiple of 3. The neutral modes that span the center eigenspace at the bifurcation point take the
form

{z1 eiK1·x + z2 e
iK2·x + z3 e

iK3·x + z4 e
iK4·x + z5 e

iK5·x + z6 e
iK6·x + c.c.|zj ∈ C}, (12)

where

K1 = n1k1 + n2k2, K4 = n1k1 + (n1 − n2)k2,

K2 = (−n1 + n2)k1 − n1k2, K5 = −n2k1 − n1k2, (13)

K3 = −n2k1 + (n1 − n2)k2, K6 = (n2 − n1)k1 + n2k2 .

Note that ±K1,±K2,±K3 point to the vertices of a hexagon, as do ±K4,±K5,±K6, and that the
two hexagons are rotated relative to each other by an angle θh ∈ (0, π3 ) indicated in Figure 3. This
angle is related to (n1, n2) by

cos(θh) =
n2
1 + 2n1n2 − 2n2

2

2(n2
1 − n1n2 + n2

2)
. (14)
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Figure 3: Hexagonal k–space lattice, with critical circle of radius kc superimposed. In this example
(n1, n2) = (3, 2) in (13), and the critical circle intersects twelve points that lie at the vertices of two
hexagons rotated by θh relative to each other.

Also note that the ratio of lengthscales for superpatterns depends on (n1, n2). Specifically, |k1|
determines the larger periodicity scale of the superpatterns, while |Kj | = kc determines the smaller
lengthscale associated with the instability; thus the lengthscale ratio is

|Kj |/|k1| =
√
n2
1 − n1n2 + n2

2 ≥
√
7. (15)

The example of Figure 3 corresponds to (n1, n2) = (3, 2), for which θh ≈ 22◦ in (14) and the
lengthscale ratio (15) is the smallest associated with a hexagonal lattice, namely

√
7. These are the

angle and lengthscale ratio that apply to the experimental superlattice pattern reproduced from [1]
in Figure 1a.

The general form of the twelve–dimensional D6+̇T2–equivariant mappings are derived in [34].
Through cubic order in zj , they take the form

z1 → σ
(
(1 + λ)z1 + ǫz2z3 + (b1|z1|2 + b2|z2|2 + b2|z3|2 + b4|z4|2 + b5|z5|2 + b6|z6|2)z1

)

z2 → σ
(
(1 + λ)z2 + ǫz1z3 + (b1|z2|2 + b2|z1|2 + b2|z3|2 + b4|z5|2 + b5|z6|2 + b6|z4|2)z2

)

z3 → σ
(
(1 + λ)z3 + ǫz1z2 + (b1|z3|2 + b2|z1|2 + b2|z2|2 + b4|z6|2 + b5|z4|2 + b6|z5|2)z3

)
(16)

z4 → σ
(
(1 + λ)z4 + ǫz5z6 + (b1|z4|2 + b2|z5|2 + b2|z6|2 + b4|z1|2 + b5|z3|2 + b6|z2|2)z4

)

z5 → σ
(
(1 + λ)z5 + ǫz4z6 + (b1|z5|2 + b2|z4|2 + b2|z6|2 + b4|z2|2 + b5|z1|2 + b6|z3|2)z5

)

z6 → σ
(
(1 + λ)z6 + ǫz4z5 + (b1|z6|2 + b2|z4|2 + b2|z5|2 + b4|z3|2 + b5|z2|2 + b6|z1|2)z6

)
,

where λ measures the distance from the critical excitation amplitude, and σ = +1(−1) in the
case of (sub)harmonic instability. All nonlinear coefficients are real. If σ = −1 then a normal
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form transformation removes all even terms on the right–hand–side of (16) and hence ǫ = 0. The
dependence of the general equivariant bifurcation problem on (n1, n2) does not appear until higher
than cubic order in its Taylor expansion [34].

We now recall some basic results pertaining to the bifurcation problem (16). In the σ = +1 case
the equivariant branching lemma [31] ensures the existence of harmonic wave solution branches in
the form of stripes, simple hexagons, rhombs, and super hexagons [33]. A primary solution branch
with submaximal isotropy, named super triangles, was also shown to exist in [2]. See Figure 1a
for an example of this pattern. Table 1 gives the general form of these solutions, along with their
branching and stability assignments. The general bifurcation results in the case that σ = −1 can
be found in [34]; this bifurcation problem differs from the harmonic case in that it possesses an
additional Z2 normal form symmetry. The equivariant branching lemma then ensures existence of
five additional solution branches to those listed in Table 1 [34].

The generic presence of a quadratic term in (16) for the harmonic case renders all of the solutions
in Table 1 unstable at bifurcation. Hence the transition from the flat state to the patterned harmonic
wave state is expected to be hysteretic. In order to capture stable weakly nonlinear solutions, we
must focus our analysis on the unfolding of the degenerate bifurcation problem ǫ = 0. Note that
when ǫ = 0 the stability of simple and super hexagons/triangles is not determined at cubic order
since the phases φj of solutions zj = rje

iφj to (16) are then arbitrary. Even in the case of 0 < |ǫ| ≪ 1
the relative stability of super hexagons and super triangles depends on terms that are at least fifth
order. However, we may use the cubic truncation to determine that one (and only one) of these
two solutions is stable. The higher order terms are only needed to determine whether it is the
hexagonal or triangular superpattern [2].

