Vidal-Petiot, E., Ford, I., Greenlaw, N., Ferrari, R., Fox, K. M., Tardif, J.C., Tendera, M., Tavazzi, L., Bhatt, D. L., and Steg, P. G. (2016)

Cardiovascular event rates and mortality according to achieved systolic and diastolic blood pressure in patients with stable coronary artery disease: an international cohort study. Lancet, 388(10056), pp. 2142-2152.
(doi:10.1016/S0140-6736(16)31326-5)
This is the author's final accepted version.
There may be differences between this version and the published version. You are advised to consult the publisher's version if you wish to cite from it.
http://eprints.gla.ac.uk/124000/

Deposited on: 29 September 2016

Enlighten - Research publications by members of the University of Glasgow http://eprints.gla.ac.uk

Cardiovascular event rates and mortality according to achieved systolic and diastolic blood pressure in patients with stable coronary artery disease: an international cohort study

Emmanuelle Vidal-Petiot, Ian Ford, Nicola Greenlaw, Roberto Ferrari, Kim M. Fox, Jean-Claude Tardif, Michal Tendera, Luigi Tavazzi, Deepak L Bhatt, Philippe Gabriel Steg, for the CLARIFY Investigators*

Cardiology and Physiology Departments, Département Hospitalo-Universitaire FIRE, AP-HP, Hôpital Bichat, Paris, France (E Vidal-Petiot MD, Prof PG Steg MD); Paris Diderot University, Sorbonne Paris Cité, Paris, France (E Vidal-Petiot MD, Prof PG Steg MD); University of Glasgow, Glasgow, UK (Prof I Ford PhD, N Greenlaw MSc); Department of Cardiology and LTTA Centre, University of Ferrara and and Maria Cecilia Hospital, GVM Care\&Research, E.S: Health Science Foundation, Cotignola, Italy (Prof R Ferrari MD); NHLI Imperial College, ICMS, Royal Brompton Hospital, London, UK (Prof KM Fox MD, Prof PG Steg MD); Montreal Heart Institute, Université de Montreal, Montreal, Canada (Prof J-C Tardif MD); Medical University of Silesia, Katowice, Poland (Prof M Tendera MD); Maria Cecilia Hospital - GVM Care \& Research - E.S. Health Science Foundation, Cotignola, Italy (Prof L Tavazzi MD); Brigham and Women's Hospital Heart and Vascular Center, Harvard Medical School, Boston, MA, US (Prof DL Bhatt MD); FACT (French Alliance for Cardiovascular Trials), an F-CRIN network, INSERM U1148, Paris, France (Prof PG Steg MD).
*The list of CLARIFY investigators can be found in the online supplemental material

Correspondence to: Prof PG Steg, Department of Cardiology, Hôpital Bichat, Paris, France, 46 rue Henri Huchard, 75018 Paris, France gabriel.steg@aphp.fr

Tel +331-40-25-86-68

Word count (main body): 3494

SUMMARY 289 words

Background. The optimal blood pressure (BP) target in hypertension remains debated, especially in coronary artery disease (CAD), given concerns for reduced myocardial perfusion if diastolic BP is too low. We studied the relationship between achieved BP and cardiovascular outcomes in CAD patients with hypertension.

Methods. We analysed data from 22,672 patients with stable CAD enrolled (November 2009-June 2010) in the CLARIFY registry (45 countries) and treated for hypertension. Systolic and diastolic BPs before each event were averaged and categorised into $10-\mathrm{mmHg}$ increments. The primary outcome was the composite of cardiovascular death, myocardial infarction, or stroke. Secondary outcomes were each component of the primary outcome, all-cause death, and hospitalisation for heart failure. Hazard ratios (HRs) were estimated with multivariable adjusted Cox proportional hazards models, using the $120-129$ systolic BP and $70-79 \mathrm{mmHg}$ diastolic BP subgroups as reference.

Findings. After a median follow-up of 5.0 years, elevated systolic BP $\geq 140 \mathrm{~mm} \mathrm{Hg}$ and diastolic BP $\geq 80 \mathrm{mmHg}$ were each associated with increased risk of cardiovascular events. Systolic $\mathrm{BP}<120$ mmHg was also associated with increased risk for the primary outcome (adjusted HR 1.56 [95\% CI $1 \cdot 36-1 \cdot 81]$) and all secondary outcomes except stroke. Likewise, diastolic $B P<70 \mathrm{mmHg}$ was associated with an increase in the primary outcome (adjusted HR 1.41 [1.24-1.61] for diastolic BP $60-69 \mathrm{mmHg}$ and 2.01 [1.50-2.70] for $<60 \mathrm{mmHg}$) and in all secondary outcomes except stroke. Interpretation. In hypertensive patients with CAD from routine clinical practice, systolic BP <120 mmHg and diastolic $\mathrm{BP}<70 \mathrm{mmHg}$ were each associated with adverse cardiovascular outcomes, including mortality, supporting the existence of a J-curve phenomenon. This finding suggests caution in the use of BP-lowering treatment in CAD patients Funding. The CLARIFY registry was supported by Servier.

Introduction

Lowering blood pressure (BP) in patients with hypertension reduces the risk of cardiovascular events and death, ${ }^{1,2}$ but the optimal target BP remains unresolved. ${ }^{3-6}$ Randomised trials failed to demonstrate a benefit of targets $<140 / 90 \mathrm{mmHg},{ }^{7,8}$ and post-hoc analyses have suggested that the benefit of BPlowering treatment might even be reversed below a certain threshold, ${ }^{5,9-16}$ the so-called "J-curve phenomenon". ${ }^{9}$ Conversely, a large meta-analysis of trials that randomly assigned participants to intensive versus less-intensive BP-lowering treatment showed that intensive BP lowering was associated with decreased cardiovascular events, and the recent SPRINT trial ${ }^{18}$ demonstrated that targeting a systolic $B P<120 \mathrm{mmHg}$ in high-risk patients was associated with a reduction in BP-related adverse outcomes, rather favouring a "lower is better" approach.

These contradictory results leave clinicians with uncertainty as to the optimal BP target in patients treated for hypertension. The concern for a J-curve phenomenon is particularly relevant for cardiac events, ${ }^{10}$ as the heart is perfused during diastole, and its perfusion may be compromised at low diastolic BP values, especially in patients with coronary artery disease (CAD), both because a coronary stenosis will lower perfusion pressure in the downstream territory and because autoregulation is altered in these patients. ${ }^{19}$ Our aim was to study the association between achieved BP levels and cardiovascular outcomes in a large cohort of patients with stable CAD treated for hypertension from the CLARIFY registry.

Methods

CLARIFY (ISRCTN43070564; www.clarify-registry.com) was a prospective longitudinal registry of 32,706 outpatients with stable CAD receiving standard care. The registry was observational, did not interfere with clinical management or mandate any test, procedure, or treatment. ${ }^{20}$ Patients were enrolled in 45 countries (excluding the United States). Eligible patients had stable CAD, defined as at least one of the following: documented myocardial infarction >3 months before enrolment; angiographic demonstration of coronary stenosis $>50 \%$; chest pain with evidence of myocardial ischaemia (at least a stress electrocardiogram or preferably imaging); or coronary artery bypass graft or percutaneous coronary intervention >3 months before enrolment. These criteria were not mutually exclusive. Exclusion criteria were hospital admission for cardiovascular reasons (including revascularisation) in the past 3 months, planned revascularisation, or conditions compromising the
participation or 5-year follow-up (including severe other cardiovascular disease, e.g. advanced heart failure, severe valve disease, history of valve repair/replacement). ${ }^{20}$ In each practice, enrolment was restricted over a brief period to achieve near-consecutive patient recruitment. The first patient was included on 26 November 2009; recruitment was completed on 30 June 2010. This analysis was restricted to patients treated for hypertension (see Figure S1 in the Supplementary Appendix). Hypertension (with the usual $140 / 90 \mathrm{mmHg}$ threshold) was defined as the combination of "treated hypertension", which was a required item on the baseline form, and the use of at least one antihypertensive agent at baseline. The study was conducted in accordance with the Declaration of Helsinki and local ethical approval was obtained in all countries. All patients gave written informed consent.

Data collection

The investigators completed standardised electronic case report forms at baseline and at a patient visit every year ± 3 months for up to 5 years. For patients missing the yearly visit, telephone contact with the patient, a designated relative or contact, or his/her physician was attempted. Where applicable, registries could be used to retrieve the vital status. Several measures were implemented to ensure data quality, including onsite monitoring visits of 100% of the data in 5% of centres selected at random; regular telephone contact with investigators to limit missing data and loss to follow-up; and centralised verification of the electronic case report forms for completeness, consistency, and accuracy. At each yearly visit, symptoms, clinical examination, results of the main clinical and biological tests, treatment and clinical outcomes were recorded. The registry was observational, with no recommendation regarding BP management, and therefore reflects routine practice.

