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Abstract 

 Accumulation of platinum group metals (PGMs) is increasing in the environment over 

the time. Catalytic converters of modern vehicles are considered to be the main sources of 

PGM contamination, since the Pt:Rh ratio of around 5 in various environmental 

compartments reflects the ratio in converter units. The present literature survey shows that the 

concentrations of these metals have increased significantly in the last decades in diverse 

environmental matrices; like airborne particulate matter, soil, roadside dust and vegetation, 

river, coastal and oceanic environment. Generally, PGMs are referred to behave in an inert 

manner and to be immobile. On the other hand, there is an evidence of spread and 

bioaccumulation of these species in the environment. Platinum content of road dusts, 

however, can be soluble, consequently, it enters to the waters, sediments, soil, and finally, the 

food chain. The effect of chronic occupational exposure to Pt compounds is well-documented, 

and certain Pt species are known to exhibit allergenic potential, but the toxicity of 

bioavailable anthropogenic Pt is not clear. Hence there is a need to study the effect on human 

health of long-term chronic exposure to low levels of Pt compounds. 

 

KeyWords: Platinum Group Elements, Environmental Matrices, Health risk, Sensitizer 
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Introduction 

 The increasing use of platinum group metals (PGMs) in vehicle catalytic converters, in 

addition to some other application (e.g. industrial, jewelry, anticancer drugs, etc.), leads to the 

emission of PGMs into the environment. These metals are naturally found at very low 

concentration in the earth crust, but the anthropogenically increasing concentration poses a 

risk to living organisms and human beings. Barbante et al. (2001) have roughly estimated that 

the annual Pt emission only from catalytic converters may be 0.5-1.4 ton yr
-1

. These 

calculations are based on an emission factor of 65-180 ng km
-1

 from automobile sources and 

considering that there are about 500 millions cars worldwide equipped with catalytic 

converter and that the averaged mileage is about 15000 km per year. The recycling of 

catalytic converters will also increase the emission. Each year approximately 10 million 

automobiles are scrapped only in the United States and based on the equivalent number of 

converters, it is also estimated that 155 ton of platinum and 62 ton of palladium, and 16 ton of 

rhodium will be wasted annually (Gaita and Al-Bazi, 1995).  

 PGM contamination initially occurs in airborne particle, roadside dust, soil, sludge, 

and water, etc.; finally it results in bioaccumulation from these sources through diverse 

pathways. There are several studies on the increasing PGM concentration in human body 

fluids and tissues exposed to the occupational environment (e.g. precious metal refinery 

workers). The metallic form of these elements is considered to be inert for biological 

reactions, but in contrast some platinum salts like hexachloro platinate and tetrachloro 

platinite are among the most potent allergens and sensitizers. PGMs have also been found to 

be related to asthma, nausea, increased hair loss, increased spontaneous abortion, dermatitis, 

and other serious health problems in humans. 

 Various reviews of this particular topic appeared in the literature; i.e. on: the 

occurrence and use of PGMs (Rao and Reddi, 2000), the distribution and speciation of PGMs 

in environmental compartments (Barefoot, 1999), the determination methods of PGMs in 

environmental samples (Barefoot, 1997; Balcerzak, 1997; Barefoot and Van Loon, 1999; 

Pyrzyńska, 2000; Rao and Reddi, 2000), and the possible health risk of anthropogenic PGMs 

(Merget and Rosner, 2001). 
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 Considering all the above points, the present paper comprehensively reviews the 

literature on the topic related to environmental contamination, transportation, transformation, 

bioavailability, bioaccumulation, and possible health risk related aspects of the platinum 

group metals. 

 

Platinum group metals 

 The platinum group metals, sometimes referred as the platinum group elements 

(PGEs), comprise the rare metals platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium 

(Ru), iridium (Ir) and osmium (Os). Average concentration of these metals in lithosphere is 

estimated to be in the region of 0.001-0.005 mg kg
-1

 for Pt, 0.015 mg kg
-1

 for Pd, 0.0001     

mg kg
-1

 for Rh, 0.0001 mg kg
-1

 for Ru, 0.005 mg kg
-1

 for Os and 0.001 mg kg
-1

 for Ir 

(Greenwood and Earnshaw, 1989; Hartley, 1991). PGMs naturally occur in nickel, copper, 

and iron sulfide seams (Bradford, 1988). These metals are noble, chemically less reactive 

materials, and can be found in the nature as native alloys, consisting mainly of platinum. 

 

Sources and applications 

 PGMs are currently mined in South Africa, Siberia and Sudbury, Ontario. Worldwide 

production of PGMs, of which 40-50 % is platinum, has been steadily increasing since 1970. 

This reflects the growing worldwide use of PGMs (WHO, 1991). The total worldwide supply 

in 1999 and 2000 was 138 and 153 tonnes for Pt, 230 and 224 tonnes for Pd, 14.2 and 20.9 

tonnes for Rh, respectively (Johnson Matthey, 2001). 

 Recently, these metals have gained importance as industrial catalysts including in 

vehicle exhaust catalysts (VECs), due to their exceptional catalytic properties. Other specific 

properties are particularly the resistance to chemical corrosion over a wide temperature range, 

high melting point, high mechanical strength, and good ductility, which relate these metals to 

various applications. Apart from vehicle exhaust catalysts, additional major uses of PGMs are 

in the chemical, electrical, electronics, and petroleum industries, the manufacture of jewelry, 

in medicine as a cancer treatment drug, in dentistry as an alloy, and in the glass industry. 

Since rhodium has been introduced into catalytic converters, approximately 73 % of the 

world‟s rhodium production is consumed by the catalyst manufacturing industry (Manziek, 
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1990). Demands for 1999 and 2000 for these metal are shown by application in Table 1 

(Johnson Matthey, 2001). The trends over time in Pt and Pd uses by application for Europe 

are listed in Tables 2 and 3 (Johnson Matthey, 2001). The growing demand for Pd in Europe 

is largely in response to the introduction of Euro Stage III legislation from January 2000; ie. 

the palladium-rich catalysts can meet stricter emission limits for petrol-fueled vehicles, 

resulting in a further diverging from platinum technology (Johnson Matthey, 2001). 