When 0 < |ǫ| ≪ 1, it follows from Table 1 that a necessary condition for one of the superpatterns
to be stable over some range of λ values near onset is for

b1 + 2b2 < −|b4 + b5 + b6| < 0 . (17)

The combination b1 + 2b2 is independent of the lattice angle θh in (14); it is computed from
a hydrodynamic model of the two–frequency Faraday problem in the Appendix by considering
bifurcation to simple hexagons. In contrast, the combination b4 + b5 + b6 depends on θh and is
computed in the appendix from the hydrodynamic equations by considering the rhombic lattice
bifurcation problem (10). Specifically, the cross–coupling coefficients b4, b5, b6 are

b4 = β(θh), b5 = β
(
θh +

2π

3

)
, b6 = β

(
θh −

2π

3

)
, (18)

where θh is the angle between K1 and K4 given by (14). (The function β(θ) may be extended
from θ ∈ (0, π2 ] to angles θ ∈ (0, 2π) using β(θ) = β(−θ) = β(θ + π), identities that follow from the
symmetries of the rhombic lattice bifurcation problem.)

The inequality (17) will be satisfied (if at all) only for those θh values where |b4 + b5 + b6| is
small compared to |b1 + 2b2|. Moreover, if b1 − b2 < 0 in addition to (17), then simple hexagons
become unstable on a given hexagonal lattice when

λ = − ǫ2(b4 + b5 + b6)

(b1 + 2b2 − b4 − b5 − b6)2
. (19)

If b4 + b5 + b6 < 0 for all θh, then simple hexagons first lose stability with increasing λ to a
perturbation in the direction of a superpattern for that value of θh that minimizes |b4 + b5 + b6|.
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Table 1: Branching equations and stability assignments for the harmonic case (σ = +1); ǫ, b1, . . . , b6
are coefficients in the bifurcation equations (16). A solution is stable if all quantities in the right
column are negative. See [2, 33, 34] for more details.

Planform and branching equation Stability

Stripes sgn(b1),
z = (x, 0, 0, 0, 0, 0) sgn(ǫx+ (b2 − b1)x

2), sgn(−ǫx+ (b2 − b1)x
2),

0 = λx+ b1x
3 +O(x5) sgn(b4 − b1), sgn(b5 − b1), sgn(b6 − b1)

Simple Hexagons sgn(ǫx+ 2(b1 + 2b2)x
2), sgn(−ǫx+ (b1 − b2)x

2)
z = (x, x, x, 0, 0, 0) sgn(−ǫx+ (b4 + b5 + b6 − b1 − 2b2)x

2)
0 = λx+ ǫx2 + (b1 + 2b2)x

3 +O(x4) sgn(−ǫx+O(x3))

Rhombs (Rh4) sgn(b1 + b4), sgn(b1 − b4), sgn(ζ1), sgn(ζ2),
z = (x, 0, 0, x, 0, 0) where ζ1 + ζ2 = (−2b1 − 2b4 + 2b2 + b5 + b6)x

2,
0 = λx+ (b1 + b4)x

3 +O(x5) ζ1ζ2 = −ǫ2x2 + (b1 + b4 − b2 − b5)(b1 + b4 − b2 − b6)x
4

Rhombs (Rh5) same as Rh4 with b4 ↔ b5
z = (x, 0, 0, 0, x, 0)

Rhombs (Rh6) same as Rh4 with b4 ↔ b6
z = (x, 0, 0, 0, 0, x)

sgn(ǫx+ 2(b1 + 2b2 + b4 + b5 + b6)x
2)

Super Hexagons sgn(ǫx+ 2(b1 + 2b2 − b4 − b5 − b6)x
2)

z = (x, x, x, x, x, x) sgn(−ǫx+O(x3)), sgn(ζ1), sgn(ζ2),
0 = λx+ ǫx2 + (b1 + 2b2)x

3 where ζ1 + ζ2 = −4ǫx+ 4(b1 − b2)x
2,

+(b4 + b5 + b6)x
3 +O(x4) ζ1ζ2 = 4(ǫx− (b1 − b2)x

2)2

−2((b4 − b5)
2 + (b4 − b6)

2 + (b5 − b6)
2))x4

sgn(ζ3), where ζ3 = O(x2(n1−1))

Super Triangles Same as super hexagons
z = (z, z, z, z, z, z), except ζ3 → −ζ3
z = xeiψ, ψ 6= 0, π, . . .

11
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Figure 4: Neutral stability curves computed from (20) linearized about h = Φ = 0. Floquet
multipliers of +1 (−1) are indicated by solid (dashed) lines. (a)m/n = 2/3, φ = 0◦, χ = χc = 66.6◦,
Γ0 = 0.53, G0 = 0.47 and γ = 0.09 in (20)–(21). (b) m/n = 6/7, φ = 0◦, χ = χc = 53.0◦, Γ0 = 7.5,
G0 = 1.5 and γ = 0.08.