BP analysis

Office BP was measured yearly in patients, after a rest of 5 minutes in the sitting position. The main analysis was performed using the arithmetic mean of all BP values measured throughout follow-up, from the baseline visit to the visit before an event or, in patients without an event, up to the last visit. Outcomes were also analysed according to the baseline BP value (BP at enrolment) and to the last measured BP before an event during follow-up. All analyses were performed for systolic BP and diastolic BP separately. Patients were categorised into 5 groups: systolic BP $<120,120-129$
(reference), 130-139, 140-149, and $\geq 150 \mathrm{mmHg}$; diastolic BP <60, 60-69, 70-79 (reference), 80-89, and $\geq 90 \mathrm{mmHg}$.

Outcomes

The primary outcome was the composite of cardiovascular death, myocardial infarction, or stroke. Secondary outcomes were each component of the primary endpoint, all-cause death, and hospitalisation for heart failure. For all composite outcomes, we analysed the number of patients with at least one event from the composite outcome. Patients experiencing more than one contributing event were counted only once. Events were accepted as reported by physicians and were not adjudicated. However, all events were source-verified during audits.

Statistical analysis

A Cox proportional hazards model was used to evaluate the relationship between BP and cardiovascular outcomes. In addition to crude HRs, adjusted HRs were estimated after adjustment for potential confounding factors, selected using stepwise methods in the Cox proportional hazards models, namely age, geographic region, smoking status, myocardial infarction, percutaneous coronary intervention, diabetes, body mass index, glomerular filtration rate estimated with the chronic kidney disease Epidemiology Collaboration (CKD-EPI) equation, peripheral artery disease, hospitalisation for or symptoms of heart failure, left ventricular ejection fraction, stroke, transient ischaemic attack, angiotensin-receptor blockers, diuretics, and aspirin (model 1). In a separate model, we also adjusted for sex, coronary artery bypass grafting, low- and high-density lipoprotein cholesterol levels, ethnicity, statins, angiotensin-converting enzyme inhibitors, beta-blockers, calcium channel blockers, and other antihypertensive medications (model 2). Unless specified, all results are given for the fully adjusted model. Data were analysed as recorded without any imputation for missing data. Adjustment variables with a large amount of missing data were categorised including a category for missing data to minimise the loss of data in the analysis.

A restricted cubic spline smoothing technique was used to interpolate the overall trend of risks through the range of BP values. A sensitivity analysis excluding all patients with heart failure, defined as previous hospitalisation for or symptoms of heart failure or a left ventricular ejection fraction $<45 \%$, was also performed to ensure that results were not due to reverse causality.

Interactions between average systolic or diastolic BP and the covariates age (>75 vs ≤ 75 years), diabetes, history of stroke or transient ischaemic attack, heart failure, previous coronary revascularisation, and chronic kidney disease (defined by an estimated glomerular filtration rate [eGFR] $<60 \mathrm{~mL} / \mathrm{min} / 1.73 \mathrm{~m}^{2}$) at baseline were tested. Subgroup analyses were performed when interactions were significant even after adjustment on the same variables as for the Cox proportional hazards model (model 2).

The statistical analysis was performed using SAS (version 9.2, Cary, NC, USA), and the restricted cubic splines were obtained using a SAS macro. ${ }^{21}$

Role of the funding source

The CLARIFY registry is supported by Servier. The sponsor had no role in the study design or in data analysis, and interpretation; or in the decision to submit the manuscript for publication, but assisted with the set-up, data collection and management of the study in each country. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Results

A total of 22,672 adult patients with CAD and hypertension were included in the analysis.
Demographic data and baseline characteristics of the patients, overall and for each $10-\mathrm{mmHg}-$ increment BP subgroup, are given in Tables 1 and 2; baseline medications are indicated in Table S1 of the supplementary appendix. Mean age at baseline was $65 \cdot 2$ years (SD 10.0), 17,019 (75\%) patients were men, and $15,190(67 \%)$ were white. Compared to patients with high systolic BP, those with a lower systolic BP tended to be younger, leaner, more likely to be men, without diabetes, and current smokers, with a higher baseline incidence of myocardial infarction and percutaneous coronary intervention, a lower prevalence of stroke, and lower baseline high-density and low-density lipoprotein cholesterol levels. Patients with lower diastolic BP tended to be older, leaner, more likely to be women, diabetic, and non-smokers, with lower baseline levels of low-density lipoprotein cholesterol. Mean average systolic and diastolic BPs were $133 \cdot 7$ (SD 16.7) and 78.2 mmHg (SD 10.1), respectively. Changes from baseline BP during follow-up were $<2 \mathrm{mmHg}$, as expected from the non-interventional nature of the study (Figure S2 of the supplementary appendix).

After a median follow-up of $5 \cdot 0$ years (interquartile range $4 \cdot 5-5 \cdot 1$), 2101 patients ($9 \cdot 3 \%$) met the primary composite outcome. Cardiovascular death, all-cause death, myocardial infarction (fatal or not), stroke (fatal or not), and hospitalisation for heart failure occurred in 1209 (5.3\%), 1890 (8.3\%), 827 (3.6\%), 526 (2.3\%), and 1306 (5.8\%) patients, respectively.

Crude and adjusted HRs for average systolic and diastolic BP subgroups are given in Table 3. Even after multiple adjustments for baseline cardiovascular disease, risk factors, and medication, a steep J-shaped curve was evidenced for the occurrence of the primary outcome, with increased risk at low and high BP values, both for systolic and diastolic BP (Figures 1 and 2). Compared with the reference group (systolic BP 120-129), the adjusted HR for the primary outcome was 1.51 (95\% CI $1 \cdot 32-1 \cdot 73$) for systolic BP $140-149 \mathrm{mmHg}$, and $2 \cdot 48$ ($95 \% \mathrm{Cl} 2 \cdot 14-2 \cdot 87$) for systolic $\mathrm{BP} \geq 150 \mathrm{mmHg}$. Systolic BP <120 mmHg was also associated with an increased risk for the primary outcome (adjusted HR 1.56 [95\% CI 1.36-1.81]). Likewise, in comparison with a reference group of patients with diastolic BP 70-79 mmHg, diastolic BP $\geq 80 \mathrm{mmHg}$ was associated with an increased risk for the primary outcome, with adjusted HRs $1.41(1 \cdot 27-1.57)$ for diastolic BP $80-89 \mathrm{mmHg}$ and 3.72 (3.15-4.38) for diastolic $\mathrm{BP} \geq 90 \mathrm{mmHg}$; diastolic $\mathrm{BP}<70 \mathrm{mmHg}$ was associated with an increase in the primary outcome (adjusted HR 1.41 [1.24-1.61] and 2.01 [1.50-2.70] for diastolic BP 60-69 and $<60 \mathrm{mmHg}$ respectively). A similar steep J-curve, for both systolic and diastolic BP, was seen for cardiovascular death, all-cause death, myocardial infarction, and hospitalisation for heart failure, but not for stroke (Figure 1 and Figure S3 in the Supplementary Appendix). Elevated systolic and diastolic BPs were associated with a marked increase in the risk of stroke. Adjusted HRs were 1.51 ($95 \% \mathrm{Cl} 1.16-1.97$) and 2.57 (1.94-3.41) for systolic BP $140-149$ and $\geq 150 \mathrm{mmHg}$, respectively. Adjusted HRs were 1.46 (1.18-1.79) and 4.33 (3.15-5.94) for diastolic BP $80-89$ and $\geq 90 \mathrm{mmHg}$, respectively. In contrast, there was no increased risk of stroke after the same adjustments for the lowest systolic and diastolic BP subgroups (adjusted HRs $1.06[0.77-1.46]$ for systolic BP $<120 \mathrm{mmHg}$ and 1.23 [0.94-1.61] and $1 \cdot 31$ [0.64-2.69] for diastolic BP 60-69 and $<60 \mathrm{mmHg}$, respectively). The results were similar regardless of whether the fully adjusted model included baseline medications (data not shown). Similar results were observed in a sensitivity analysis excluding patients with heart failure at baseline (Table $3)$, and similar trends were obtained when using baseline BP and last BP before an event or during follow-up (Table S2 in the Supplementary Appendix). Evaluation of the assumption of nonproportionality of the hazards in the Cox models suggested evidence that the strength of the
differences among the BP groups in their association with outcome was slightly attenuated with increasing time. However this does not change the overall interpretation of the results.

Interaction analyses are presented in Table S3 in the Supplementary Appendix. No significant effect-modification of diabetes, previous stroke or transient ischaemic attack, heart failure, previous revascularisation, or chronic kidney disease at baseline was detected on the relationship between systolic or diastolic BP and the primary outcome. However, a significant interaction with age was seen for both systolic ($p=0.0176$) and diastolic BP ($p=0.0180$). Patients >75 years had an increased risk of the primary outcome for systolic $B P \geq 150 \mathrm{mmHg}$ (adjusted HR, 1.84 [1.40-2.43]) and systolic BP $<120 \mathrm{mmHg}$ (adjusted HR 1.47 [1•12-1.94]), but not for systolic BP $140-149 \mathrm{mmHg}$ (adjusted HR $1.19[0.92-1.56])$, whereas patients ≤ 75 years had an increased risk for the primary outcome in these three BP subgroups in comparison with the $120-129-\mathrm{mmHg}$ systolic BP subgroup. For diastolic BP, the increased risk at low BP was only significant for diastolic $B P<60 \mathrm{mmHg}$ in patients >75 years, whereas it was significant as early as 70 mmHg in the younger patients (Table 3 and Figure S4 in the Supplementary Appendix).

