Animal Mitochondrial DNA: An Extreme Example of Genetic Economy

https://doi.org/10.1016/S0074-7696(08)61373-XGet rights and content

Publisher Summary

This chapter describes animal mitochondrial DNA. It focuses on the aspects of the structure, function, and evolution of animal mitochondrial DNA (mtDNA). It also explores the questions raised by the recent unravelling of the mitochondrial genetic code and of the primary structure and gene organization of animal mtDNA. The most conspicuous among the features of animal mtDNA from animal cells, yeast, and filamentous fungi, is the use of UGA as a tryptophan codon rather than as a stop codon. There are genetic code differences between the individual mitochondrial genetic systems, even within the same philogenetic group. In mammalian, but not in fungal mitochondria, besides AUG, also AUA, AUU, and AUC can function as initiator codons; in this role, AUU and AUC may indeed be read by N-formyl-methionyl-tRNA and thus code for N-formyl-methionine, like AUG and AUA. There is a case among mammalian mitochondrial tRNAs where a C in the first position of the anticodon, rather than a U, enables it to pair with A and G in third codon position. The mtDNA of all animal cells so far analyzed is in the form of circular molecules of relatively uniform length, with their sizes ranging between 15.7 and 19.5 kb.

References (150)

  • F. Amalric et al.

    J. Mol. Biol.

    (1978)
  • S. Anderson et al.

    J. Mol. Biol.

    (1982)
  • A. Arnberg et al.

    Biochim. Biophys. Acta

    (1971)
  • B. Attardi et al.

    J. Mol. Biol.

    (1971)
  • R. Bianchetti et al.

    Biochem. Biophys. Res. Commun.

    (1971)
  • M.J. Bibb et al.

    Cell

    (1981)
  • A. Brennicke et al.

    J. Biol. Chem.

    (1981)
  • K.S. Browning et al.

    J. Biol. Chem.

    (1982)
  • D.A. Clayton

    Cell

    (1982)
  • S. Crews et al.

    Cell

    (1980)
  • F.F.C. Crick

    J. Mol. Biol.

    (1966)
  • L.W. Davenport et al.

    Biochim Biophys. Acta

    (1976)
  • I.B. Dawid

    Dev. Biol.

    (1972)
  • I.B. Dawid et al.

    Dev. Biol.

    (1972)
  • D.T. Dubin et al.

    Plasmid

    (1983)
  • D.T. Dubin et al.

    J. Mol. Biol.

    (1978)
  • D.T. Dubin et al.

    Cell

    (1981)
  • D.T. Dubin et al.

    J. Mol. Biol.

    (1982)
  • D.T. Dubin et al.

    J. Mol. Biol.

    (1984)
  • B. Dujon

    Cell

    (1980)
  • J. England et al.

    J. Mol. Biol.

    (1978)
  • J.F. Francisco et al.

    FEBS Lett.

    (1977)
  • G. Gaines et al.

    J. Mol. Biol.

    (1984)
  • B.D. Greenberg et al.

    Gene

    (1983)
  • W. Herr et al.

    J. Mol. Biol.

    (1979)
  • M. Hirsch et al.

    J. Mol. Biol.

    (1973)
  • J.J.J. Hoeijmakers et al.

    Plasmid

    (1981)
  • M.M.S. Hudspeth et al.

    Cell

    (1982)
  • C.K. Klukas et al.

    Cell

    (1976)
  • R.M. Kotin et al.

    Biochim. Biophys. Acta

    (1984)
  • Y. Aloni et al.

    Proc. Natl. Acad. Sci. U.S.A.

    (1971)
  • Y. Aloni et al.

    J. Mol. Biol.

    (1971)
  • S. Anderson et al.

    Nature (London)

    (1981)
  • C.F. Aquadro et al.

    Genetics

    (1983)
  • P. Arcari et al.

    Nucleic Acids Res.

    (1980)
  • G. Attardi et al.
  • L. Aujame et al.

    Nucleic Acids Res.

    (1979)
  • J.C. Avise et al.

    Genetics

    (1979)
  • J.C. Avise et al.

    Proc. Natl. Acad. Sci. U.S.A.

    (1979)
  • R.J. Baer et al.

    Nucleic Acids Res.

    (1981)
  • B.G. Barrell et al.

    Proc. Natl. Acad. Sci. U.S.A.

    (1980)
  • H. Blanc et al.

    Proc. Natl. Acad. Sci. U.S.A.

    (1981)
  • H. Blanc et al.

    Nucleic Acids Res.

    (1981)
  • H. Blanc et al.

    Am. J. Hum. Genet.

    (1983)
  • S.G. Bonitz et al.

    Proc. Natl. Acad. Sci. U.S.A.

    (1980)
  • P. Borst

    Annu. Rev. Biochem.

    (1972)
  • A.A.M. Bothwell et al.

    Proc. Natl. Acad. Sci. U.S.A.

    (1976)
  • G.G. Brown et al.

    Proc. Natl. Acad. Sci. U.S.A.

    (1982)
  • W.M. Brown

    Proc. Natl. Acad. Sci. U.S.A.

    (1980)
  • W.M. Brown
  • Cited by (0)

    View full text