If b4 + b5 + b6 > 0 for any θh, then small amplitude simple hexagons are unstable when λ > 0.
Thus we expect the stability properties of superpatterns and simple hexagons to be affected by the
presence of a weakly damped harmonic mode when θh or θh ± 2π/3 is near θr (or π ± θr), the
resonant triad angle, since it is in this situation that one of the cross–coupling coefficients b4, b5 or
b6 may suddenly change in magnitude.

3 Results

This section shows explicitly the role of resonant triads and weakly damped harmonic modes in
the pattern selection problem for two–frequency forced Faraday waves. We examine how the cubic
nonlinear coefficients in (16), for the Zhang–Viñals hydrodynamic equations vary as a function of
θh, the lattice angle and explain how this can be related to θr, the resonant triad angle. The
details of the computation of the coefficients are relegated to the Appendix. We focus on two
examples, involving forcing frequency ratios m/n = 2/3 and 6/7. The 2/3 case demonstrates the
basic difference between the pattern selection problems for subharmonic and harmonic instabilities
near the bicritical point. Our investigation also reveals a fundamental difference between harmonic
wave pattern selection in the 2/3 and 6/7 cases, due to the presence of additional harmonic wave
resonance tongues for the higher 6/7 forcing frequencies; see Figure 4.

3.1 The Zhang-Viñals Hydrodynamic Equations

The quadratic and cubic nonlinear coefficients in the hexagonal bifurcation problem (16) are com-
puted in the appendix from a model of the two–frequency Faraday problem derived by Zhang and
Viñals [3] from the Navier–Stokes equations. Their equations, which apply to weakly damped,
small amplitude surface waves on a semi–infinite layer of fluid, describe the evolution of the surface
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height h(x, τ) and surface velocity potential Φ(x, τ). Specifically,

∂τh = γ∇2h+ D̂Φ−∇ · (h∇Φ) +
1

2
∇2(h2D̂Φ)− D̂(hD̂Φ) + D̂[hD̂(hD̂Φ) +

1

2
h2∇2Φ]

∂τΦ = γ∇2Φ+ Γ0∇2h−G(τ)h +
1

2
(D̂Φ)2 − 1

2
(∇Φ)2 − (D̂Φ)[h∇2Φ+ D̂(hD̂Φ)] (20)

− 1

2
Γ0∇ · ((∇h)(∇h)2),

where D̂ is a nonlocal operator that multiplies each Fourier component of a field by its wave
number, i.e. D̂eik·x = |k|eik·x. Here time has been scaled by ω so that the (non–dimensionalized)
two–frequency acceleration is

G(τ) = G0 − f(cos(χ) cos(mτ) + sin(χ) cos(nτ + φ)). (21)

The damping number (γ), capillarity number (Γ0), gravity number (G0), and dimensionless accel-
eration (f) are related to the forcing function (1) and the fluid parameters by

γ ≡ 2νk20
ω

, Γ0 ≡ Γk30
ρω2

, G0 ≡ g0k0
ω2

, f ≡ gzk0
ω2

. (22)

Here ν is the kinematic viscosity, Γ is the surface tension, ρ is the fluid density, and the wave
number k0 is chosen to satisfy the dispersion relation

g0k0 +
Γk30
ρ

=
(mω

2

)2

. (23)

3.2 Example 1: m/n=2/3

This example demonstrates a result of the general normal form analysis of Section 2.2, namely
that proximity to the subharmonic/harmonic bicritical point will strongly influence the pattern
selection problem for subharmonic waves, but not for harmonic waves. Specifically, we examine
the cross–coupling coefficient β(θ) in (10) as a function of the angle θ for onset of both harmonic
and subharmonic waves near the bicritical point. We show that only in the subharmonic case does
|β(θ)| become large at the resonant angle θr in (3).

As described in Section 2.1, the primary instability changes from harmonic (Floquet multiplier
+1) to subharmonic (Floquet multiplier −1) as χ in (21) is increased through the bicritical point χc.
This transition is determined from the linear hydrodynamic problem, which for the Zhang–Viñals
model (20) takes the form of a damped Mathieu equation for each Fourier mode h = hk(τ)e

ikx:

h′′k + 2γk2h′k + (γ2k4 +Ω2
k)hk = fck

[
cos(χ) cos(mτ) + sin(χ) cos(nτ)

]
hk. (24)

Here the natural frequency Ωk satisfies the dispersion relation Ω2
k = G0k + Γ0k

3. A numerically–
computed neutral curve f(k) for m/n = 2/3 forcing and χ = χc = 66.6◦ is given in Figure 4a. The
other parameters of this example are φ = 0◦, Γ0 = 0.53, G0 = 0.47 and γ = 0.09.

We now vary χ near χc, holding all other parameters fixed, and examine the rhombic lattice
cross–coupling coefficient β(θ) in (10) for onset subharmonic/harmonic waves, as appropriate. We
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have scaled the amplitudes v1 and v2 in (10) so that a = −1. We note that in the harmonic
case β diverges as θ → 60◦, i.e. when the rhombic lattice approaches the hexagonal one and
there is an additional mode associated with the center manifold dynamics. This is in contrast
to the subharmonic case, for which there is a normal form symmetry that ensures existence of a
dynamically invariant subspace spanned by a pair of subharmonic modes separated by 60◦. Thus
in the subharmonic case β remains finite at θ = 60◦.

