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Abstract 
 
Oscillatory Marangoni convection in silicone 
oil liquid bridges is investigated by three-
dimensional, time-dependent numerical 
solutions of the model equations and by 
micro-scale experimentation. The field 
equations are numerically solved with three-
dimensional control volume methods in a 
staggered cylindrical non-uniform grid. Two 
experimental configurations are utilized: 1) 
the two disks sustaining the bridges are made 
of copper, their temperatures are controlled 
with Peltier elements, the flow field in a 
vertical section is visualized by tracers 
illuminated by a laser light cut in the meridian 
plane and four fine temperature sensors are 
inserted axially from the hot disk into the 
liquid bridge; 2) the lower disk is made of 
copper and the upper one is made of 
transparent glass, heated by an electrical 
resistance, for visual measurements in a cross 
section orthogonal to the liquid bridge axis. 
The surface temperature distribution is 
measured by an infrared thermocamera. It is 
shown that the flow field organization, 
depending on the critical wave number, is 
related to the geometrical aspect ratio of the 
liquid bridge and that smaller is the aspect 
ratio, larger is the critical wave number and 
more complex the flow-field structure. For 
each aspect ratio considered, the flow field 
exhibits a first transition from the axy-
symmetric steady to a standing wave 
instability model and then a second transition 
from the standing wave to the travelling wave 
regime. The influence of buoyancy effects on 
the oscillatory Marangoni flow organization 
is investigated by heating the liquid bridges 
either from above or from below.  

  
1. INTRODUCTION 

 
The stability of Marangoni convection in non-
isothermal liquid bridges with quasi-
cylindrical free surfaces has been the object 
of many researches in the last years. 
Experiments performed on ground and in 
microgravity conditions and numerical studies 
on the subject have been dedicated to the 
analysis of the transition from the steady 
axisymmetric toroidal flow to the three-
dimensional oscillatory flow; this last is 
established in non isothermal liquid bridges of 
high Prandtl number liquids when a critical 
temperature difference across the liquid 
bridge is exceeded [1-7]. 
In particular, recent numerical results, 
substantiated by experiments performed on 
ground with a micro-scale apparatus [8, 9], 
have pointed out that, when the temperature 
difference across the liquid bridge is 
increased, the flow exhibits two transitions. A 
first transition occurs from the axi-symmetric 
steady to a three-dimensional oscillatory 
state, characterized by a pulsating regime 
(standing wave model). The second  
bifurcation is from the pulsating regime to a 
rotating oscillatory regime (travelling wave 
model). A flight experiment for a Maxus 
sounding rocket mission is in preparation and 
will be performed in fall 1998 for the 
experimental confirmation of these results, 
using a silicone oil liquid bridge with length 
of 2cm and an aspect ratio (A=L/D) equal to 
one[10].   
In this paper an experimental and numerical 
analysis is performed to investigate the 
oscillatory regimes in silicone oil liquid 
bridges with different aspect ratios under 
normal gravity.  
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2. EXPERIMENTAL TECHNIQUE 

 
Liquid bridges of silicone oil with kinematic 
viscosity =2[cs] have been formed and 
sustained between two cylindrical rods of the 
same diameter (D=4 [mm]). The upper disk 
can be translated along the vertical axis in 
order to change the geometrical aspect ratio 
(A=L/D). The translation is obtained using a 
motorized micrometer system controlled by 
computer. The volume of the liquid bridge, 
for all the aspect ratios investigated, is equal 
to the volume of the cylinder of diameter D 
and length L (LD2/4). The temperatures of 
the bridge supports can be controlled so that 
an appropriate temperature difference 
between the upper and lower disk can be 
imposed and maintained.  
The temperatures at four points with the same 
axial and radial co-ordinate (x/L=0.75, 
r/R=0.5) but at different azimuth locations are 
measured with four thermocouples (with 
diameter of 0.25 [mm]) inserted into the 
microzone through four holes (the 
thermocouples protrude in the bridge in axial 
direction).  
The liquid motion in the meridian plane is 
visualized using tracers  scattering the light 
generated by a laser diode (He-Ne with a 
wavelength of 635 nm) forming a light sheet. 
The laser beam is oriented orthogonal to the 
main optical path of a CCD camera.  
In order to visualize the flow in a section 
orthogonal to the axis of the bridge a different 
set up has been utilized with a transparent 
(glass) upper disk heated by an electrical 
resistance. The surface temperature 
distribution is measured by an infrared 
thermocamera (8-12 m) over an extension of 
the free surface corresponding to an angular 
range of about 160 degree. 
During an experiment, typically the 
temperature difference between the end 
supports is maintained by heating one disk 
and cooling the other one, with respect to the 
ambient temperature, with symmetrical 
temperature ramps.  When   the   Marangoni   
number  is increased a first transition from the 
axisymmetric to the three-dimensional 
pulsating regime is observed for Ma= Mac1. 
 