 

Catalytic converters 

 A catalytic converter is a unit that fits into the front part of motor exhaust system of a 

vehicle, close to the engine, to reduce the emission of gaseous pollutants, such as carbon 

monoxide (CO), nitrogen oxides (NOx), and hydrocarbons (HC). It is usually fitted with a 

heat shield to limit internal temperature drops, ie. heat losses (Figure 1). Removal of the 

pollutant gases from the exhaust of a properly tuned combustion engine take place by either 

reduction, or oxidization. Combination of heat with the precious metal catalysts facilitates 

these heterogeneous reactions in the converter. These catalysts convert over 90 percent of CO, 

HCs and NOx into carbon dioxide (CO2), water and nitrogen. Both NOx and CO are 

eliminated together by a redox reaction on a rhodium catalyst. NOx oxidizes CO to CO2 and is 

reduced to harmless nitrogen gas (N2), whilst CO and HC are oxidized by air on platinum 

catalyst. For all these reactions to happen, the converter is designed as a „three-way 

converter‟, and has an oxygen monitor fitted to the engine. The monitor checks the quantity of 

oxygen entering into the engine to make sure enough oxygen to carry out oxidation reactions. 

 There are various designs possible for a converter; however, most of them consist 

basically of a monolithic honeycomb support made of alumina, or cordierite (a phase of 

2MgO.2Al2O3.5SiO2), and are housed in a stainless steel box. Generally, a vehicle exhaust 

catalyst contains around 1-3 g of PGM, corresponding to approximately 1.8 mg cm
-3

 PGM of 

the catalyst. The honeycomb, made of cordierite, contains 300-400 square channels per square 

inch (6.45 cm
2
), and is coated with an activated, high-surface alumina layer, the so-called 

“washcoat”. The washcoat consists of about 90 % -Al2O3 and a mixture of base metal 

additives, mainly oxides of Ce, Zr, La, Ni, Fe, and some alkaline earth metals that improve 

the performance of the catalyst by acting mainly as promoters of the desired catalytic 
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reactions, or stabilizers against deterioration and aging. The noble metals (Pt, Pd, and Rh) are 

fixed in the washcoat surface usually by impregnation, or coating from a solution of 

hexachloroplatinic (IV) acid (H2PtCl6.6H2O), palladium chloride (PdCl2), and rhodium 

chloride (RhCl3) salts. After the evaporation of the solvent, a dry layer of the PGM salts is 

resulted in on the surface of the carrier. The next step is the decomposition of the PGM salts 

and reduction to obtain the highly dispersed, catalytically “active” metallic forms. Nowadays, 

there is a wide range of possible combinations and concentrations of the above noble metals 

with base metals in the catalysts, which can be utilized to achieve the different performance 

characteristics, required in the various vehicle models. In optional Pt, Pd/Rh, Pt/Rh, Pt/Pd, or 

Pt/Pd/Rh catalysts, the percentage of PGMs with respect to bulk material is less than 0.1 % 

(w/w). In European gasoline cars, the usual Pt/Rh, or Pd/Rh ratio is around 5 (Farrauto et al., 

1992; Heck and Farrauto, 2001; Moldovan et al., 1999). A conventional three-way catalyst 

typically contains 0.08 % Pt, 0.04 % Pd, and 0.005-0.007 % Rh (Hoffman, 1989). 

 Catalytic exhaust pipes have been stepwise developed from the mid 1970s‟, thus a 

sharp distinction can be made between the four main generations up to the mid 1990s. First, 

from 1976 to 1979, the two-way catalysts, containing Pt and Pd, allow the reduction of HC 

and CO emission. The second generation, from 1979 to 1986, is the introduction of the so-

called “three way catalysts”, including in Pt, Pd, and Rh, which served also to reduce the 

emission of NOx. The third type, from 1986 to 1992, a novel generation of three way 

converters, is still based on Pt and Rh, but better suited to high temperature working 

conditions, to which the catalysts were exposed with the new, fuel efficient engines. Finally, 

from 1992 to the mid 1990s, another generation of three way Pd-rich catalysts extensively 

applied by car manufacturers both in US and in Europe, in the new models to meet the even 

stricter emission legislation. 

 Catalytic converters generally have a service life of between 50 000-100 000 miles; 

however, there are several factors, which can reduce this lifetime. These include in Pb 

pollution, engine ignition/fueling faults, usage of the vehicle, and short journey use, 

preventing the converter from reaching the optimal working temperature (around 400 
o
C). The 

principal cause of converter failures is carbon pollution, leading to a partial, or sometimes, a 

total blockage of the catalyst, and the internal fracture of the catalyst surface, usually induced 
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by external/internal physical damage. Pt, an effective oxidation catalyst for CO and HCs, is 

unfortunately more sensitive to “catalyst poisoning” than Pd; consequently, it can only be 

employed in cars fueled with unleaded petrol. In the future, it is very likely that Pd-based 

catalytic converters become extensively applied, instead of Pt-based ones, due to the lower 

costs of the former. 

 

PGM emission by catalytic converters 

 The washcoat, carrier of the “active” precious metals with a diameter in the nanometer 

range (1-10 nm), contains typically the total amount of 1.5-2.5 g Pt on its surface (Rosner and 

Hertel, 1986; Zereini et al., 1997a). During the release of the exhaust gases from the engine, 

the surface of the washcoat is chemically and physically stressed by the fastly changing 

oxidative/reductive conditions, high temperature and mechanical abrasion, thus, producing the 

emission of PGM containing particulate into the environment (Rosner and Hertel, 1986; 

Bärtsch and Schlatter, 1988; Hertel et al., 1990; König et al., 1992; Knobloch et al., 1993; 

Barefoot, 1997; Artelt et al., 1999a). The amount and rate of PGM emission from the catalytic 

converter are affected by the speed of the automobile, the type of the engine, the type and age 

of the catalyst, and the type of fuel additives (Artelt et al., 1999a; Ely et al., 2001). Emission 

can be intensified by unfavourable operating conditions (misfiring, excessive heating), which 

may even destroy the converter (Schäfer and Puchelt, 1998). 