Discussion

This observational study, conducted in "real-life" stable CAD patients treated for hypertension, shows that low systolic ($<120 \mathrm{mmHg}$) and low diastolic ($<70 \mathrm{mmHg}$) BPs are associated with an increased risk of cardiovascular events, with a steep J-curve not only for the composite of cardiovascular death, myocardial infarction, or stroke, but also separately for cardiovascular death, all-cause death, myocardial infarction, or hospitalisation for heart failure.

Our results are consistent with previous post-hoc analyses from randomised trials in patients with hypertension and CAD. ${ }^{10,12,19}$ Likewise, a J-curve (i.e. an increase in risk of cardiovascular events below a certain BP level) has also been described in other high-risk populations, such as patients with a previous cardiovascular event, or diabetes with target organ damage. ${ }^{14,15}$ However, our study was based on a large cohort from routine practice with no predefined BP intervention, which may confound the analysis: any retrospective analysis of a BP-intervention trial will carry the bias of baseline BP, which will differ between the groups defined by BP achieved during the trial. Additionally, the J-curve phenomenon was robust and persisted after multiple adjustment procedures for potential confounders.

Previous observational studies have yielded conflicting results regarding the risk of stroke, which was J-shaped with systolic BP in the post-hoc analysis of patients with previous stroke from the PRoFESS trial ${ }^{22}$ and was unaffected by the large decrease in systolic BP in the SPRINT trial, ${ }^{18}$ but decreased with decreasing diastolic or systolic BP with no evidence of a J-curve inflection in other trials. ${ }^{10-12,15}$ In our study, neither a low diastolic nor a low systolic BP was associated with increased risk of stroke, in contrast with high systolic or diastolic $B P$, and no interaction between $B P$ and previous stroke was evidenced. The number of patients with a stroke was, however, smaller than that for other endpoints.

In the debate about the J-curve concept, there is a concern for "reverse causality" (i.e. a low systolic or diastolic BP may only be a marker of poor health rather than the cause of worse clinical outcomes). ${ }^{5,6,23}$ For instance, in patients with baseline systolic $B P<130 \mathrm{mmHg}$ from the ONTARGET trial, Redon et al demonstrated that patients who had a cardiovascular event during follow-up had a higher baseline risk but similar on-treatment BP reduction compared with those who did not have an event, suggesting that the occurrence of cardiovascular events may be related to baseline vascular disease rather than to an excessive BP reduction. ${ }^{15}$ However, several lines of evidence argue against this explanation for our findings. First, serious non-cardiovascular disease, conditions interfering with life expectancy (e.g. cancer, drug abuse) and other severe cardiovascular disease (e.g. advanced heart failure, severe valve disease, or history of valve repair/replacement) were exclusion criteria in CLARIFY. Second, the association between low systolic and diastolic BP and increased risk was robust and persisted throughout multiple adjustments, including adjusting for peripheral artery disease, heart failure, left ventricular ejection fraction, and baseline medications, and also in a sensitivity analysis excluding patients with heart failure. Finally, there was no association between low BP and stroke. Altogether, these points strongly argue against reverse causality, but rather are in favour of a direct deleterious effect of low BP on cardiovascular events.

A particular strength of our study is that it includes a large international cohort of patients, treated in "real-life" conditions. Results from this broad representative cohort may have greater external validity than the highly selected populations from randomised trials. ${ }^{24}$ There is a concern that low BP goals from randomised trials, when translated into routine practice, may be associated with higher adverse effects or worse outcomes, especially in older patients. ${ }^{3,25}$

In light of discrepant results of tight BP control trials in patients with diabetes ${ }^{7}$ or stroke ${ }^{8}$ versus neither of these conditions, ${ }^{18}$ we examined interactions between BP lowering and these conditions and found none, which is consistent with previous observations. ${ }^{10,12,15}$ However, we found an interaction between both systolic and diastolic BP and age. Interestingly, the J-curve for systolic BP was shifted to the right in patients >75 years, which is in agreement with international guidelines, which advocate for a higher target systolic BP of 150 mmHg in older patients. ${ }^{26}$

The SPRINT trial and a recent meta-analysis appeared to argue against a J-curve phenomenon. ${ }^{17,18}$ However, our observations are not inconsistent with their findings. In the recent meta-analysis of more versus less intensive BP treatment, which included relatively old studies, ${ }^{17}$ the BP level reached in the more intensive BP-lowering treatment group was $133 / 76 \mathrm{mmHg}$ vs $140 / 81$ mmHg in the less intensive treatment group, so that the "strict control" BP arm remains clearly above the potentially harmful thresholds we observed. Our results are also consistent with the SPRINT trial, even though the BP reached in the intensive treatment group was fairly low (121•4/68.7 vs 136•2/76.3 mmHg in the standard treatment group), as unlike other BP intervention trials, the BP values in SPRINT were measured under unattended conditions to minimise any white coat effect, ${ }^{18}$ but may underestimate casual BP values by at least $5-10 \mathrm{mmHg},{ }^{25}$ or up to $16 \mathrm{mmHg} .{ }^{27}$ This actually led hypertension experts to warn that the SPRINT target translated into community practice may have deleterious effects ${ }^{3,25}$ because the same targets obtained in routine practice would potentially lie within the left part of the J-curve. Our results, which demonstrate a J-curve in patients with casual BP measurements with harmful thresholds very close to the achieved BP obtained in the intensive arm of SPRINT, indeed support this word of caution.

Our observations are in agreement with the fact that after decades of hypertension trials, ${ }^{1,2}$ the benefit of lowering $\mathrm{BP}<140 \mathrm{mmHg}$ remains unquestionable, whereas the benefit of lowering BP to $<130 \mathrm{mmHg}$ is uncertain. ${ }^{7,8,13}$ These findings are in keeping with the HOPE-3 trial results in which lowering BP was only beneficial when baseline BP was $>140 / 90,{ }^{28}$ and with a meta-analysis of randomised trials showing benefit of BP lowering only when systolic BP was $>140 \mathrm{mmHg} .{ }^{29}$ For diastolic $B P$, a target $<90 \mathrm{mmHg}$ is undoubtedly beneficial, ${ }^{1,30}$ but there is more uncertainty below this threshold. Our study shows that a diastolic BP of $70-79 \mathrm{mmHg}$ is associated with a better outcome than a diastolic $\mathrm{BP} \geq 80 \mathrm{mmHg}$, consistent with the SPRINT trial results, ${ }^{18}$ but also strongly argues against further lowering $B P<70 \mathrm{mmHg}$.

Our results only apply to hypertensive patients with CAD and should not be extrapolated to hypertensive patients with other conditions. Compared with post-hoc analyses of BP-lowering trials, there are some disadvantages to using data from an observational registry, such as the open nature of the information (including events), the possible lower accuracy of outcome identification, and the greater heterogeneity of the treatment employed. In addition, the casual BP values from our study are less accurate and standardised than in randomised trials or than BP values obtained from ambulatory measurements; on the other hand, they are also more readily applicable to community practice. Also, these observations derive from an observational study and are prone to confounding. Only dedicated randomised controlled trials comparing BP targets can provide definitive evidence of the risk associated with each BP threshold. In particular, our results call for specific trials to address whether patients with a SBP $>140 \mathrm{mmHg}$ and a high pulse pressure should be treated with the goal of a systolic $B P<140 \mathrm{mmHg}$, even at the cost of a diastolic $\mathrm{BP}<70 \mathrm{mmHg}$, and whether the answer to that question is different depending on the presence of CAD, a history of stroke, diabetes, or advanced age.

In conclusion, this large observational international study shows that high but also low systolic BP and diastolic BP levels are associated with an increased risk of cardiovascular events in CAD patients with hypertension. The increased risk appears under a threshold of 120 mmHg for systolic BP and 70 mmHg for diastolic BP. However, these observations should not slow down the constant effort that is still necessary to improve patient care, as even with the conventional BP goal of <140/90 mmHg , only about half of the hypertensive population is controlled. ${ }^{31}$

Contributors

EVP designed the study, interpreted the data, designed tables and figures, and wrote the first draft and subsequent iterations of the manuscript. IF and NG did the statistical analysis, designed tables and figures, and reviewed and provided critical comments on drafts. RF, KMF, JCT, MT and LT conceived and initiated the CLARIFY registry, coordinated the study and collected data in their respective countries, and reviewed and provided critical comments on the manuscript. DLB provided the initial idea for the study, interpreted the data, and provided critical comments on the manuscript. PGS initiated and coordinated the CLARIFY registry, designed the study, interpreted the data, and provided critical comments on the manuscript.