 
 
If the Marangoni number is further increased 
a travelling wave regime is established, 
characterized by rotating temperature spots 
along the free surface of the liquid bridge (for 
Ma = Mac2 > Mac1). 
The evaluation of the critical Marangoni 
numbers (Mac1 and Mac2) is made by a rather 
time consuming procedure, both 
experimentally and numerically, by 
identifying a lower and an upper value of Ma 
at which oscillations occur or do not occur. 
Reducing the gap between these two values 
implies long numerical or experimental runs.  
The experimental and numerical results 
described in this paper refer to supercritical 
flow conditions, i.e. for Mac1 < Ma < Mac2 
(standing wave) or Ma > Mac2 (travelling 
wave).  
Figs. 1 and 2 show different CCD outputs of a 
vertical cross-section and a horizontal cross-
section in one oscillation period during the 
pulsating wave regime. Each image 
corresponds to a CCD frame (the CCD 
acquisition speed is 25 fps). The oscillation 
period () is of the order of 1 second, the time 
interval between the different frames is /4. 
The rotating regime is illustrated in Figs. 3 
and 4. The experimental conditions, for this 
particular case, correspond to an aspect ratio 
A=0.9, and  temperature differences are 20 K, 
for Figs. 1 and 2, and 40 K, for Figs. 3 and 4. 
The different behaviour in the pulsating and 
rotating regimes are more evident in the CCD 
images, due to the fact that the video 
acquisition rate is 25 fps (so that there are 
about 25 frames in each period).  
The temperature disturbances are evaluated in 
a post-analysis phase by subtracting, from the 
surface temperature distribution, the time-
averaged surface temperature field To(z,) 
obtained integrating the experimentally 
measured surface temperature distribution 
over the period  of the oscillations. If N is 
the number of images taken during the period 
: 
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 (a) t=t0 

 (b) t=t0 +/4 

 (c) t=t0 +/2 

 (d) t=t0 +3/4 

 (e) t=t0 + 
 

Fig.1–CCD outputs of the meridian plane in the 
standing wave regime   
  

 (a) t=t0 

 (b) t=t0 +/4 

 (c) t=t0 +/2 

 (d) t=t0 +3/4 

 (e) t=t0 + 
 

Fig.2 – CCD outputs of the horizontal section in the 
standing wave regime  
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 (a) t=t0  

 (b) t=t0 +/4 

 (c) t=t0 +/2 

 (d) t=t0 +3/4 

 (e) t=t0 + 
 

Fig.3 – CCD outputs of the meridian plane in the 
travelling wave regime  

 (a) t=t0  

 (b) t=t0 +/4 

 (c) t=t0 +/2 

 (d) t=t0 +3/4 

 (e) t=t0 + 
 

Fig.4 – CCD outputs of the horizontal section in the 
travelling wave regime   
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3. NUMERICAL MODEL 
 
The numerical simulation is performed using 
a three-dimensional code solving the 
continuity, Navier-Stokes and energy 
equations that in non-dimensional 
conservative form read : 
  

 V 0    (2a-c) 
 



V
t

p VV Pr 2 V PrRa ig       

      


T

t
VT T  2    

   
where V, p and T are the non-dimensional 
velocity, pressure and temperature, Pr=/ is 
the Prandtl number,  is the kinematic 
viscosity and  the thermal diffusivity). The 
Rayleigh number is defined by  Ra=g 
TTL3/ where T is the thermal 
expansion coefficient. The non-dimensional 
form results from scaling the lengths by the 
axial distance between the circular disks (L) 
and the velocity by the energy diffusion 
velocity V = /L; the scales for time and 
pressure are, respectively, L2/ and 2/L2. 
The temperature is measured with respect to 
the ambient temperature and scaled by T.  
The initial conditions are: 
 

t=0:   V (z, r, )= T(z, r, )= 0 
   (3) 