 The quantity of PGMs released into the environment has been evaluated mainly by 

two methods. The first is the direct determination of PGMs in exhaust fumes, which requires 

an effective sampling procedure able to collect representative amounts of the released 

particles. The second involves in the determination of the anthropogenic PGM concentration 

in environmental materials, such as soils, airborne particles, sludge, water, road dust, etc., and 

the modelling of the analytical results together with traffic statistics (Moldovan et al., 1999). 

Direct determination of Pt emission from different (fresh and aged) automotive monolithic 

catalysts has been performed in run exhaust fumes sampling under laboratory conditions on a 

computer-controlled dynamometer (König et al., 1992; Artelt et al., 1999a). 

 The PGM emission rate ranged between 65 to 180 ng km
-1

 driven depending on 

whether it was measured in motor experiments, or calculated on the base of environmental 
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concentrations (Palacios et al., 2000a, 2000b). The same emission range was also observed for 

various converter models of diverse manufacturers. Rising PGM emission was pointed out 

with increasing (simulated) car speed, reaching a mean value of approximately 90 ng km
-1

 at 

130 km h
-1

 for new converters (König et al., 1992; Artelt et al., 1999a). Under real driving 

condition, the emission may be even higher than those determined from test stand 

experiments (Cubelic et al., 1997; Helmers, 1997; Zereini et al., 1997a). 

 Several dynamometer experiments were performed on various engines to evaluate the 

PGM emission from the three-way automotive catalytic converters of diverse ages (König et 

al., 1992; Artelt et al., 1999a). The emitted Pt concentration ranged from 7 to 123 ng m
-3

; 

these values correspond to emission factors of 9 to 124 ng km
-1

 (Artelt et al., 1999a). The 

converter brands, supplied by various manufacturers, have no significant difference in the Pt-

emission. The lower powered engines (1.4 l) emitted four times less Pt than the 1.8 l engines, 

when comparing the new, aged, and old catalytic converters, no difference was observed in 

the Pt emission. A lower emission tendency was observed with the increasing age of the 

converters, which was significant at high-speed conditions, manifested in a five-fold lower Pt 

emission from old converters, compared to new ones. The Pt emission differed significantly 

for new converters under various operating conditions. Under constant speed conditions, the 

Pt emission was usually higher at 130 km h
-1

 compared to 80 km h
-1

. According to the size 

distribution of the emitted particles, the large particles (>10 m) were dominated (62-67 %), 

whereas the medium size fraction (3.1-10 m) was about 21 %, and the small (<3.1 m) size 

around 13 %. Generally, the medium age and old converters tested with the 1.8 l engine 

showed a similar pattern. The soluble and the volatile Pt species were tracked by the 

application of double-layered glass fiber filters and condensate traps, respectively. It was 

found that the “soluble Pt” was on average around 1 % of the total Pt emitted, also in the 

Dimroth-type condenser, whereas no Pt was found in the liquid nitrogen trap (Artelt et al., 

1999a). 

 Most of the PGMs, released from catalytic converters, are in particulate form (Pt>95 

%, Pd>85 %, and Rh>90 %) and are dispersed into the environment at a rate of few ng PGM 

per km per car (König et al., 1992; Moldovan et al., 1999, 2002; see also Table 4). However, 

some estimates of the PGM concentration in roadside soil approach 270 ng km
-1

 for Pt 
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(Zereini et al., 2001b). Examination of these particulates showed that around 99 % of Pt is in 

the metallic state with around 1 % present as oxidized Pt, presumably in the form of Pt
4+

 

(Schlögl et al., 1987; Artelt et al., 2000). Early experiments also revealed the evolvement of 

some volatile Pt(IV) oxide, when heating Pt metal at 500 
o
C contacted with air, or oxygen 

(Balgord, 1973). The particulate Pt exists in the form of surface oxidised metal nanoparticles 

attached to larger alumina particles (substrate), and hence, the ablated washcoat particles are 

considered to be the carrier of the precious metals (Rühle et al., 1997). A similar observation 

on the existence of these “carrier” particles was made by Rauch et al. (2000b; 2002), and also 

the association of PGMs with Ce (“fingerprint”) originating from the washcoat was 

concluded. However, the assumption that PGMs are mostly released in metallic form has been 

challenged by a recent study, based on solubility experiments with roadside PGMs (Jarvis et 

al., 2001). It was concluded that the PGMs, emitted by the catalytic converters, may not be in 

metallic form in exhaust fumes, or at least they could rapidly altered, once when they are 

deposited in the environment. In addition to alumina, silica was also identified as a carrier for 

the Pd particles of vehicle catalyst origin, probably bound as halogenated compounds 

(Dongarrá et al., 2002). The particulate, soluble and total PGM content of the exhaust fumes 

are given in Table 5. 

 

PGM emission from hospitals 

 Since the first report on the retardation activity of some simple platinum compounds at 

E. coli culture proliferation (Rosenberg et al., 1965), a very extensive and growing application 

of Pt complexes has been observed as highly effective anti-tumour, or “anti-neoplastic” drugs 

for treating testicular tumours, ovarian carcinomas, bladder tumours, and tumours of the head 

and neck (Keppler, 1993). Cisplatin [cis-diaminedichloroplatinum(II)] and carboplatin 

[diamine(1,1-cyclobutanedicarboxylato) platinum(II)] have been successfully employed for 

the treatment of human malignancies (Allwood and Wright, 1992). These drugs were 

introduced more than 25 years ago as antitumour agents, and second generation antitumour 

platinum complexes are now under medical trial (Keppler, 1993; Kizu et al., 1995). Platinum 

is excreted by the patients after administration of the anti-neoplastics. As neither hospital 

sewage, in general, or urine and excretions originating from patients treated with anti-
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neoplastics are specially processed, the platinum is released into the hospital sewage, as is 

also true for other drugs (Kümmerer and Helmers, 1997). These authors concluded that the 

PGM emission stemming from hospitals is of minor importance to environmental inputs in 

comparison with other anthropogenic sources, particularly the automotive catalytic 

converters. For example in Germany, the Pt and Rh content of hospital effluents were 

reported as 2.2 and <0.01 ng l
-1

, respectively (Helmers and Mergel, 1998). Kümmerer and 

Helmers (1997) found Pt concentrations between 115-125 ng l
-1

 in hospital effluents; these 

values decreased to 1-2 ng l
-1

 after dilution by communal sewage under dry weather 

conditions. 