For χ > χc the primary instability is to subharmonic waves. For instance, for χ = 66.7◦ the
minimum of the neutral curve occurs at wavenumber kc,s = 1.415 with forcing amplitude fc = 0.842,
and is associated with a Floquet multiplier σ = −1. The nearly critical harmonic resonance tongue
has its minimum at (k, f) = (0.962, 0.846). In this case, there is a spatio–temporally resonant triad
comprised of the weakly damped harmonic mode and, from (3), two subharmonic modes separated
by θr = 39.9◦. It follows from our general analysis of Section 2.2 that β(θ) will be large in magnitude
for θ near θr. Figure 5a shows β(θ) for this case, and indeed, the nonlinear coefficient exhibits a
large dip centered at θ = θr = 39.9◦. At this angle, |β(θ)| takes on its largest value. Similar
observations have been made by Zhang and Viñals [23] for forcing frequencies in ratio m/n = 1/2.

In contrast, when χ < χc, so that the first instability to occur with increasing f is harmonic,
we find that the weakly damped subharmonic mode leaves no signature in the plot β(θ). For
instance, for χ = 66.5◦ the primary instability is to harmonic waves at wavenumber kc,h = 0.963
and forcing amplitude fc = 0.841. The subhharmonic resonance tongue has a minimum at (k, f) =
(1.415, 0.843). While there is a spatially resonant triad involving two critical harmonic modes,
which by (2) are separated by θr = 85.7◦, the triad of modes is not spatio–temporally resonant.
Figure 5b shows the cross-coupling coefficient β(θ) for this case (with the region near 60◦ removed).
As anticipated, there is no signature of the weakly damped subharmonic mode in the plot. Similar
observations have been made by Silber and Skeldon [26] in the setting of one–dimensional surface
wave patterns.

3.3 Example 2: m/n=6/7

This example demonstrates a fundamental difference between harmonic wave pattern selection for
low forcing frequencies (e.g., 2ω/3ω) and for high forcing frequencies (e.g., 6ω/7ω). This difference
is due to the presence of multiple harmonic resonance tongues in the neutral curve associated
with the higher forcing frequencies; see Figure 4. In particular, these resonance tongues suggest the
possibility that weakly damped harmonic modes may influence the harmonic wave pattern selection
problem. This is in contrast to the m/n = 2/3 example of the previous section, for which only
subharmonic wave pattern competition was affected by weakly damped harmonic waves. In this
section we also demonstrate that the weakly damped harmonic modes may stabilize harmonic wave
superpatterns at a lattice angle θh ≈ θr, due to a near cancellation of the two terms that contribute
to β(θr) given by (9) as described in Section 2.2.

We focus on bifurcation to harmonic waves for χ = 52.4◦, which is close to the bicritical value
χc = 53.0◦. The remaining parameters are φ = 0◦, Γ0 = 7.5, G0 = 1.5 and γ = 0.08. We note that
while the forcing frequency ratiom/n = 6/7 coincides with that used in the experiments of Kudrolli,
et al. [1], the remaining parameters do not coincide with the experiment. One problem with using
the experimental parameters in the Zhang–Viñals equations is that the primary instability then
moves to a subharmonic resonance tongue at very small wavenumber, i.e., the first resonance
tongue of Figure 4b. This is because the Zhang–Viñals model does not accurately capture the
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Figure 5: Cross coupling coefficients β(θ) in (10) computed in the Appendix from (20) for the case
m/n = 2/3 and φ = 0◦ in (21). The fluid parameters used are given in the caption of Figure 4a.
(a) χ = 66.7◦ > χc, when the bifurcation is to subharmonic waves. Note the dip at θ = θr = 39.9◦.
(b) χ = 66.5◦ < χc, when the bifurcation is to harmonic waves. Because the (nearly) critical modes
are not in temporal resonance, β(θ) shows no special structure at θ = θr = 85.7◦. We have removed
from this plot the region near θ = 60◦, where β(θ) diverges.

damping at small k that is due to finite depth effects.
In this example we find two prominent features in the plot of the cross–coupling coefficient β(θ)

in Figure 6a: a large dip at θ = 67.6◦ and a small spike at θ = 22.2◦. We now discuss the origin of
these two features.

The large dip around θ = 67.6◦ is not a consequence of two–frequency forcing. Specifically,
the dip remains in β(θ) even for purely 6ω forcing (i.e. in the limit χ → 0); cf. plots of β(θ)
in Figures 6a and 6c which are obtained with χ = 52.4◦ and χ = 0◦, respectively. Thus this
feature may be understood in the context of single frequency forcing, and has in fact already been
investigated by Zhang and Viñals [3] in that setting. Specifically, if χ = 0◦ then the forcing period
is T ′ = T