Declaration of interests

EVP reports non-financial support from Boston scientific and Servier, outside the submitted work. IF reports grants and personal fees from Servier and Amgen, during the conduct of the study. NG reports grants from Servier during the conduct of the study. RF reports grants and personal fees from Servier, during the conduct of the study; personal fees from Bayer, Novartis, Servier, Merck, Servier National and international bodies, outside the submitted work; KMF reports personal fees from Servier, nonfinancial support from Servier, during the conduct of the study; personal fees from Servier, AstraZeneca, TaurX, and CellAegis, non-financial support from Armgo, personal fees and non-financial support from Broadview Ventures, outside the submitted work; and is Director of Vesalius Trials Ltd. JCT reports grants and personal fees from Servier, during the conduct of the study; grants from Amarin, grants and personal fees from Astra-Zeneca, DalCor, Pfizer, Roche, and Servier, grants from Eli-Lilly and Merck, Cymabay, Novartis, and Sanofi, outside the submitted work. MT reports personal fees from Servier, during the conduct of the study, personal fees from Bayer, Celyad, Janssen Cilag, Novartis, Servier, and grants from Polish National Center for Research and Development, outside the submitted work. LT reports personal fees from Servier, during the conduct of the study; personal fees from St. Jude Medical, CVIE therapeutics, Cardiorentis, Boston Scientific, and Medtronic, outside the submitted work. Dr. Bhatt reports grants from Amarin, AstraZeneca, Bristol-Myers Squibb, Eisai, Ethicon, Medtronic, Sanofi Aventis, The Medicines Company, Pfizer, Forest Laboratories, Ischemix, and Amgen, unfunded research with FlowCo, PLx Pharma, Takeda, personal fees from Duke Clinical Research Institute, Mayo Clinic, Population Health Research Institute, Belvoir Publications, Slack Publications, WebMD, Elsevier, HMP, Harvard Clinical Research Institute, and Journal of the American College of Cardiology, personal fees and non-financial support from American College of Cardiology and Society of Cardiovascular Patient Care, other with Medscape Cardiology, Regado Biosciences, Boston VA Research Institute, non-financial support from American Heart Association, other with Clinical Cardiology, VA, St. Jude Medical, Biotronik, Cardax, American College of Cardiology, Boston Scientific, outside the submitted work. PGS reports grants, personal fees and nonfinancial support from Servier, during the conduct of the study; personal fees from Amarin, AstraZeneca, Bayer, Boehringer-Ingelheim, Bristol-Myers-Squibb, Daiichi-Sankyo, GlaxoSmithKline, Lilly, Merck-Sharpe-Dohme, Novartis, Pfizer, Roche, Medtronic, Servier, Janssen, CSL Behring, and

Regeneron, grants and personal fees from Sanofi, personal fees and non-financial support from The Medicines Company, outside the submitted work.

References

1. Zanchetti A, Thomopoulos C, Parati G. Randomized controlled trials of blood pressure lowering in hypertension: a critical reappraisal. Circ Res 2015; 116(6): 1058-73.
2. Ettehad D, Emdin CA, Kiran A, et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet 2016; 387(10022): 957-67.
3. Kjeldsen SE, Lund-Johansen P, Nilsson PM, Mancia G. Unattended Blood Pressure Measurements in the Systolic Blood Pressure Intervention Trial: Implications for Entry and Achieved Blood Pressure Values Compared With Other Trials. Hypertension 2016; 67(5): 808-12.
4. Jones DW, Weatherly L, Hall JE. SPRINT: What Remains Unanswered and Where Do We Go From Here? Hypertension 2016; 67(2): 261-2.
5. Mancia G, Grassi G. Aggressive blood pressure lowering is dangerous: the J-curve: pro side of the arguement. Hypertension 2014; 63(1): 29-36.
6. Verdecchia P, Angeli F, Mazzotta G, Garofoli M, Reboldi G. Aggressive blood pressure lowering is dangerous: the J-curve: con side of the arguement. Hypertension 2014; 63(1): 37-40. 7. Cushman WC, Evans GW, Byington RP, et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med 2010; 362(17): 1575-85.
7. Benavente OR, Coffey CS, Conwit R, et al. Blood-pressure targets in patients with recent lacunar stroke: the SPS3 randomised trial. Lancet 2013; 382(9891): 507-15.
8. Cruickshank JM, Thorp JM, Zacharias FJ. Benefits and potential harm of lowering high blood pressure. Lancet 1987; 1(8533): 581-4.
9. Messerli FH, Mancia G, Conti CR, et al. Dogma disputed: can aggressively lowering blood pressure in hypertensive patients with coronary artery disease be dangerous? Ann Intern Med 2006; 144(12): 884-93.
10. Sleight P, Redon J, Verdecchia P, et al. Prognostic value of blood pressure in patients with high vascular risk in the Ongoing Telmisartan Alone and in combination with Ramipril Global Endpoint Trial study. J Hypertens 2009; 27(7): 1360-9.
11. Bangalore S, Messerli FH, Wun CC, et al. J-curve revisited: An analysis of blood pressure and cardiovascular events in the Treating to New Targets (TNT) Trial. Eur Heart J 2010; 31(23): 2897-908.
12. Cooper-DeHoff RM, Gong Y, Handberg EM, et al. Tight blood pressure control and cardiovascular outcomes among hypertensive patients with diabetes and coronary artery disease.

JAMA 2010; 304(1): 61-8.
14. Mancia G, Schumacher H, Redon J, et al. Blood pressure targets recommended by guidelines and incidence of cardiovascular and renal events in the Ongoing Telmisartan Alone and in Combination With Ramipril Global Endpoint Trial (ONTARGET). Circulation 2011; 124(16): 1727-36.
15. Redon J, Mancia G, Sleight P, et al, Safety and efficacy of low blood pressures among patients with diabetes: subgroup analyses from the ONTARGET (ONgoing Telmisartan Alone and in combination with Ramipril Global Endpoint Trial). J Am Coll Cardiol 2012; 59(1):74-83.
16. Sim JJ, Shi J, Kovesdy CP, Kalantar-Zadeh K, Jacobsen SJ. Impact of achieved blood pressures on mortality risk and end-stage renal disease among a large, diverse hypertension population. J Am Coll Cardiol 2014; 64(6): 588-97.
17. Xie X, Atkins E, Lv J, et al. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and meta-analysis. Lancet 2016; 387(10017): 435-43.
18. Wright JT, Jr., Williamson JD, Whelton PK, et al. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med 2016; 373(22): 2103-16.
19. Messerli FH, Panjrath GS. The J-curve between blood pressure and coronary artery disease or essential hypertension: exactly how essential? J Am Coll Cardiol 2009; 54(20): 1827-34.
20. Steg PG, Greenlaw N, Tendera M, Tardif JC, Ferrari R, Al-Zaibag M, Dorian P, Hu D, Shalnova S, Sokn FJ, Ford I, Fox KM; Prospective Observational Longitudinal Registry of Patients With Stable Coronary Artery Disease (CLARIFY) Investigators. Prevalence of anginal symptoms and myocardial ischemia and their effect on clinical outcomes in outpatients with stable coronary artery disease: data from the International Observational CLARIFY Registry. JAMA Intern Med. 2014;174:1651-9.
21. Heinzl H, Kaider A. SAS Technical Report KB-1-96: manual for the SAS macro RCS (version 2.0).
22. Ovbiagele B, Diener HC, Yusuf S, et al. Level of systolic blood pressure within the normal range and risk of recurrent stroke. JAMA 2011; 306(19): 2137-44.
23. Boutitie F, Gueyffier F, Pocock S, Fagard R, Boissel JP, INDANA Project Steering Committee. INdividual Data ANalysis of Antihypertensive intervention. J-shaped relationship between blood pressure and mortality in hypertensive patients: new insights from a meta-analysis of individual-patient data. Ann Intern Med 2002; 136(6): 438-48.
24. Rothwell PM. External validity of randomised controlled trials: "to whom do the results of this trial apply?". Lancet 2005; 365(9453): 82-93.
25. Schiffrin EL, Calhoun DA, Flack JM. SPRINT Proves that Lower Is Better for Nondiabetic High-Risk Patients, but at a Price. Am J Hypertens 2016; 29(1): 2-4.
26. Mancia G, Fagard R, Narkiewicz K, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J 2013; 34(28): 2159-219.
27. Filipovsky J, Seidlerova J, Kratochvil Z, Karnosova P, Hronova M, Mayer O, Jr. Automated compared to manual office blood pressure and to home blood pressure in hypertensive patients. Blood Press 2016; 25(4): 228-34.
28. Lonn EM, Bosch J, Lopez-Jaramillo P, et al. Blood-Pressure Lowering in Intermediate-Risk Persons without Cardiovascular Disease. N Engl J Med 2016; 374(21): 2009-20.
29. Sundstrom J, Arima H, Woodward M, et al. Blood pressure-lowering treatment based on cardiovascular risk: a meta-analysis of individual patient data. Lancet 2014; 384(9943): 591-8.
30. Hansson L, Zanchetti A, Carruthers SG, et al. Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomised trial. HOT Study Group. Lancet 1998; 351(9118): 1755-62.
31. Egan BM, Zhao Y, Axon RN. US trends in prevalence, awareness, treatment, and control of hypertension, 1988-2008. JAMA 2010; 303(20): 2043-50.