 The concentration of platinum in the sewage of five European hospitals (in Austria, 

Belgium, Germany, Italy, and The Netherlands), originating from excreted anti-neoplastic 

drugs, was analysed to provide reliable data on the Pt emission from hospitals into the aquatic 

environment. It was shown that 70 % of the Pt, administered in the form of either cisplatin, or 

carboplatin, is excreted, and, therefore, would end up in hospital effluents. Pt concentrations, 

measured in the total effluents of hospitals, ranged widely from less than 10 ng l
-1

 (the 

detection limit of the analytical method) for the Belgian and Italian hospitals to ca. 3500 ng l
-1 

for the Austrian and German hospitals. In all cases, the effluents of the sewage were below 10 

ng l
-1, as a result of dilution within the waste water system. The highest Pt concentrations in 

sewage influents were observed at the beginning of rain periods, and at the end of cold 

periods, when snow was melting. Finally, it was concluded that the main input of Pt into 

municipal sewage was urban and road run-off from traffic and other Pt emitting sources, and 

not from hospital sewage (Kümmerer et al., 1999). Annual emissions by hospital and cars in 

Germany, Austria and The Netherlands are given in Tables 6 and 7. Comparative analysis on 

the existing emission data of hospitals and traffic related catalysts reveals that, at present, the 

latter has a considerably greater contribution to the environmental PGM contamination.  

 

PGMs in environmental matrices 

 A great number of studies have reported the dispersion and accumulation of precious 

metal in various environmental compartments. Most of the investigations involved in 

sampling and analysis of soil and vegetation adjacent to heavily travelled highways, and of 
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road dusts swept from the surface of highways. Measurement of the PGMs requires highly 

sensitive analytical methodology. Platinum is the element that has received the most attention 

among the PGMs studies, while Pd and Rh have been monitored in more recent research 

projects.  

 

PGMs in air, and airborne particulate matter 

 Analytical difficulties restrict the number of studies dealing with PGM concentration 

in air and airborne particles. Low PGM concentration in the environmental samples combined 

with numerous interferences in the most sensitive analytical techniques (Rauch et al., 2000a) 

are considered to be the major difficulties. In the first report of this particular topic, the Pt 

concentration in air was reported to be lower than 0.05 pg m
-3

 near a freeway in California 

(Johnson et al., 1975). However, other studies in Germany have shown that the total Pt 

concentration in air along a highway ranged from 0.02 to 5.1 pg m
-3

 (0.6 to 130 ng g
-1

) with 

the Pt mainly present in the small particle size fraction (from 0.5 to 8 m), whilst the larger 

airborne particles had a lower Pt content. The proportion of soluble platinum in air particles 

varied from 30 % to 43 % (Alt et al., 1993). A mean Pt concentration of 7.3 pg m
-3

 has been 

measured inside Munich city buses and tramways during regular rides, with a strong 

correlation with traffic density (Schierl and Fruhmann, 1996). Petrucci et al. (2000) reported a 

significant difference for the PGM content of air in urban and remote sites of Rome. The 

PGM concentration in urban airborne particulate matter ranged at 21.2-85.7 pg m
-3

 for Pd, 

7.8-38.8 pg m
-3

 for Pt, and 2.2-5.8 pg m
-3

 for Rh. In Madrid, the Pt and Rh concentrations in 

airborne particulate matter ranged from 3.1 to 15.5 pg m
-3

, and from not detectable to 9.32 pg 

m
-3

, respectively.  

 Platinum was not found in the ambient air above the detection limit (0.05-1 pg m
-3

) 

prior to the use of automobile exhaust converters (König et al., 1992). However, in 1991-

1992, a concentration of 0.02-5.1 pg m
-3

 of Pt was found in airborne particulate matter (Alt et 

al., 1993), which increased up to 30 pg m
-3

 near roads. In city buses in Munich, an average Pt 

concentration of 33 pg m
-3

 was established (Schierl and Fruhmann, 1996). The airborne Pt 

concentration has shown a significant increase during the sampling period from 1995 to 1996 

with the mean of 21.513.8 pg m
-3

, and the maximum value of 62 pg m
-3

 (Schierl, 2000). 
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 In a recent study, the PM10 (particulate matter with aerodynamic diameter below 10 

m) concentration of PGMs in the urban area of Göteborg was found to be 0.1-10 pg m
-3

 

(Pd), 0.9-19 pg m
-3

 (Pt) and 0.3-4 pg m
-3

 (Rh) with higher values for greater traffic intensity. 

These concentrations provided a general background for the urban atmospheric environment, 

and the Pt:Rh ratio (4.2) agrees well with the known automobile catalyst composition (Rauch 

et al., 2001). The PGM concentration in the ambient air of a suburb of Berlin was found to be 

in the range from 0.2 to 14.6 pg m
-3

 (Tilch et al., 2000). Weather and seasonal conditions did 

not seem to have a noticeable influence on the PGM concentration in the air. Although the use 

of Pd catalysts in 1997 was still small compared to Pt and Rh based catalysts, the Pd content 

of air was similar to that of Pt at the beginning of the 90‟s. 

 In Germany, the total Pt, found in airborne particle matter in relation to the total 

volume of air filtered, was estimated and found rising from an average of 3 pg m
-3

 (in 1988) 

to 147 pg m
-3

 (in 1998). This represents a 46-fold enhancement over a ten-year period, 

whereas the Rh concentration increased by 27-fold (Zereini et al., 2001a). 