6 = 2π
6 and the primary instability is to subharmonic waves with period 2T ′. A plot

of the corresponding neutral curve is given in Figure 6d, with the primary harmonic resonance
tongue from Figure 4b superimposed on it. In this single–frequency setting the feature at 67.6◦

is understood as being due to the damped harmonic mode around k = 1.7 in Figure 6d. Perhaps
more relevant to this discussion is our observation that this feature, which leads to a large value of
|b4 + b5 + b6|, is destabilizing for superpatterns. To see this, we refer to the discussion surrounding
equation (17) and to Figure 6b, which shows that

0 > b1 + 2b2 > b4 + b5 + b6 = β(θh) + β
(
θh +

2π

3

)
+ β

(
θh −

2π

3

)
,

= β(θh) + β
(π
3
− θh

)
+ β

(π
3
+ θh

)
for

π

3
+ θh ≈ 67.6◦. (25)

In contrast the spike at θ = 22.2◦ in Figure 6a minimizes |b4 + b5 + b6| at θh ≈ 22.2◦, as shown
in Figure 6b. As we show below, this feature can lead to a stabilization of superpatterns and a
destabilization of the simple hexagons. First we provide strong evidence that the spike is due to a
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resonance between the primary harmonic instability (σ = 1) and a weakly damped harmonic mode
with a real Floquet multiplier µ that is close to 1 (see (5) and (9) of Section 2.2). In order to
show this we must first compute the Floquet multipliers µ(k) at the critical forcing amplitude fc
to determine the wavenumbers k at which µ ≈ 1 at the onset of instability.

We determine the Floquet multipliers µ(k) at f = fc = 1.552 numerically from the linear
problem (24). These are presented in Figure 7. We find that the multipliers are well approximated
away from the two primary resonance tongues by considering the unforced problem (f = 0 in
equation 24), for which

µ± = e2πλ± , λ± = −γk2 ± iΩk . (26)

Figures 7a and 7b show the magnitude ξ and the phase ψ of the Floquet multipliers µ = ξeiψ both
as computed numerically from (24) (solid line) and approximated by (26) (dotted line). Figure 7c
shows the real part of the Floquet multipliers, ξ cosψ, versus wavenumber k. The “bubbles” in this
plot correspond to wavenumbers at which the Floquet multipliers are real (as opposed to a complex
conjugate pair). Weakly damped harmonic modes are associated with bubbles near a Floquet
multiplier of +1. Numerically we find that there are small bubbles of real Floquet multipliers
whenever the phase ψ is a multiple of π; this is demonstrated in Figure 7d. In particular, we find
a bubble at wavenumber k = 0.383, with associated real Floquet multiplier µ = 0.93. This mode is
weakly damped and forms a resonant triad with primary harmonic modes separated by θr = 22.2◦.
(Here kc,h = 0.997 for the primary instability, which corresponds to kn in (3), with km = 0.393
determined by the weakly damped harmonic mode.) Here we have focused on the wavenumbers
associated with real Floquet multipliers near µ = +1 since weakly damped modes with complex
Floquet multipliers do not form a spatio–temporally resonant triad with the primary harmonic
modes.

We now present some hexagonal lattice bifurcation results for the specific parameters of this
example, which are given in Figure 4b. The computation of the quadratic and cubic coefficients in
the bifurcation problem (16) is described in the Appendix. We scale the amplitudes zj in (16) so
that b1 = −1, in which case we find that ǫ = 0.00014 and b2 = −2.73. Thus we expect results of
Section 2.3, which focused on the unfolding of the degenerate bifurcation problem ǫ = 0, to apply.

We find that simple hexagons, super hexagons and super triangles all bifurcate transcritically
with the subcritical branch turning around in a saddle–node bifurcation. The stripes and rhombs
solutions arise in supercritical pitchfork bifurcations. These claims are true for all lattice angles
θh since the cubic coefficients b1, . . . , b6 in (16) are always negative; see Figure 6a. Moreover, we
find that simple hexagons are always stabilized in a saddle–node bifurcation and that they do not
lose stability until after they reach the supercritical regime λ > 0. In contrast, super hexagons and
super triangles are always unstable at λ = 0, since at that point the sign of the second eigenvalue in
Table 1 is determined by sgn(b1 +2b2 − 3b4 − 3b5 − 3b6), which is positive for all θ (see Figure 6b).
Thus, as λ is increased through 0, we expect a jump to finite amplitude simple hexagons as the
other primary branches of (16) are unstable.

We find that simple hexagons eventually lose stability as λ increases since the following two
expressions from Table 1 change sign to positive (at least for some θh)

sgn(−ǫx+ (b1 − b2)x
2), sgn(−ǫx+ (b4 + b5 + b6 − b1 − 2b2)x

2). (27)