Research in context

Evidence before this study

We systematically searched PubMed without date or language restriction with the terms "J-curve", "blood pressure OR hypertension", "Blood pressure target", "tight blood pressure control", "SPRINT", "coronary artery disease" and synonyms or various combinations of those words to identify systematic reviews, observational studies, randomised controlled trials, and meta-analysis describing the relationship between achieved blood pressure (BP) and cardiovascular events and/or mortality, with a last update in July 2016. We screened papers by title and abstract and title and full text in editorials to identify articles relevant for the study aim. We also screened cited papers from the full-texts of these articles for other relevant research. When restricting the search to original studies including only patients with coronary artery disease (CAD), with a minimum of 500 patients, we identified post-hoc analyses of three trials (INVEST, $n=22,576$; TNT, $n=10,001$; and ACTION, $n=7,665$), and no observational study or randomised controlled trial devoted prospectively to explore the J-curve. Other studies were based on BP trials that included subgroups of patients with CAD (ONTARGET, $\mathrm{n}=19,102$ of 25,620 patients; VALUE, n=6981 of 15,244 patients; Syst-Eur, n=681 of 4695 patients; and HOT, $n=3080$ of 18,790 patients). The papers cited in this article were selected to be representative of the existing evidence both in patients with CAD and other populations, and reviews from before and after the publication of the SPRINT trial are referenced.

Overall, although the benefits of BP-lowering treatment for the prevention of cardiovascular disease and death in hypertensive patients were well established, the results of the studies derived from these trials were conflicting regarding the existence of a "J-curve" or a threshold of achieved systolic and diastolic BP within the physiological range under which antihypertensive treatment may be harmful.

Added value of the study

In this contemporary international observational study in 22,672 hypertensive patients with CAD using casual BP measurements, and in which there was no pre-specified intervention on $B P$, there was a clear J-curve phenomenon. Achieved systolic BP $<120 \mathrm{mmHg}$ and achieved diastolic BP $<70 \mathrm{mmHg}$ were both associated with an increased risk of cardiovascular events and mortality, independently of potential confounding factors.

Implications of all the available evidence

Together with previous literature, our study suggests caution when treating CAD patients with antihypertensive drugs. Future randomised controlled trials will be necessary to confirm the cut-off BP value below which harm outweighs benefit in this population.

Figure legends

Figure 1: Forest plots of adjusted hazard ratio $(95 \% \mathrm{CI})$ of the primary outcome (cardiovascular death, myocardial infarction, or stroke), A), cardiovascular death (B), all-cause death (C), myocardial infarction (D), or stroke (E), and hospitalisation for heart failure (F) by systolic blood pressure (SBP) and diastolic blood pressure (DBP) increments

The analysis were adjusted for all the variables in the fully adjusted model (model 2), including age, sex, geographic region, smoking status, myocardial infarction, percutaneous coronary intervention, coronary artery bypass grafting, diabetes, low and high density lipoprotein cholesterol levels, body mass index, glomerular filtration rate, peripheral artery disease, hospitalisation for or symptoms of heart failure, left ventricular ejection fraction, ethnicity, stroke, transient ischaemic attack, and baseline medications (aspirin, statins, angiotensin-converting enzyme inhibitors, angiotensin-receptor blockers, beta-blockers, calcium channel blockers, diuretics and other antihypertensive medications).

Figure 2: Restricted cubic splines of the primary outcome versus average systolic (upper panel) and diastolic (lower panel) blood pressure (BP)

Restricted cubic splines are represented for the association between average BP level and primary composite outcome of cardiovascular death, myocardial infarction, or stroke. The analyses were adjusted for a variables selected using stepwise methods in the Cox proportional hazards models, namely age, geographic region, smoking status, myocardial infarction, percutaneous coronary Intervention, diabetes, body mass index, glomerular filtration rate, peripheral artery disease, hospitalisation for or symptoms of heart failure, left ventricular ejection fraction, stroke, transient ischaemic attack, angiotensin-receptor blockers, diuretics, and aspirin.

Table 1: Demographic and baseline characteristics of the patients, for the total population and each average on-treatment systolic blood-pressure subgroup

Parameter	Number of patients	Mean systolic BP categories						p value
		Total population $(n=22,672)$	$\begin{gathered} <120 \mathrm{mmHg} \\ (\mathrm{n}=2693) \end{gathered}$	$\begin{gathered} 120-129 \mathrm{mmHg} \\ (\mathrm{n}=6946) \end{gathered}$	$\begin{gathered} 130-139 \mathrm{mmHg} \\ (\mathrm{n}=7586) \end{gathered}$	$\begin{gathered} 140-149 \mathrm{mmHg} \\ (\mathrm{n}=3584) \end{gathered}$	$\begin{gathered} \geq 150 \mathrm{mmHg} \\ (\mathrm{n}=1863) \end{gathered}$	
Age (years)	22,666	$65 \cdot 2$ (10.0)	63.9 (10.4)	$64 \cdot 3$ (10.2)	$65 \cdot 4$ (9.8)	$66 \cdot 2(9 \cdot 6)$	$67 \cdot 21$ (9.8)	<0.0001
Men	22,672	17,019 (75\%)	2104 (78\%)	5399 (78\%)	5677 (75\%)	2578 (72\%)	1261 (68\%)	<0.0001
Body mass index (kg/m²)	22,654	27.7 (25.2-30.9)	$\begin{gathered} 26 \cdot 7(24 \cdot 2- \\ 29 \cdot 7) \end{gathered}$	$\begin{gathered} 27 \cdot 5(25 \cdot 1- \\ 30 \cdot 5) \end{gathered}$	$\begin{gathered} 27 \cdot 9(25 \cdot 3- \\ 31 \cdot 1) \end{gathered}$	$\begin{gathered} 28 \cdot 4(25 \cdot 6- \\ 31 \cdot 5) \end{gathered}$	$\begin{gathered} 28 \cdot 4(25 \cdot 5- \\ 31 \cdot 9) \end{gathered}$	<0.0001
Diabetes	22,670	7591 (33\%)	835 (31\%)	2160 (31\%)	2545 (34\%)	1306 (36\%)	745 (40\%)	<0.0001
Smoking status	22,672							
Current		2569 (11\%)	352 (13\%)	780 (11\%)	861 (11\%)	383 (11\%)	193 (10\%)	<0.0001
Former		10,158 (45\%)	1254 (47\%)	3222 (46\%)	3325 (44\%)	1553 (43\%)	804 (43\%)	
Never		9945 (44\%)	1087 (40\%)	2944 (42\%)	3400 (45\%)	1648 (46\%)	866 (46\%)	
Systolic BP (mmHg)	22,659	133.7 (16.7)	114.3 (10.7)	125.9 (10.3)	$135 \cdot 8(11 \cdot 3)$	$145 \cdot 5$ (13.4)	159.3 (16.4)	-
Diastolic BP (mmHg)	22,659	78.2 (10.1)	71.0 (8.8)	76.0 (8.4)	79.2 (9.2)	$82 \cdot 2$ (10.3)	85.5 (11.7)	-
Heart rate (beats/minute)	22,660	68.5 (10.6)	67.4 (10.2)	67.9 (10.2)	68.7 (10.6)	69.4 (11.1)	$69 \cdot 6$ (11.7)	<0.0001
Myocardial Infarction	22,670	13,258 (58\%)	1789 (66\%)	4165 (60\%)	4298 (57\%)	2017 (56\%)	989 (53\%)	<0.0001
Percutaneous coronary intervention	22,670	12,962 (57\%)	1632 (61\%)	4106 (59\%)	4282 (56\%)	1962 (55\%)	980 (53\%)	<0.0001
Coronary artery bypass graft surgery	22,670	5691 (25\%)	676 (25\%)	1658 (24\%)	1894 (25\%)	939 (26\%)	524 (28\%)	0.0019
Transient ischaemic attack	22,670	801 (4\%)	74 (3\%)	235 (3\%)	277 (4\%)	137 (4\%)	78 (4\%)	0.0652
Stroke	22,670	1089 (5\%)	125 (5\%)	327 (5\%)	341 (4\%)	181 (5\%)	115 (6\%)	0.0407
Hospitalisation for heart failure	22,670	1211 (5\%)	219 (8\%)	317 (5\%)	364 (5\%)	193 (5\%)	118 (6\%)	<0.0001
Symptoms of heart failure								
None	22,671	18,787 (83\%)	2201 (82\%)	5813 (84\%)	6318 (83\%)	2923 (82\%)	1532 (82\%)	0.0033
NYHA Class II		3229 (14\%)	396 (15\%)	976 (14\%)	1044 (14\%)	545 (15\%)	268 (14\%)	
NYHA Class III		655 (3\%)	96 (4\%)	157 (2\%)	223 (3\%)	116 (3\%)	63 (3\%)	
Left ventricular ejection fraction (\%)	15,969	56.1 (11.0)	$52 \cdot 7$ (13.2)	56.2 (10.9)	$56 \cdot 6$ (10.3)	56.7 (10.5)	$57.0(10 \cdot 7)$	<0.0001