 The platinum concentration of the air was monitored in various work places, 

exhibiting precious metal emission (i.e. Pt mines, Pt refineries, and catalyst manufacturers). In 

general, the Pt content of air was found to be at the g m
-3

 level, or below, whilst, in badly 

ventilated work places, the Pt concentration reached the mg m
-3

 level (Shi, 1998). 

 The Pt and Rh concentrations of air in Madrid considerably varied with the location of 

the sampling site (mainly dependent on the traffic density), ranging from <0.1 to 57.1, and 

<0.2 to 12.2 pg m
-3

 with a median values of 12.8 and 3.3 pg m
-3

, respectively, corresponding 

to a Pt:Rh ratio of 4 (Gómez et al., 2001). Studies by aerosol collectors (e.g. WRAC and PM10 

cascade impactors) allow the evaluation of the Pt distribution in airborne particulate, as a 

function of the aerodynamic particle diameter from <0.39 to 9 with PM10 collector and from 

10 to 65.3 m with WRAC impactors. Platinum was found in a wide range of the particles of 

diverse aerodynamic diameter (from <0.39 m to 65.3 m). The highest Pt values were 

found, in most cases, in the particle fraction of the lowest size (<0.39 m), revealing a rather 

non-homogeneous distribution of Pt in airborne particulate matter (Gómez et al., 2001, 2002). 
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 Schäfer et al. (1999) drew a distinction between the time-dependent change of PGM 

concentrations and ratios in various environmental compartments. It was shown that the short-

term variation of PGM concentrations and their ratios in road dust were due to wind and rain, 

whereas the long-term trend reflected the changing proportions of PGMs used for converter 

manufacturing. At a typical urban site, the daily deposition rate of Pt in airborne dust was up 

to 23 ng m
-2

. The integration of these data resulted in an estimate of the total PGM 

accumulation and the mean emission rates that were found to be significantly higher than 

those predicted from experimental results of stationary motor experiments. Run-off 

contributed to the composition of sewage but seemed to be less important, compared to other 

sources, in the total PGM input into urban sewage sludge. An overview on the PGM content 

of the airborne samples is listed in Table 8. 

 

PGMs in soil, dust and vegetation 

 Soil exposed to high traffic densities exceeds the natural background value of PGMs, 

and is influenced by traffic conditions. Hence, most of the investigations have involved in 

samples of soil and vegetation adjacent to heavily travelled highways and of road dust swept 

from the surface of roadways. Data have also shown an upward trend of Pt concentrations 

with time in these particular environmental matrices. However, for several reports on the 

roadside vegetation, the data do not necessarily represent the real PGM uptake, but rather the 

dust deposition, collection and adsorption on the external surfaces of the roadside plants.  

 Cubelic et al. (1997) found up to 250 ng g
-1

 Pt content in roadside soils down to local 

background values (below 0.5-0.8 ng g
-1

) near German highways. The Pt:Rh ratios were about 

6, close to that applied in catalytic converters. Evidence was found for a significant 

correlation of PGM input and local conditions, such as traffic frequency, distance from the 

traffic-lane, prevailing wind direction, barriers, such as vegetation, and morphologic changes 

of the local environment. 

 Heinrich et al. (1996) analyzed PGM in soil near the Wiesbadener-Kreuz (A3 

motorway, Frankfurt-Köln track, Germany). The results showed a considerable enhancement 

of Pt (up to 330223 ng g
-1

), Pd (6.60.19 ng g
-1

), and Rh (7.50.15 ng g
-1

). The content of 

the rest PGMs (Ir, Os, Ru) in soil was either below the detection limit (Os, Ru), or statistically 
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spread around the corresponding blank values (0.08 ng g
-1

 for Ir and 0.11 ng g
-1

 for Ru) of the 

reference soil. It was also observed that the PGM contamination of the soil rapidly decreased 

with increasing distance from the highway. 

 Hodge and Stallard (1986) analyzed dust collected from the leaves of roadside plants 

and found extremely high concentrations, 0.7 and 0.3 ppm for Pt and Pd, respectively. The 

Pt:Pd ratio was 2.5, which agreed well with the ratio in catalysts of the type applied before the 

sampling period. The highest concentration of both metals was found in dust collected from 

plants growing at the edge of streets and highways with heavy traffic, whereas the lowest 

content was found in grass samples, taken from the streets with light traffic. It was concluded 

that the dust accumulating along freeways and busy streets could concentrate upwards to 1 

ppm Pt and half as much Pd. It was deduced that the first rain after a long dry weather period, 

common in South California, would accumulate Pt and Pd from rooftops and streets in 

relatively large amounts of both soluble and insoluble forms, and transport them to the Pacific 

Ocean (Hodge and Stallard, 1986). 

 A comparison of Pt concentrations in size-fractionated road dust collected in 1984 and 

1991 showed an average increase in all fractions; particles below 63 m size: 3.0-8.9 ng g
-1

; 

63-125 m size: 1.5-3.6 ng g
-1

; and the 125-1000 m particle size, <0.5-2.8 ng g
-1

 (Wei and 

Morrison, 1994a). The surface loadings of Pt were calculated for a car park (26 ng m
-2

) and a 

kerbside (1.28 g m
-2

), and the mean Pt concentrations in highway run-off were calculated to 

be 0.1-0.7 ng l
-1

. 