as the amplitude x of simple hexagons grows with λ. The first quantity changes from negative to
positive at λ ≈ 3.2×10−8. The second quantity changes sign with increasing λ only for those values
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Figure 6: (a) Cross-coupling coefficient β(θ) in (10) computed from (20) for the case m/n = 6/7,
φ = 0◦ and χ = 52.4◦ < χc in (21), and for fluid parameters given in the caption of Figure 4b.
(b) Plots of b1 + 2b2 (dashed) and b4 + b5 + b6 (solid) versus θh. We note that θh only takes on
the discrete values satisfying (14). (c) Cross-coupling coefficient β(θ) for 6ω forcing only; we have
used the same parameters as in (a) except that now χ = 0◦. (d) Neutral curve for single frequency
forcing. Floquet multipliers of +1 (−1) are indicated by solid (dashed) lines, and are computed
relative to the period T ′ = 2π/6. The primary harmonic resonance tongue from the two–frequency
case of Figure 4b is superimposed as a dotted line.
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Figure 7: Floquet multipliers µ = ξeiψ computed from (24) for the parameters used in Figure 4b and
for critical forcing amplitude f = fc = 1.552. (a) Magnitude ξ, and (b) phase ψ vs. wavenumber
k. The solid lines in (a) and (b) are computed numerically, while the the dotted lines are obtained
by considering the unforced problem f = 0; see equation 26. (c) Numerically computed real part
ξ cosψ of the Floquet multipliers. The “bubbles” correspond to real-valued Floquet multipliers.
The boxed region, shown blown up in (d), reveals a tiny “bubble” around k = 0.383, with real
Floquet multiplier µ = 0.93.
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Figure 8: (a) λ value at which the first (dashed) and second (solid) eigenvalue expressions in (27)
turn positive versus the lattice angle θh. Note that simple hexagons (H) first lose stability to
perturbations in the super hexagon/triangle (SH/ST) direction at θh ≈ 22.2◦. (b) Schematic
bifurcation diagram for the (n1, n2) = (3, 2) lattice of Figure 3, which corresponds to θh = 21.8◦.
Stable (unstable) solutions are indicated by a solid (dotted) line. We do not show secondary
branches or primary branches that are never stable. The stable rhombs solution (Rh) corresponds
to one with an angle of 81.8◦, which is the rhombs solution closest to 90◦ for this hexagonal lattice.
The other two rhombs solutions are unstable.

of θh where b4 + b5 + b6 − b1 − 2b2 > 0, a condition which is met for θh ≥ 11.5◦. Figure 8a shows
the value of λ where the expressions of (27) change sign as a function of θh. It follows that simple
hexagons lose stability first on the lattice with angle θh ≈ 22.2◦. This instability has an associated
eigenvector in the direction of super hexagon/triangles, and at this value of λ, super hexagons (or
triangles) are stable. These results are summarized in Figure 8b, which shows part of the bifurcation
diagram computed for the hexagonal lattice with (n1, n2) = (3, 2), which corresponds to an angle
θh = 21.8◦. Note that when simple hexagons lose stability, both rhombs (Rh) and a superpattern
are stable. Because the instability that first destabilizes the simple hexagons is in the direction of
a superpattern with θh ≈ 22.2◦, we expect that the transition would be a hysteretic one involving
the simple hexagons and a superpattern, at least in the absence of noise and other imperfections.
We cannot determine whether the superpattern is hexagonal or triangular from our calculations,
since this requires knowledge of fifth order terms in the bifurcation problem [34].

4 Conclusions

In this paper we have examined the effect of spatio-temporally resonant triads on two-dimensional
pattern selection in parametrically excited systems. Using a normal form transformation to enforce
temporal symmetry and center manifold reduction, we have argued that weakly damped harmonic

modes can strongly influence pattern selection by causing certain cubic cross-coupling coefficients
in a twelve–dimensional D6+̇T2–equivariant bifurcation problem to suddenly vary in magnitude for
certain lattice angles θh. This suggests an important consideration in choosing one over another of
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the countable set of twelve–dimensional representations relevant to hexagonal bifurcation problems.
Weakly damped subharmonic modes, on the other hand, do not have such an effect.

Our general analysis applies to any parametrically excited pattern forming system, but in par-
ticular is relevant to the interpretation of many recent experiments on two-frequency forced Faraday
waves. In such experiments, a bicritical point exists where subharmonic and harmonic instabilities
are simultaneously excited. On one side of the bicritical point, a subharmonic mode is excited and
there is a weakly damped harmonic mode, while on the other, it is the harmonic mode which is
excited and the subharmonic mode which is weakly damped. We showed that this weakly damped
subharmonic mode does not influence the harmonic wave pattern selection problem.

We have derived the quadratic and cubic coefficients in the rhombic and hexagonal bifurcation
equations describing the onset of patterns from the hydrodynamic equations of Zhang and Viñals.
We presented results for two different sets of parameters. In the first case, the two forcing frequencies
are in the ratio 2/3 and the modes near the bicritical point are the only ones of relevance. As
expected from our normal form analysis, for subharmonic waves, the weakly damped harmonic mode
affects the cross–coupling coefficients, while for harmonic waves, the weakly damped subharmonic
mode had no effect.

In the second case of 6/7 forcing we have shown that, in addition to the modes near the bicritical
point, there are other harmonic modes that are important. These modes are not close to onset in
the sense that they only become critical at a much higher value of the excitation amplitude, but
are weakly damped and thus must be taken into account. We demonstrate that they can have a
stabilizing effect on superlattice patterns at a lattice angle approximately equal to the angle of the
harmonic–harmonic resonance. This can occur if the contribution of these weakly damped modes
to the nonlinear cross–coupling coefficient nearly cancels the other contributions to this term, and
hence is a subtle effect that depends on certain details of the nonlinear problem, as well as the
results of the linear analysis which identifies the near critical modes. For the parameters we have
chosen, the onset pattern is simple hexagons, but upon a further increase of the forcing, there is an
instability to a superlattice pattern associated with a hexagonal lattice with (n1, n2) = (3, 2).