For  t > 0, the boundary conditions are the 
non-slip conditions and the condition of 
prescribed temperatures on the circular disks, 
the kinematic condition of stream surface 
(zero normal velocity), the Marangoni 
conditions (the reference Marangoni number 
Ma is defined as Ma=T( )T L/) and the 

adiabatic condition on the cylindrical 
interface. Details on the numerical procedure 
are given in  [8].  
 

4. RESULTS AND DISCUSSION 
 

4.1 Influence of geometrical aspect ratio 
 
The experimental and numerical results, in 
agreement with previous works (see e.g. [3, 
4]), pointed out that the temperature and  
velocity fields, in the oscillatory supercritical 
state, depend on the geometrical aspect ratio.  
Table I summarizes the different experimental 
configurations, for liquid bridges heated from 
above. The Marangoni numbers are almost 
the same for the different aspect ratios 
considered and correspond to supercritical 
conditions.  
The wave number m, that represents the 
number of cycles in the azimuth direction  [3, 
4, 8] is m = 1 for A=0.6, whereas larger 
values (m>1) have been found for lower 
aspect ratios. The oscillation frequencies 
reported in Table I are non dimensional 
frequencies defined in terms of the 
characteristic frequency fc=/D2. 

 
A 
 

Ra Ma m (exp.) m (num) f x10-2

(exp.) 
f x10-2 

(num.) 
0.25 7.2 103 3.8 104 3 3 8.9 9.4 
0.4 1.67 104 3.6 104 2 2 5.4 3.6 
0.5 2.52 104 3.5 104 2 2 4.1 3.2 
0.7 4.9 104 3.2 104 1 1 3.3 2.5 
0.9 8.1 104 3.5 104 1 1 2.2 2.0 

 

Table I: Experimental and numerical results (bridge heated from above) 
 

The flow structure of the supercritical state is 
related to the value of m and hence depends 
on the value of the aspect ratio. Higher is m, 
more complex is the flow organization. Figs 
5,6,7 show for each aspect ratio the 
temperature disturbances on the liquid bridge 
surface (Figs. 5a, 6a and 7a refer to the 

experimental results, Figs. 5b, 6b and 7b to 
the numerical results).  
For the case shown in Figs. 5 (corresponding 
to A=0.7 and Ma=3.2 x 104) there are two 
temperature spots (one hot and the other cold) 
along the entire free surface of the liquid 
bridge and hence m=1. The experimental 
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temperature distribution over  a surface 
portion of about 160 degrees shows in fact 
only the hot spot. 
The case  m=2  (corresponding  to  A=0.4  
and Ma=3.6 104) is illustrated in Figs.6.  
These numerical  results  show  the  presence  
of four temperature spots (two cold and        

two hot) along  the  entire  surface, whereas 
two thermal spots (one hot and the other cold) 
appear in the thermocamera image. The case 
m=3 is shown in Figs. 7 (A=0.25 and Ma=3.8 
104 ). 

 

  a)               

1.2
0.96
0.72
0.48
0.24
0
-0.24
-0.48
-0.72
-0.96
-1.2

b) 
 
Fig. 5 – Surface temperature disturbances for A=0.7, Ma=3.2 104. (a): experimental; (b): numerical 
 

 a)           

1.90
1.48
1.06
0.63
0.21
-0.21
-0.63
-1.06
-1.48
-1.90

 b) 
 
Fig. 6 – Surface temperature disturbances for A=0.5, Ma=3.6 104. (a): experimental; (b): numerical 

a)          

2.80
2.18
1.56
0.93
0.31
-0.31
-0.93
-1.56
-2.18
-2.80

b) 
 
Fig. 7 – Surface temperature disturbances for A=0.25, 3.8 104. (a): experimental; (b): numerical 
 