 The PGM content of soil and grass, gathered from the USA roadsides, was evaluated 

by Ely et al. (2001). A Pt abundance of 64-73 ng g
-1

 was found immediately adjacent to the 

roadside, and the corresponding Pd and Rh abundance values were found statistically above 

the background soil values. Platinum, Rd, and Rh showed positive correlation with traffic-

related elements (Ni, Cu, Zn, and Pb), but no correlation with the other trace elements present 

in the samples (Ely et al., 2001). Similar results have also been reported for the heavily 

polluted Mexico City (Morton et al., 2001). The contamination of the soil exposed to high 

traffic densities exceeded the natural background values by up to two orders of magnitude and 

was also strongly dependent on the traffic conditions. The highest concentration of Pt, Pd, and 

Rh in the analyzed samples were 300, 70 and 40 ng g
-1

, respectively. 
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 Schäfer and Puchelt (1998) analyzed the PGM content in soil and road dust from 

several sites in Southwest Germany, selected on the basis of traffic density and morphology, 

including in roads in Stuttgart with 120 000 vehicles per day, and near Heidelberg with 100 

000 vehicles per day. At these two monitoring locations, Pt concentration in the 0.2 cm 

surface soil adjacent to the road ranged from several hundred ng g
-1

 to the local background 

value ( 1 ng g
-1

) at less than 20 m from the road. Maximum Pt and Rh values were reported 

as 10 and 35 ng g
-1

, respectively. The PGM concentration decreased significantly in soil 

samples taken from deeper layers. Lateral and vertical distribution patterns for Pd, Pt and Rh 

were very similar to those observed by Eckhardt and Schäfer (1997). The Pt, Rh, and Pd 

contents of road dust ranged up to 1000 ng g
-1

, 110 ng g
-1

 and 100 ng g
-1

, respectively, which 

is an indication of a short-term input of PGMs (Schäfer et al., 1996). They also reported a 

Pt:Rh ratio of around 6:1 in traffic influenced soil and dust. Dust samples collected in the 

tunnel of „Mittlerer Ring‟ in Munich, Germany, showed an increase in Pd concentrations from 

21.83.5 ng g
-1

 in 1994 to 100.515.1 ng g
-1

 in 1997-98 (Schuster et al., 2000). This increase 

is much higher than the growth of the traffic density in the same period of time. Schramel et 

al. (1995) analyzed road dust collected from the ceiling of an Austrian tunnel, and found Pt 

concentration of 68.2 ng g
-1

. It was calculated that for Germany, in the period up to the year 

2018, a total of 2100 kg of Pt will be emitted by catalytic converter equipped vehicles, and 

moreover, the annual atmospheric Pt deposition will be up to 0.73-4.4 g m
-2

, or 260 kg Pt  

yr
-1

 (vs approximately 100 kg Pt yr
-1

 for the mid 1990s) (Helmers and Kümmerer, 1999).  

 The PGM concentration in road dust and surface soils was analyzed near high traffic 

sites in the United Kingdom (Farago et al., 1996). The Pt concentration ranged from 0.42 to 

29.8 ng g
-1

 in road dust, and from <0.3 to 8 ng g
-1

 in soils, while the local background value 

for soil was 1 ng g
-1

. The Pt concentration in road dust was highest at major road 

intersections, ranging from 11.2 to 23.7 ng g
-1

 (mean: 20.8 ng g
-1

), compared with areas along 

minor roads (range: 0.35-4.26 ng g
-1

, mean: 2.29 ng g
-1

), which again confirmed the positively 

correlation of the Pt concentration with high traffic density. 

 Higney et al. (2002) reported significantly raising concentrations of Pt and Pd in road 

dust and roadside soil in West Central Scotland. The highest Pt concentrations (within the 13-

335 ng g
-1

 range) was observed for road dust samples taken at dual carriageways and 



 16 

motorways, representing a considerable increase relative to surface soils in this area that are 

remote from roads, which have Pt concentrations of less than 1.0 ng g
-1

. In contrast, they 

observed lower Pt levels (1.8-11.8 ng g
-1

) in dust samples taken from a residential area (East 

Kilbride town). A significant variation of the Pt concentration in road dust was observed at 

various locations along a trunk road in areas of similar traffic frequency, with the highest 

values found in roundabout samples. These results suggest that the fluctuation in the 

concentration of PGMs is directly linked to the traffic conditions, at least nearby the roads. 

 Rauch et al. (2000) reported increasing concentrations of Rh, Pd and Pt by analyzing 

two diverse fractions (below and above 63 m particle size) of road sediments taken in 

Göteborg city. For the 1984 and 1998 years, the PGM content in the fraction below 63 m 

particle size was found to be significantly increased from 2.82 to 60.4 ng g
-1

 for Rh, from 377 

to 472 ng g
-1

 for Pd, from a non-detectable amount to 157 ng g
-1

 for Pt. A very similar trend 

was observed for the larger particle size fraction. 

 Gómez et al. (2001) found Pt and Rh content of road dust collected at six sites of 

Madrid in the 31-2252 and 11-182 ng g
-1

 range, with an average of 317 and 74 ng g
-1

, 

respectively. The average of the Pt:Rh concentration ratio was 4.3 in road dust, a very similar 

value to that of found in airborne particulate matter (4.0). 

 Helmers and Mergel (1998) observed an enhanced Pt and Ph content in grass samples 

by a factor of 2.7, and in dust samples by a factor of 3.9, comparing samples from 1994 and 

1997. On the other hand, the percentage of the cars equipped with catalytic converters was 2.4 

times higher in 1997 compared with 1994. 

 Tree bark is an effective substrate for accumulation of atmospheric aerosols and 

airborne particulate matter; it has been used as a passive bio-monitor for atmospheric 

pollutants (Walkenhorst et al., 1993). Employing this advantage, Becker et al. (2000) 

analyzed 57 tree bark samples of sycamore, beech, poplar and horse chestnut, which were 

collected from rural areas, cities (Sheffield, London), and from sites adjacent to industrial 

activity. The Pt content of the sampled bark ranged from 0.07 to 5.4 ng g
-1

. The concentration 

of Pt in uncontaminated tree barks (<0.01 ng g
-1

) and contaminated samples (up to several    

ng g
-1

) were of similar magnitude as the Pt contamination in grass samples from rural areas 
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i.e. 0.1-0.3 ng g
-1

 (Angerer and Schaller, 1994; Merian, 1991), and from the areas exposed to 

traffic: 0.8-3.0 ng g
-1

 (Alt et al., 1997; Helmers et al., 1994). 