Parameter	Number of patients	Mean systolic BP categories						p value
		Total population $(n=22,672)$	$\begin{gathered} <120 \mathrm{mmHg} \\ (\mathrm{n}=2693) \end{gathered}$	$\begin{gathered} 120-129 \mathrm{mmHg} \\ (\mathrm{n}=6946) \end{gathered}$	$\begin{gathered} 130-139 \mathrm{mmHg} \\ (n=7586) \end{gathered}$	$\begin{gathered} 140-149 \mathrm{mmHg} \\ (n=3584) \end{gathered}$	$\begin{gathered} \geq 150 \mathrm{mmHg} \\ (n=1863) \end{gathered}$	
$\mathrm{HbA}_{1 \mathrm{c}}$ (\%)	6173	6.9 (1.8)	$6 \cdot 8$ (1.4)	6.8 (1.8)	6.9 (1.4)	$7 \cdot 1$ (2.8)	$7 \cdot 1$ (1.5)	<0.0001
Creatinine ($\mathrm{mmol} / \mathrm{L}$)	17,165	$\begin{gathered} 0.088(0.076- \\ 0.104) \end{gathered}$	$\begin{gathered} 0.088(0.078- \\ 0.106) \end{gathered}$	$\begin{gathered} 0.088(0.076- \\ 0.102) \end{gathered}$	$\begin{gathered} 0.088(0.076- \\ 0.103) \end{gathered}$	$\begin{gathered} 0.088(0.075- \\ 0.103) \end{gathered}$	$\begin{gathered} 0.088(0.076- \\ 0.106) \end{gathered}$	0.0005
Total cholesterol (mmol/L)	18,265	$4 \cdot 3$ (3.7-5.1)	$4 \cdot 1$ (3.5-4.8)	$4 \cdot 2$ (3.6-5.0)	$4 \cdot 4$ (3.7-5.1)	$4 \cdot 5$ (3.8-5.3)	$4 \cdot 6$ (3.9-5.4)	<0.0001
HDL-cholesterol (mmol/L)	16,054	$1 \cdot 14$ (0.96-1.36)	$\begin{gathered} 1.10(0.94- \\ 1.32) \end{gathered}$	$\begin{gathered} 1.12(0.96- \\ 1.35) \end{gathered}$	$\begin{gathered} 1.14(0.99- \\ 1.38) \end{gathered}$	$\begin{gathered} 1.16(0.97- \\ 1.40) \end{gathered}$	$\begin{gathered} 1.14 \text { (0.99- } \\ 1.39) \end{gathered}$	<0.0001
LDL-cholesterol (mmol/L)	15,257	$2 \cdot 37$ (1.89-2.96)	$\begin{gathered} 2.26(1.80- \\ 2.73) \end{gathered}$	$\begin{gathered} 2.30(1.84- \\ 2.86) \end{gathered}$	$\begin{gathered} 2.39(1.90- \\ 3.00) \end{gathered}$	$\begin{gathered} 2.42(1.92- \\ 3.09) \end{gathered}$	$\begin{gathered} 2.55(1.98- \\ 3.20) \end{gathered}$	<0.0001
Fasting triglycerides ($\mathrm{mmol} / \mathrm{L}$)	16,806	1.4 (1.0-2.0)	1.3 (1.0-1.9)	1.4 (1.0-1.9)	1.4 (1.0-2.0)	1.5 (1.1-2.1)	1.5 (1.1-2.0)	<0.0001

Data are $\mathrm{n}(\%)$ for categorical data and mean (SD) or median (IQR) for continuous data, depending on the distribution of the data.
Some percentages do not add up to 100 because of rounding.
BP=blood pressure. NYHA=New York Heart Association Functional Classification. HDL-cholesterol=high-density lipoprotein cholesterol. LDL-cholesterol= low-density lipoprotein cholesterol.

Table 2: Demographic and baseline characteristics of the patients, for each average on-treatment diastolic blood-pressure subgroup

Parameter	Number of patients	Mean diastolic BP categories					
		$\begin{gathered} <60 \mathrm{mmHg} \\ (\mathrm{n}=214) \end{gathered}$	$\begin{gathered} 60-69 \mathrm{mmHg} \\ (\mathrm{n}=2838) \end{gathered}$	$\begin{gathered} 70-79 \mathrm{mmHg} \\ (\mathrm{n}=10,816) \end{gathered}$	$\begin{gathered} 80-89 \mathrm{mmHg} \\ (n=7681) \end{gathered}$	$\begin{gathered} \geq 90 \mathrm{mmHg} \\ (\mathrm{n}=1123) \end{gathered}$	p value
Age (years)	22,666	71.9 (8.9)	69.2 (9•3)	$65 \cdot 9$ (9.8)	63.1 (9.9)	$60 \cdot 3$ (9.9)	<0.0001
Men	22,672	144 (67\%)	2009 (71\%)	8154 (75\%)	5850 (76\%)	862 (77\%)	<0.0001
Body mass index (kg/m²)	22,654	25.6 (23.4-29.0)	26.8 (24.2-30.0)	$27 \cdot 5$ (25.0-30.5)	28.4 (25.7-31.4)	$29 \cdot 1$ (26.2-32.4)	<0.0001
Diabetes	22,670	91 (43\%)	1144 (40\%)	3634 (34\%)	2373 (31\%)	349 (31\%)	<0.0001
Smoking status	22,672						<0.0001
Current		11 (5\%)	257 (9\%)	1094 (10\%)	1033 (13\%)	174 (15\%)	
Former		103 (48\%)	1252 (44\%)	4994 (46\%)	3333 (43\%)	476 (42\%)	
Never		100 (47\%)	1329 (47\%)	4728 (44\%)	3315 (43\%)	473 (42\%)	
Systolic BP (mmHg)	22,659	120.5 (18.3)	$125 \cdot 9$ (16.3)	$130 \cdot 7$ (15.0)	138.4 (15.6)	152.6 (17.8)	-
Diastolic BP (mmHg)	22,659	$57 \cdot 7$ (7.1)	66.9 (7.5)	75.8 (7.2)	84.0 (7.4)	94.7 (8.0)	-
Heart rate (beats/minute)	22,660	64.9 (10.4)	66.6 (10.6)	67.7 (10.3)	69.7 (10.6)	72.8 (11.9)	<0.0001
Myocardial infarction	22,670	123 (57\%)	1582 (56\%)	6241 (58\%)	4560 (59\%)	752 (67\%)	<0.0001
Percutaneous coronary intervention	22,670	101 (47\%)	1645 (58\%)	6402 (59\%)	4260 (55\%)	554 (49\%)	<0.0001
Coronary artery bypass graft surgery	22,670	80 (37\%)	823 (29\%)	2772 (26\%)	1780 (23\%)	236 (21\%)	<0.0001
Transient ischaemic attack	22,670	9 (4\%)	116 (4\%)	361 (3\%)	272 (4\%)	43 (4\%)	$0 \cdot 3604$
Stroke	22,670	22 (10\%)	138 (5\%)	523 (5\%)	344 (4\%)	62 (6\%)	0.0018
Hospitalisation for heart failure Symptoms of heart failure	22,670	27 (13\%)	170 (6\%)	546 (5\%)	400 (5\%)	68 (6\%)	<0.0001
None	22,671	187 (87\%)	2515 (89\%)	9321 (86\%)	5991 (78\%)	773 (69\%)	<0.0001
NYHA Class II		22 (10\%)	260 (9\%)	1264 (12\%)	1400 (18\%)	283 (25\%)	
NYHA Class III		5 (2\%)	63 (2\%)	231 (2\%)	289 (4\%)	67 (6\%)	
Left ventricular ejection fraction (\%)	15,969	51.4 (15.1)	54.5 (12.8)	56.4 (10.9)	56.4 (10.4)	55.1 (10.5)	<0.0001
$\mathrm{HbA}_{1 \mathrm{c}}$ (\%)	6173	8.0 (8.4)	$7 \cdot 0$ (1.6)	6.8 (1.6)	6.8 (1.3)	$7 \cdot 1$ (1.7)	<0.0001

Parameter		Mean diastolic BP categories					
	Number of patients	$\begin{gathered} <60 \mathrm{mmHg} \\ (\mathrm{n}=214) \end{gathered}$	$\begin{gathered} 60-69 \mathrm{mmHg} \\ (\mathrm{n}=2838) \end{gathered}$	$\begin{gathered} 70-79 \mathrm{mmHg} \\ (\mathrm{n}=10,816) \end{gathered}$	$\begin{gathered} 80-89 \mathrm{mmHg} \\ (n=7681) \end{gathered}$	$\begin{gathered} \geq 90 \mathrm{mmHg} \\ (n=1123) \end{gathered}$	p value
Creatinine (mmol/L)	17,165	0.103 (0.085-0.124)	0.088 (0.076-0.107)	0.088 (0.076-0.103)	0.088 (0.076-0.101)	0.088 (0.078-0.102)	<0.0001
Total cholesterol ($\mathrm{mmol} / \mathrm{L}$)	18,265	3.8 (3.4-4.6)	4.0 (3.5-4.7)	4.2 (3.6-4.9)	4.5 (3.8-5.3)	4.9 (4.1-5.8)	<0.0001
HDL-cholesterol ($\mathrm{mmol} / \mathrm{L}$)	16,054	$1 \cdot 11$ (0.92-1.35)	1.14 (0.96-1.35)	$1 \cdot 14$ (0.96-1.38)	1.13 (0.96-1.36)	$1 \cdot 10$ (0.95-1.35)	$0 \cdot 2758$
LDL-cholesterol ($\mathrm{mmol} / \mathrm{L}$)	15,257	2.09 (1.66-2.62)	$2 \cdot 16$ (1.73-2.68)	2.31 (1.87-2.86)	2.50 (1.98-3.12)	$2 \cdot 83$ (2.20-3.60)	<0.0001
Fasting triglycerides ($\mathrm{mmol} / \mathrm{L}$)	16,806	$1 \cdot 2(0 \cdot 9-1.7)$	$1 \cdot 3$ (1.0-1.9)	1.4 (1.0-1.9)	$1 \cdot 5$ (1.1-2.1)	$1 \cdot 7(1 \cdot 2-2 \cdot 3)$	<0.0001

Data are $\mathrm{n}(\%)$ for categorical data and mean (SD) or median (IQR) for continuous data, depending on the distribution of the data.
Some percentages do not add up to 100 because of rounding.
BP=blood pressure. NYHA=New York Heart Association Functional Classification. HDL-cholesterol=high-density lipoprotein cholesterol. LDL-cholesterol= low-density lipoprotein cholesterol.