Odd wave numbers (e.g. m = 1 and m = 3) 
correspond to "asymmetrical" modes; even 
values of m (e.g.  m = 2) correspond instead 
to "symmetric" modes. More generally, when 
the critical disturbance number (m) is odd, 
there are two asymmetrical vortex cells in 
each meridian plane of the liquid bridge.  
In particular for m=1 the supercritical 
oscillatory flow appears as an inclined 
toroidal vortex, as shown by Figs. 8 and 9, 

that show the experimental and numerical 
vector plots in the vertical and horizontal 
cross sections, for the case A=0.9, Ma=3.5 
104.  The vortex in one half of the zone 
section appears smaller than the opposite 
vortex. The time-dependence is observed as 
periodical interchange of the shape of the 
vortices in the left and right parts of the zone. 
After one half of the oscillation period the 
small vortex and the large vortex change 
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position. The branching streamline of the 
opposite vortices changes its inclination 
continuously in an oscillation period (Fig. 8). 
For even critical wave numbers, the flow field 
structure is on the whole three-dimensional 
and depends on the azimuth co-ordinate, but 
in each axial plane the velocity and the 
temperature fields are symmetric and the 

time-dependence is observed as a 
synchronous pulsation of the two symmetrical 
vortices.  
 This behaviour is illustrated in Figs. 10 (A = 
0.5, m =2).  The velocity field in this case  is 
symmetric and the convective cells travel 
axially up and down.  

 

     
   (a): experimental      (b): numerical  (c): experimental      (d): numerical 
 
Fig. 8- Vector plots in the meridian plane at two times (half period apart) in the oscillation period (A=0.9, Ma=3.2 104) 

     
   (a): experimental         (b): numerical    (c): experimental           (d): numerical 
 
Fig. 9- Vector plots in the cross section at two times (half period apart) in the oscillation period (A=0.9, Ma= 3.2 104) 

  
(a): experimental      (b): experimental          (c): experimental 

   
(d): numerical          (e): numerical          (f): numerical 

Fig. 10- Vector plots in the meridian plane at two times (one fourth period apart) in the oscillation period 
 (A=0.5, Ma=3.5 104) 

 

0.6 cm/s

0.3 cm/s 

0.7 cm/s 

0.7 cm/s 
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4.2 Pulsating and rotating regimes 
 
In agreement with previous works [8-10], the 
experimental and numerical results confirmed 
that, for all the aspect ratios considered, 
immediately after the onset (for Ma > Mac1), 
an "azimuthally standing wave" is formed. 
The three dimensional temperature 
disturbance consists of a number m of couple  
 

 
of  spots  (hot and cold) “pulsating”  at the 
same azimuth positions along the interface 
(minimum and maximum disturbances at 
fixed azimuth positions). If the Marangoni 
number is further increased, a travelling wave 
appears, characterized by rotating temperature 
spots along the free surface of the liquid 
bridge (for Ma = Mac2 > Mac1). 

0.80
0.62
0.44
0.27
0.09
-0.09
-0.27
-0.44
-0.62
-0.80

 
     (a): t=to       (b): t=to+/6       (c): t=to+/3         (d): t=to+/2 

 

Fig. 11- Numerical surface temperature disturbances in half oscillation period (A=0.9, Ma= 3 x104, pulsating) 
 

 
        (a): t=to  (b): t=to+/6          (c): t=to+/3            (d): t=to+/2 
 

Fig. 12-Experimental surface temperature disturbances in half oscillation period (A=0.9, Ma= 3 x104, pulsating) 

1 .50
1 .17
0 .83
0 .50
0 .17
-0 .17
-0 .50
-0 .83
-1 .17
-1 .50

 

       (a): t=to    (b): t=to+/4     (c): t=to+/2      (d): t=to+(3/4)  
 
Fig. 13-Numerical surface temperature disturbances in the oscillation period (A=0.9, Ma= 3.5 x104, rotating) 
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  (a): t=to  (b): t=to+/4      (c): t=to+/2         (d): t=to+(3/4)  
 
Fig. 14-Experimental surface temperature disturbances in the oscillation period (A=0.9, Ma= 3.5 x104, rotating) 
 