 Ma et al. (2001) collected 77 samples of tree bark from the following areas: Sheffield 

and London (UK, 28 samples), Madrid and Tenerife (Spain, 13 samples), Tokyo and 

Yahushima (Japan, 26 samples) and San Francisco and Hawaii (USA, 10 samples). Platinum 

concentrations found in the remote sites were below 9 ng g
-1

; similar concentrations were 

obtained for Spanish/UK cities with occasionally slightly elevated values. In contrast, the 

concentration for bark samples in major Japanese/US cities ranged up to 38 ng g
-1

; the data 

are consistent with the use of Pt-fitted automotive catalysts in the respective sites. 

 Dongarrá et al. (2002) examined the occurence of Pd and Pt in pine needles (Pinus 

pinea L.) collected in and around Palermo city, Italy. The observed PGM concentrations 

ranged from 1 to 102 ng g
-1

 for Pt, and from 1 to 45 ng g
-1

 for Pd, higher by two orders of 

magnitude than the crustal abundance, suggesting a common antropogenic source, the vehicle 

catalyst. The distributions of PGMs were found highly non-homogeneous, which revealed a 

similar distribution pattern in airborne particles. 

 Platinum and Pd concentrations in garden soil and road dust were analyzed in samples 

taken from the Nottingham city (UK) in 1996 and 1998, and compared with the archived 

samples taken in 1982 (Hutchinson et al., 2000). A significant increase in road dust was 

found, with Pt and Pd values ranging up to 298 and 556 ng g
-1

, respectively, in 1998 (see 

Table 9). 

 From the above studies, in general, we can conclude that the PGM concentrations do 

significantly depend on the vehicular density and the concentration of these metals increases 

continuously near roadways. The distribution of PGMs in soils nearby roads, is not only 

affected by the turbulence of vehicles passing along the roads, but the prevailing wind 

direction as well (Schäfer and Puchelt, 1998). The results of soil and roadside dust analyzed 

for PGMs are shown in Table 10, whilst the PGM concentrations in the vegetation are listed 

in Table 11. The interaction of diverse PGM species with soils is discussed in detail in the 

section “Transformation of PGMs”, whilst the PGM uptake by various sorts of plants is 

exposed in the section “Bioaccumulation and Bioavailability of PGMs”.  
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 In addition to localized studies in urban and rural areas, Barbante and co-workers 

(1999, 2001) found that Pt concentrations in remote snow cores from Greenland and in the 

Alps have been considerably rising since 1975, and had increased up to 40-fold (median 

values from 0.01 to 0.33 pg g
-1

) up to the mid-1990s. In snow samples, the concentrations 

ranged from 0.0008-2.7 pg g
-1

 for Pt, 0.01-16.9 pg g
-1

 for Pd, 0.0005-0.39 pg.g
-1

 Rh. The 

Pt:Rh ratio was found to be very close to that of in catalytic converters. The fact that these 

PGM polluted places are located at high altitudes and far away from residential areas, 

indicates a large-scale contamination impact of the vehicle catalysts, likely through the 

troposphere of the Northern Hemisphere. Moreover, Van de Velde et al. (2000) observed 

increased concentrations of Pd, and Rh in the Mont Blanc ice and snow samples, especially 

for the last decade, whilst no clear enhancement was found for Pt. The PGM content of these 

samples was in the range of 0.08-0.62, 0.5-10, and 0.01-0.39 pg g
-1

 for Pt, Pd, and Rh, 

respectively.  

 

PGMs in rivers, coastal waters and oceans (in the water ecosystem) 

 Several studies have given an account on the increasing PGM concentration in various 

parts of the water ecosystem, i.e. rain-, drinking-, ground-, and seawater; river and oceanic 

sediments, sewage sludge, etc. (see details in Table 12). The PGM enrichment in these 

matrices can mostly be linked to release from automotive catalysts and evidence for post-

depositional mobility of Pt and Pd in contaminated sediments. 

 Early studies on Pacific seawaters, dating back to the 1980‟s, reported very low levels 

of Pd and Pt, 40 and 150 pg l
-1

, respectively (Lee, 1983; Goldberg et al., 1986). On the other 

hand, an enhanced Pd concentration was observed in freshly deposited coastal sediments in 

the moat that surrounds the Emperor‟s Palace in Tokyo (Lee, 1983). This local Pd gradient 

was attributed to the run-off from adjacent roads of frequent automobile traffic, and as a 

consequence of the Pd emission stemming from the use of catalytic converters. 

 Hodge et al. (1986) analyzed more than 100 samples of seawater, sediments, algae and 

manganese nodules for Pt and Ir. Platinum was determined in seawater samples collected at 

the Californian coast, which showed a concentration rise from 100 pg l
-1

 at the surface water 

to about 250 pg l
-1

 at 4500 m depth. The Pt values in macro algae, ocean sediments and 
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manganese nodules ranged from roughly 0.1 ppb in algae to around 1 ppm in the nodules. 

Manganese nodules at shallow depth have been reported to have the highest Pt content in the 

oceanic environment (Hodge et al., 1985). Iridium values ranged from 9x10
-4

 ppt for seawater 

to 7.4 ppb for manganese nodules. The Pt concentration in 24 oceanic sediments was found to 

be on average 0.0038 ppm (Goldberg et al., 1986), very close to the estimated crustal 

abundance. 

 The concentration of Pd in water from the Rhein and Schwarzbach rivers (Germany) 

was estimated at 0.40.1 ng l
-1

 (Eller et al., 1989), which value is well below those found in 

ground and rainwater. Hall and Pelchat (1993) determined Pt and Pd in fresh-water samples 

collected from some mineralized sites of Canada; dispersion patterns could be identified, but 

maximum concentrations of these elements (soluble part) were below 5 ng l
-1

. 