Table 3: Crude and adjusted hazard ratios for average systolic (A) and diastolic (B) blood pressure subgroups

Table 3A Outcome	Model	HR (95\% CI) for average systolic BP subgroups					
		$<120 \mathrm{mmHg}$	120-129 mmHg	$130-139 \mathrm{mmHg}$	$140-149 \mathrm{mmHg}$	$\geq 150 \mathrm{mmHg}$	p value
Cardiovascular death, myocardial infarction, or stroke	Unadjusted	1.80 (1.57-2.07)	1.00 (-)	1.11 (0.99-1.25)	1.62 (1.42-1.85)	2.86 (2.48-3.29)	<0.0001
	Model 1	1.56 (1.35-1.80)	1.00 (-)	1.08 (0.96-1.22)	1.51 (1.32-1.73)	2.51 (2.17-2.89)	<0.0001
	Model 2	1.56 (1.36-1.81)	1.00 (-)	1.08 (0.95-1.21)	1.51 (1.32-1.73)	2.48 (2.14-2.87)	<0.0001
	Excluding heart failure	1.54 (1.27-1.87)	1.00 (-)	1.05 (0.90-1.22)	1.49 (1.25-1.76)	2.40 (2.00-2.88)	<0.0001
	≤ 75 years	1.56 (1.32-1.85)	1.00 (-)	1.07 (0.93-1.24)	1.66 (1.41-1.94)	2.80 (2.36-3.33)	<0.0001
	>75 years	1.47 (1.12-1.94)	1.00 (-)	1.12 (0.89-1.41)	1.19 (0.92-1.56)	1.84 (1.40-2.43)	0.0001
All-cause death	Unadjusted	1.89 (1.65-2.18)	1.00 (-)	1.02 (0.90-1.16)	1.34 (1.16-1.55)	2.25 (1.93-2.63)	<0.0001
	Model 1	1.61 (1.39-1.85)	1.00 (-)	0.98 (0.87-1.11)	1.22 (1.05-1.40)	1.88 (1.61-2.20)	<0.0001
	Model 2	1.60 (1.38-1.84)	1.00 (-)	0.98 (0.87-1.11)	1.22 (1.05-1.40)	1.86 (1.59-2.18)	<0.0001
	Excluding heart failure	1.51 (1.24-1.84)	1.00 (-)	0.97 (0.83-1.14)	1.22 (1.01-1.46)	1.75 (1.43-2.14)	<0.0001
Cardiovascular death	Unadjusted	2.30 (1.93-2.75)	1.00 (-)	1.11 (0.94-1.30)	1.65 (1.38-1.97)	2.84 (2.35-3.44)	<0.0001
	Model 1	1.83 (1.53-2.19)	1.00 (-)	1.07 (0.91-1.25)	1.50 (1.26-1.80)	2.39 (1.97-2.90)	<0.0001
	Model 2	1.83 (1.53-2.19)	1.00 (-)	1.07 (0.91-1.25)	1.50 (1.25-1.80)	2.35 (1.93-2.86)	<0.0001
	Excluding heart failure	1.71 (1.32-2.22)	1.00 (-)	1.04 (0.84-1.28)	1.62 (1.29-2.05)	2.19 (1.69-2.84)	<0.0001
Myocardial infarction	Unadjusted	1.65 (1.31-2.08)	1.00 (-)	1.17 (0.97-1.41)	1.60 (1.29-1.98)	3.01 (2.41-3.76)	<0.0001
	Model 1	1.48 (1.17-1.86)	1.00 (-)	1.17 (0.97-1.42)	1.57 (1.26-1.95)	2.85 (2.28-3.57)	<0.0001
	Model 2	1.48 (1.17-1.87)	1.00 (-)	1.18 (0.97-1.43)	1.60 (1.29-1.99)	2.92 (2.32-3.67)	<0.0001
	Excluding heart failure	1.46 (1.09-1.96)	1.00 (-)	1.15 (0.91-1.45)	1.53 (1.17-1.99)	2.88 (2.19-3.80)	<0.0001
Stroke	Unadjusted	1.11 (0.81-1.53)	1.00 (-)	1.12 (0.89-1.41)	1.63 (1.26-2.12)	2.90 (2.21-3.82)	<0.0001
	Model 1	1.05 (0.76-1.45)	1.00 (-)	1.08 (0.85-1.36)	1.54 (1.19-2.00)	2.64 (2.00-3.49)	<0.0001
	Model 2	1.06 (0.77-1.46)	1.00 (-)	1.06 (0.84-1.34)	1.51 (1.16-1.97)	2.57 (1.94-3.41)	<0.0001
	Excluding heart failure	1.25 (0.85-1.84)	1.00 (-)	1.04 (0.79-1.38)	1.32 (0.95-1.83)	2.09 (1.46-2.97)	0.0004
Hospitalisation for heart failure	Unadjusted	1.59 (1.33-1.90)	1.00 (-)	0.94 (0.81-1.10)	1.62 (1.37-1.91)	2.83 (2.38-3.37)	<0.0001
	Model 1	1.38 (1.15-1.66)	1.00 (-)	0.89 (0.76-1.04)	1.45 (1.23-1.70)	2.40 (2.01-2.86)	<0.0001
	Model 2	1.39 (1.16-1.67)	1.00 (-)	0.88 (0.75-1.03)	1.42 (1.20-1.68)	2.36 (1.98-2.83)	<0.0001
	Excluding heart failure	1.15 (0.83-1.60)	1.00 (-)	0.75 (0.58-0.95)	1.12 (0.85-1.48)	1.49 (1.09-2.04)	0.0003