Figs. 11 and 12 show, respectively, the 
computed and measured surface temperature 
distributions with pulsating temperature spots 
during the regime of standing wave for A=0.9 
(Mac1<Ma<Mac2). The rotating behaviour 
during the travelling wave regime is 
illustrated in Figs. 13 and 14 (Ma > Mac2). 
The appearance of an azimuthally standing 
wave that bifurcates in an azimuthally 
travelling wave has been observed for all the 
aspect ratios considered, but the standing wave 
model is more stable for small aspect ratios. 
For m=1  the   transition from  the standing 

wave to the travelling wave regime has been 
also observed by the behaviour of the 
temperature time profiles detected by the four 
thermocouples located at different azimuth 
positions in the same horizontal cross section 
(see Figs. 15). As discussed in [10], in the 
standing wave regime there is no phase shift 
between the signals detected by two 
thermocouples with an azimuth shift of 90° 
and the phase shift between two 
thermocouples at 180° is ; in the travelling 
wave regime the phase shift between two 
consecutive thermocouples at 90° is  /2. 

 

 

     T1

T2

    
T1

T2

   

T1

T2

T3

T4
 

      (a): numerical, standing wave  (b): experimental, standing wave 

T1

T2

 T1

T2

 
      (c): numerical, travelling wave   (d): experimental, travelling wave 

 
Fig. 15- Temperatures detected by thermocouples in a cross section (conditions of Figs. 11-14)

.  
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4.3 Influence of buoyancy effects 
 
The influence of buoyancy effects on the 
onset of Marangoni instability and on the 
flow organization has been investigated at 
different aspect ratios, by heating the bridge 
from below or from above. The experimental 
conditions investigated, for liquid bridges 
heated from below, are summarized in Table 
II. 
 Comparison with Table I shows that the 
Marangoni   numbers,    corresponding     to  

oscillatory supercritical conditions, are 
slightly increased (compared to the case of 
bridges heated from above). This increase is 
more evident for high aspect ratios since the 
Rayleigh number (which measures the 
intensity of the buoyancy forces) increases 
proportionally to L3 .   
The azimuth flow organization, related to the 
critical wave number m, may be different 
according to whether the bridge is heated 
from above or from below.  

 
 

A 
 

Ra Ma m (exp.) m (num) f x10-2

(exp.) 
f x10-2 

(num.) 
0.25 7.65 103 4.2 104 2 2 8.6 7.8 
0.4 2.03 104 4.4 104 1 1 4.9 3.4 
0.5 3.1 104 4.3 104 1 1 3.4 2.9 

 
Table II: Experimental and numerical results (bridge heated from below) 

 
 

The numerical and experimental surface 
temperature distributions obtained in the case 
A=0.4, are illustrated in Figs. 16. The number 
of the temperature spots on the liquid bridge 
surface, provided by the thermocamera and 
the corresponding numerical results confirm 
that at the critical conditions the wave number 

is m=2 for a bridge heated from above and 
m=1 for a bridge heated from below. 
From the number of temperature disturbances 
the difference between the asymmetric (m=1) 
and the symmetric (m=2) flow instabilities is 
evident.

 

 

 2

 1

 0

-1

-2  
(a): experimental, heating from above             (d): experimental, heating from below 
 

             
(b): numerical, heating from above                         (e): numerical, heating from below 
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(c): numerical, heating from above(3D view) (f): numerical, heating from below (3D view) 

 
Fig. 16-Surface temperature disturbances in the case A=0.5, heating from above (Ma=3.5 x104 ) or from below 
(Ma=4.3 x104 ), rotating regime. 

 
5. CONCLUSIONS 

 
Surface tension-driven instabilities in  vertical 
cylindrical liquid bridges have been studied  
experimentally using a microscale facility and 
numerically with time-dependent three-
dimensional simulations. Both the 
experimental and numerical results have 
shown the different flow organizations 
corresponding to the standing wave and to the 
travelling wave regimes in bridges of 
different aspect ratios. The azimuth flow 
organization at the onset of instability 
depends on the geometrical aspect ratio and 
may change according to whether the bridge 
is heated from above or from below. In 
particular, when the liquid bridge is heated 
from below, the critical Marangoni number is 
larger and the critical wave number m can be 
smaller compared to the case of bridge heated 
from above. 
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