The experiments of Kudrolli, Pier and Gollub [1] found a superlattice pattern near the bicritical
point which sits on a lattice with (n1, n2) = (3, 2). The work in this paper suggests that the
observation of this pattern could be explained by the interaction of the primary harmonic instability
and weakly damped harmonic modes. However, the Zhang-Viñals equations are not valid in the
parameter regime where this experiment was performed, and thus a study of the full hydrodynamic
problem is necessary to confirm this conjecture. A complete study should also involve a more
complete analysis of the codimension-2 bifurcation point and the associated dynamics, in the spirit
of J.D. Crawford’s early work on competing instabilities in the Faraday problem [27]. This would
be of interest in light of recent two–frequency experiments by Arbell and Fineberg [11] that show
a variety of dynamic states near the bicritical point, which involve both critical modes.

A Perturbation Theory

Here we outline the computation of the coefficients in (10) and (16) from the equations of Zhang and
Viñals (20). A multiple-scale perturbation method is used to derive expressions for the coefficients
which are then evaluated numerically using a pseudospectral approach. This follows closely the
method described in [26] for the onset of one-dimensional patterns and we refer the reader there
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for further details.
The coefficients can be derived by considering two different calculations, namely the bifurcation

problem (16) restricted in turn to a rhombic and a simple hexagons subspace.

A.1 Rhombic lattice computation

In order to compute the coefficient a and the cross-coupling coefficient β(θ) in (10) we seek solutions
which are periodic on a rhombic lattice associated with an angle θ. We are thereby able to compute
the coefficients b1, b4, b5, and b6 in the bifurcation equations (16) since b1 = a, b4 = β(θh),
b5 = β(θh + 2π/3), and b6 = β(θh − 2π/3).

First we introduce a small parameter η, such that

h(x, y, τ) = ηh1(x, y, τ, T ) + η2h2(x, y, τ, T ) (28)

+ η3h3(x, y, τ, T ) + · · ·
Φ(x, y, τ) = ηΦ1(x, y, τ, T ) + η2Φ2(x, y, τ, T )

+ η3Φ3(x, y, τ, T ) + · · · ,

in (20) where
T = η2τ, f = fc + η2f2. (29)

Here fc is the critical excitation amplitude. The terms in the expansion for h and Φ may be written
in the following separable Floquet-Fourier form:

h1 = [w1(T )e
ikcx + w4(T )e

ikc(cx+sy) + c.c.]p1(τ) (30)

Φ1 = [w1(T )e
ikcx + w4(T )e

ikc(cx+sy) + c.c.]q1(τ)

h2 = [w2
1(T )e

2ikcx + w2
4(T )e

2ikc(cx+sy)]p2,1(τ)

+ w1(T )w4(T )e
ikc((1−c)x−sy)p2,2(τ)

+ w1(T )w4(T )e
ikc((1+c)x+sy)p2,3(τ) + c.c.

Φ2 = [w2
1(T )e

2ikcx + w2
4(T )e

2ikc(cx+sy)]q2,1(τ)

+ w1(T )w4(T )e
ikc((1−c)x−sy)q2,2(τ)

+ w1(T )w4(T )e
ikc((1+c)x+sy)q2,3(τ) + c.c.

where c = cos θ, s = sin θ, and θ is not a multiple of π
3 . Here p1 and q1 are real 2π-periodic

functions of the fast time τ in the case of harmonic waves; in the case of subharmonic waves they
are 4π-periodic in τ . Additionally, p2,r and q2,r (r = 1, 2, 3) are real 2π-periodic functions of τ .
The wave number kc is associated with the onset unstable mode.

At O(η) we recover the linear problem which determines kc and fc, as well as the functions p1,
q1 to within a multiplicative constant. At O(η2), equations are found which allow us to solve for
the functions p2,r and q2,r. Finally, at O(η3), we apply a solvability condition to ensure that a
periodic solution exists. This condition leads to the amplitude equations

δ
dw1

dT
= αf2w1 +A|w1|2w1 +B(θ)|w4|2w1 (31)

δ
dw4

dT
= αf2w4 +A|w4|2w4 +B(θ)|w1|2w4,

21



where

δ =
1

2π

∫ 4π

0

(p′1 + γk2cp1)p̃1 dτ (32)

α =
kc
4π

∫ 4π

0

[cos(χ) cos(mτ) + sin(χ) cos(nτ + φ)]p1p̃1 dτ

A =
k2c
4π

∫ 4π

0

[
−kc(p21q1)′ − γk3cp

2
1q1 − 2(q1p2,1)

′ − 2γk2cq1p2,1

+ k2cq
2
1p1 +

3

2
k3cΓ0p

3
1

]
p̃1 dτ

B(θ) =
k2c
4π

∫ 4π

0

[
(1 − c−

√
2− 2c)[(p1q2,2)

′ + γk2cp1q2,2 − kcq1q2,2]

+ (1 + c−
√
2 + 2c)[(p1q2,3)

′ + γk2cp1q2,3 − kcq1q2,3]

− (1− c)[(p2,2q1)
′ + γk2cp2,2q1]− (1 + c)[(p2,3q1)

′ + γk2cp2,3q1]

− (6− 2
√
2− 2c− 2

√
2 + 2c)[kc(p

2
1q1)

′ + γk3cp
2
1q1 − k2cp1q

2
1 ]

+ Γ0(3c
2 + s2)k3cp

3
1)
]
p̃1 dτ.