Table 3B Outcome	Model	HR (95\% CI) for average diastolic BP subgroups					
		$<60 \mathrm{mmHg}$	60-69 mmHg	70-79 mmHg	80-89 mmHg	$\geq 90 \mathrm{mmHg}$	p value
Cardiovascular death, myocardial infarction, or stroke	Unadjusted	3.47 (2.61-4.62)	1.74 (1.53-1.97)	1.00 (-)	1.24 (1.12-1.37)	2.98 (2.55-3.48)	<0.0001
	Model 1	1.99 (1.49-2.67)	1.41 (1.24-1.60)	1.00 (-)	1.41 (1.27-1.57)	3.74 (3.18-4.39)	<0.0001
	Model 2	2.01 (1.50-2.70)	1.41 (1.24-1.61)	1.00 (-)	1.41 (1.27-1.57)	3.72 (3.15-4.38)	<0.0001
	Excluding heart failure	1.67 (1.09-2.55)	1.30 (1.11-1.53)	1.00 (-)	1.46 (1.28-1.67)	$4 \cdot 11$ (3.30-5.12)	<0.0001
	≤ 75 years	2.36 (1.57-3.56)	1.70 (1.45-2.00)	1.00 (-)	1.37 (1.22-1.55)	3.15 (2.64-3.77)	<0.0001
	>75 years	1.64 (1.07-2.53)	1.10 (0.88-1.37)	1.00 (-)	1.37 (1.11-1.70)	4.66 (3.08-7.05)	<0.0001
All-cause death	Unadjusted	3.96 (2.99-5.22)	1.93 (1.70-2.19)	1.00 (-)	1.11 (1.00-1.24)	2.21 (1.84-2.66)	<0.0001
	Model 1	$2 \cdot 13$ (1.60-2.83)	1.47 (1.30-1.68)	1.00 (-)	1.37 (1.23-1.53)	$3 \cdot 19$ (2.64-3.86)	<0.0001
	Model 2	2.13 (1.60-2.83)	1.48 (1.30-1.68)	1.00 (-)	1.37 (1.22-1.53)	$3 \cdot 19$ (2.63-3.87)	<0.0001
	Excluding heart failure	1.89 (1.23-2.89)	1.51 (1.28-1.78)	1.00 (-)	1.55 (1.34-1.79)	$3 \cdot 19$ (2.42-4.21)	<0.0001
Cardiovascular death	Unadjusted	4.05 (2.86-5.74)	1.88 (1.60-2.20)	1.00 (-)	1.16 (1.01-1.33)	$2 \cdot 69$ (2.17-3.33)	<0.0001
	Model 1	2.05 (1.43-2.93)	1.43 (1.21-1.68)	1.00 (-)	1.42 (1.24-1.64)	3.81 (3.05-4.77)	<0.0001
	Model 2	2.06 (1.44-2.96)	1.44 (1.22-1.70)	1.00 (-)	1.42 (1.24-1.63)	3.81 (3.04-4.77)	<0.0001
	Excluding heart failure	1.68 (0.95-2.96)	1.30 (1.04-1.63)	1.00 (-)	1.57 (1.31-1.88)	3.97 (2.88-5.49)	<0.0001
Myocardial infarction	Unadjusted	3.42 (2.16-5.44)	1.66 (1.35-2.04)	1.00 (-)	1.32 (1.12-1.55)	3.35 (2.64-4.24)	<0.0001
	Model 1	2.31 (1.44-3.71)	1.42 (1.15-1.75)	1.00 (-)	1.43 (1.21-1.69)	3.61 (2.81-4.63)	<0.0001
	Model 2	2.38 (1.48-3.83)	1.43 (1.16-1.76)	1.00 (-)	1.44 (1.22-1.70)	3.68 (2.86-4.73)	<0.0001
	Excluding heart failure	1.49 (0.73-3.05)	1.23 (0.95-1.59)	1.00 (-)	1.43 (1.17-1.75)	3.77 (2.71-5.25)	<0.0001
Stroke	Unadjusted	$2 \cdot 18$ (1.08-4.42)	1.49 (1.15-1.94)	1.00 (-)	1.27 (1.04-1.56)	3.28 (2.44-4.42)	<0.0001
	Model 1	1.34 (0.65-2.73)	1.22 (0.94-1.60)	1.00 (-)	1.44 (1.17-1.77)	$4 \cdot 29$ (3.14-5.87)	<0.0001
	Model 2	1.31 (0.64-2.69)	1.23 (0.94-1.61)	1.00 (-)	1.46 (1.18-1.79)	4.33 (3.15-5.94)	<0.0001
	Excluding heart failure	1.46 (0.64-3.34)	1.17 (0.85-1.60)	1.00 (-)	1.42 (1.10-1.83)	4.88 (3.26-7.31)	<0.0001
Hospitalisation for heart failure	Unadjusted	3.32 (2.22-4.97)	1.56 (1.31-1.87)	1.00 (-)	1.61 (1.41-1.83)	6.32 (5.37-7.44)	<0.0001
	Model 1	2.22 (1.47-3.36)	1.53 (1.28-1.84)	1.00 (-)	1.38 (1.21-1.58)	4.60 (3.86-5.48)	<0.0001
	Model 2	2.36 (1.55-3.58)	1.55 (1.29-1.86)	1.00 (-)	1.38 (1.21-1.59)	4.58 (3.83-5.48)	<0.0001
	Excluding heart failure	$2 \cdot 32$ (1.12-4.78)	1.67 (1.26-2.22)	1.00 (-)	1.53 (1.22-1.91)	4.58 (3.21-6.54)	<0.0001

Data are indicated for the whole population and for the sensitivity analysis excluding patients with heart failure for all outcomes. Data are also given by age subgroup (≤ 75 years or >75 years) for the primary outcome. BP=blood pressure. The p-value reported represents the heterogeneity of the association of BP with each outcome across the BP categories.

Model 1: adjusted for age, geographical region, smoking status, myocardial infarction, percutaneous coronary Intervention, diabetes, body mass index, glomerular filtration rate, peripheral artery disease, hospitalisation for or symptoms of heart failure, left ventricular ejection fraction, stroke, transient ischaemic attack, angiotensin-receptor blockers, diuretics and aspirin.

Model 2: adjusted for age, sex, geographical region, smoking status, myocardial infarction, percutaneous coronary Intervention, coronary artery bypass graft, diabetes, low- and high-density lipoprotein cholesterol levels, body mass index, glomerular filtration rate, peripheral artery disease, hospitalisation for or symptoms of heart failure, left ventricular ejection fraction, ethnicity, stroke, transient ischaemic attack and baseline medications, namely aspirin, statins, angiotensin-converting enzyme inhibitors, angiotensin-receptor blockers, beta-blockers, calcium channel blockers, diuretics and other antihypertensive medications.

Cardiovascular death, myocardial infarction, or stroke
SBP < 120 mmHg

SBP 120-129 mmHg
SBP 130-139 mmHg
SBP 140-149 mmHg
$S B P \geq 150 \mathrm{mmHg}$

DBP $<60 \mathrm{mmHg}$
DBP 60-69mmHg
DBP 70-79mmHg
DBP 80-89mmHg
DBP $\geq 90 \mathrm{mmHg}$

$323 / 2687$	(12.0)
$490 / 6938$	(7.1)
$584 / 7578$	(7.7)
$386 / 3577$	(10.8)
$316 / 1859$	(17.0)

$50 / 214$
$351 / 2833$ (12.4)
$813 / 10802$ (7.5)
$684 / 7667$ (8.9)
201/1123 (17.9)

All cause death

SBP < 120 mmHg
SBP 120-129 mmHg
SBP 130-139 mmHg
SBP 140-149 mmHg
$S B P \geq 150 \mathrm{mmHg}$

DBP < 60 mmHg
DBP 60-69 mmHg
DBP 70-79 mmHg
DBP 80-89 mmHg
DBP $\geq 90 \mathrm{mmHg}$

$330 / 2693$	(12.3)
$479 / 6987$	(6.9)
$526 / 7611$	(6.9)
$312 / 3555$	(8.8)
$239 / 1793$	(13.3)

$53 / 210$ (25.2)
$365 / 2842$ (12.8)
759 / 10891 (7.0)
$574 / 7633$ (7.5)
$135 / 1063$ (12.7)

Cardiovascular death
SBP <120 mmHg

SBP 120-129 mmHg
SBP 130-139 mmHg
SBP 140-149 mmHg
$S B P \geq 150 \mathrm{mmHg}$

DBP < 60 mmHg
DBP 60-69 mmHg
DBP 70-79 mmHg
DBP $80-89 \mathrm{mmHg}$
DBP $\geq 90 \mathrm{mmHg}$

$227 / 2693$	(8.4)
$271 / 6992$	(3.9)
$322 / 7606$	(4.2)
$217 / 3555$	(6.1)
$171 / 1793$	(9.5)

$34 / 210$ (16.2)
$223 / 2842$ (7.8)
475 / 10895 (4.4)
$373 / 7630$ (4.9)
103/1062 (9.7)

Myocardial infarction (fatal or non-fatal)

SBP $<120 \mathrm{mmHg}$	$115 / 2688$	(4.3)
SBP $120-129 \mathrm{mmHg}$	$191 / 6956$	(2.7)
SBP $130-139 \mathrm{mmHg}$	$240 / 7600$	(3.2)
SBP $140-149 \mathrm{mmHg}$	$149 / 3559$	(4.2)
SBP $\geq 150 \mathrm{mmHg}$	$131 / 1836$	(7.1)
DBP $<60 \mathrm{mmHg}$	$19 / 211$	(9.0)
DBP $60-69 \mathrm{mmHg}$	$129 / 2835$	(4.6)
DBP $70-79 \mathrm{mmHg}$	$311 / 10836$	(2.9)
DBP $80-89 \mathrm{mmHg}$	$280 / 7654$	(3.7)
DBP $\geq 90 \mathrm{mmHg}$	$87 / 1103$	(7.9)

Outcome by BP Group

No. events / No. in group (\%)

$53 / 2692$	(2.0)
$130 / 6978$	(1.9)
$155 / 7589$	(2.0)
$103 / 3564$	(2.9)
$84 / 1816$	(4.6)

DBP < 60 mmHg
DBP 60-69 mmHg
DBP 70-79mmHg
DBP 80-89 mmHg
DBP $\geq 90 \mathrm{mmHg}$
/ 213 (3.8)
$77 / 2842$ (2.7)
207 / 10857 (1.9)
$178 / 7646$ (2.3)
$55 / 1081$ (5.1)

Outcome by BP Group

Heart failure hospitalisation

SBP $<120 \mathrm{mmHg}$	$187 / 2559$	(7.3)
SBP $120-129 \mathrm{mmHg}$	$325 / 6784$	(4.8)
SBP $130-139 \mathrm{mmHg}$	$328 / 7339$	(4.5)
SBP $140-149 \mathrm{mmHg}$	$257 / 3473$	(7.4)
SBP $\geq 150 \mathrm{mmHg}$	$208 / 1756$	(11.8)

DBP $<60 \mathrm{mmHg}$	$25 / 206$	(12.1)
DBP $60-69 \mathrm{mmHg}$	$167 / 2721$	(6.1)
DBP $70-79 \mathrm{mmHg}$	$430 / 10559$	(4.1)
DBP $80-89 \mathrm{mmHg}$	$463 / 7347$	(6.3)
DBP $\geq 90 \mathrm{mmHg}$	$220 / 1078$	(20.4)

Cardiovascular death, myocardial infarction or stroke

Cardiovascular death, myocardial infarction or stroke