In the above, a prime denotes differentiation with respect to τ and p̃1 is the equivalent of p1 for
the adjoint problem at O(η). The amplitude equations (31) may be re-scaled and then comparison
with the map (10) yields

a = b1 = sgn(Aα), β(θ) = sgn(Aα)
B(θ)

A
. (33)

A.2 Hexagonal lattice computation

Similarly, we compute the coefficients ǫ and b2 in the bifurcation equations (16) by seeking solutions
in the form of simple hexagons. Here we use a three-timing perturbation method, writing the
solution as

h(x, y, τ) = ηh1(x, y, τ, T1, T2) + η2h2(x, y, τ, T1, T2) (34)

+ η3h3(x, y, τ, T1, T2) + · · ·
Φ(x, y, τ) = ηΦ1(x, y, τ, T1, T2) + η2Φ2(x, y, τ, T1, T2)

+ η3Φ3(x, y, τ, T1, T2) + · · · ,

where
T1 = ητ, T2 = η2τ, (35)

and

h1 = w1(T1, T2)p1(τ)[e
ikcx + eikc(−

1

2
x+

√
3

2
y) + eikc(−

1

2
x−

√
3

2
y) + c.c.] (36)

Φ1 = w1(T1, T2)q1(τ)[e
ikcx + eikc(−

1

2
x+

√
3

2
y) + eikc(−

1

2
x−

√
3

2
y) + c.c.]

h2 = w2
1(T1, T2)

{
p2,1(τ)[e

ikc2x + eikc(−x+
√
3y) + eikc(−x−

√
3y) + c.c.]
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+ p2,2(τ)[e
ikcx + eikc(−

1

2
x+

√
3

2
y) + eikc(−

1

2
x−

√
3

2
y) + c.c.]

+ p2,3(τ)[e
ikc(

3

2
x−

√
3

2
y) + eikc

√
3y + eikc(

3

2
x+

√
3

2
y) + c.c.]

}

Φ2 = w2
1(T1, T2)

{
q2,1(τ)[e

ikc2x + eikc(−x+
√
3y) + eikc(−x−

√
3y) + c.c.]

+ q2,2(τ)[e
ikcx + eikc(−

1

2
x+

√
3

2
y) + eikc(−

1

2
x−

√
3

2
y) + c.c.]

+ q2,3(τ)[e
ikc(

3

2
x−

√
3

2
y) + eikc

√
3y + eikc(

3

2
x+

√
3

2
y) + c.c.]

}
.

As with the rhombic case, p1, q1, p2,r and q2,r are real. Additionally, we take the amplitude
w1(T1, T2) to be real.

For the harmonic case, at O(η2) the solvability condition,

δ
∂w1

∂T1
= β0w

2
1 , (37)

must be satisfied, where δ is given by (32). The quadratic coefficient is

β0 =
k2c
4π

∫ 4π

0

[−(p1q1)
′ − γk2cp1q1 +

1

2
kcq

2
1 ]p̃1 dτ . (38)

There is no solvability condition for subharmonic waves at O(η2), reflecting the fact that there are
no even terms in the amplitude equations (16) for this case.

At O(η3), we again apply a solvability condition to ensure that a periodic solution exists. This
conditions leads to the amplitude equation

δ
∂w1

∂T2
= αf2w1 + (A+ 2β2)w

3
1 (39)

The coefficients δ, α, and A are given by (32), and

β2 =
1

4π

∫ 4π

0

[
(
3

2
−
√
3)k2c [(p1q2,3)

′ + γk2cp1q2,3 − kcq1q2,3] (40)

+ (2
√
3− 4)k3c [(p

2
1q1)

′ + γk2cp
2
1q1 − kcp1q

2
1 ]

− 3

2
k2c [(p2,3q1)

′ + γk2cp2,3q1 − Γ0k
3
cp

3
1]

− 1

2
k2c [(p1q2,2)

′ + γk2cp1q2,2 + (p2,2q1)
′ + γk2cp2,2q1 − kcq1q2,2]

− β0
δ
[k2cp1q1 +

β0
δ
p1 + 2p′2,2 + 2γk2cp2,2]

]
p̃1 dτ.

By rescaling ηwj(T1, T2) → wj(T ) and η
2αf2 → αf2, we obtain the reconstituted hexagonal bifur-

cation equation

δ
dw1

dT
= αf2q1 + β0w

2
1 + (A+ 2β2)w

3
1 (41)

Finally, after rescaling as for the rhombic case, and comparing (41) to (16) we find that

ǫ = sgn(α)
β0√
|αA|

, b2 = sgn(Aα)
β2
A
. (42)
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