 De Vos et al. (2002) surveyed the distribution of all the PGMs in the contemporary 

sediments of Kentish Stour (UK). The highest abundances occurred in the motorway run-off 

sediments (maximum total PGM content of 50 ng g
-1

), while the lowest values were recorded 

in sedimentary rocks. The total PGM content of the river sediment ranged from 0.4 to 10.8   

ng g
-1

. The authors concluded that the PGM distribution in the sediments corresponded 

strongly with land-use changes (urban versus rural sections) and with the points of discharge 

from sewage treatment plants, but no clear single source signature could be identified, such as 

catalytic converters. This is probably due the contribution of other anthropogenic sources 

(hospitals, industrial activities) to the PGM content of the river sediments, which, 

consequently, cause a shift in their concentration ratios.  

 The Pt and Pd concentration in the sediments of Boston Harbor increased 

approximately five times compared to the background concentration In Massachusetts Bay as 

an uncontaminated site (Tuit et al., 2000). Comparative analysis of the archived surface 

sediments from 1993 and 1996 revealed a 17- and 50-fold enhancement of Pt and Pd 

concentrations, respectively, compared to the PGM level in 1978. These levels do not exceed 

that found in Mn nodules in the deep sea (Hodge et al., 1985, 1986). Rauch et al. (2000) 

analyzed the sediments of the Mölndal river in Göteborg, Sweden, and found 0.67, 13.9, and 

1.0 ng g
-1

 of Rh, Pd and Pt, respectively. Although these concentrations are relatively lower 
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than found in other environmental matrices, a larger impact can always be expected on 

aquatic life through bio-accumulation.  

 The concentrations of Pt and Pd in sewage sludge and effluent particles from Boston 

city were measured to estimate the magnitude of the anthropogenic input. Boston sewage is a 

mixture of household and industrial waste as well as road run-off, which is normally routed 

through the sewage treatment system. The concentration values found for the Boston sludge 

are similar to those of reported in the sludge from New York, and additionally, to those 

reported for the sludge of 24 German cities (Lottermoser, 1994). The authors implied that the 

PGM enrichment is ubiquitous through industrialized areas. On the other hand, the higher Pd 

content of the sludge samples compared to Pt, suggested an additional anthropogenic source 

of this element and/or Pd is more particle reactive than Pt. Laschka and Nachtwey (1997) 

tracked the Pt concentration in sewage and sludge of two large sewage treatment plants during 

dry and rainy weather periods. The Pt concentration and load increased in primary effluents, 

which were influenced by rainfall compared to dry weather conditions. Daily Pt loads 

indicated, however, that in a large industrial area, such as Munich, the traffic is likely not the 

dominant source of Pt in municipal sewage. Comparative analysis of sewage sludge from 15 

plants in smaller rural towns shows that the Pt concentration in sewage sludge of Munich was 

considerably higher. In a recent work, Helmers et al. (1998) explained the increased Pd 

content in sludge from Stuttgart with the enhanced emission of the German dental industry. 

Other possibilities are the electroplating waste associated with jewelry and electrical 

industries, and most importantly, the chemical industries, which can release dissolved, and/or 

readily dissolvable compounds of PGMs (Tuit et al., 2000).  

 

Transformation of PGMs in the environment 

 From the above literature survey, it is clear that the PGM concentration is increasing 

significantly in the environment. Hence, it is important to study the mobility of these metals 

under the sometimes very rapidly changing environmental conditions. Most of the PGMs are 

referred to as behaving in an inert manner, and to be immobile (Zereini et al., 2001b). 

However, it is important to study how these metals may become chemically/biochemically 
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active, and mobile in interactions with different environmental matrices under changing 

weather conditions, in order to follow the possible hazard for human health. 

 Zereini et al. (1997a) crushed a catalytic converter (monolith) and milled it to a 

particle size of less than 63 m to study the geochemical behaviour of PGMs (i.e. to assess 

their mobility via species transformation). Soil was contacted with the above model material, 

and after varying the conditions, such as pH, Cl
-
, or S concentration, the solubility of Pt and 

Rh was determined. The results from these model experiments were compared with those 

from various environmental materials (soil, run-off sediments, surface water, tunnel dust). 

The environmental materials exhibited a relatively constant Pt/Rh ratio of 5, which points to a 

common anthropogenic source, the automobile catalyst. The highest solubility of Pt and Rh 

was established in rainwater at pH=1, giving a maximum total solubility of 0.35-0.5 % Pt and 

of 1.0 % Rh for the catalytic material introduced. Under natural conditions in roadside soils, 

only pH values between 5 and 8 are relevant. However, within this pH interval, the total 

solubility is considerably lower, and nearly constant: 0.01-0.025 % for Pt and 0.05 % for Rh. 

The relative solubility of Rh was found to be higher than that of Pt, and the Pt:Rh ratio 

fluctuated between 1 and 4.  

 The increasing NaCl concentration applied in soil samples does not have any 

recognizable effect on the solubility of Pt and Rh (Zereini et al., 1997a). This result indicates 

that no seasonal change on the solubility of Pt and Rh should occur in nature; the maximum 

solubility is 0.03 % and 0.6 %, for Pt and Rh, respectively. Increasing the S concentration in 

soil positively affected the solubility of Pt, whereas that of Rh remained unaltered (Zereini et 

al., 1997a). The total Rh solubility remained at 0.05-0.06 %, while Pt had a maximum value 

of 0.03 %. It was also shown that even rainwater was capable of dissolving colloidal Pt and 

Rh. However, the latter was experienced with used catalysts, and hence, it is possible that 

small amounts of Pt and Rh chloride salts (as residues from the manufacturing process, 

usually in negligible quantity) were dissolved. Nachtigall et al. (1996) observed a low Pt 

solubility in deionized water, which significantly increased on the addition of certain anions 

to water. The portion of soluble Pt was found to be dependent on the particle size distribution, 

and also, only a certain fraction was immobilizable (dissolvable) from the surface of alumina 

particles (carrier). 
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 Alt et al. (1993) demonstrated that even 2.5-6.9 % of the total PGMs present in traffic-

related dust was soluble. Hill and Mayer (1977) found 10 % to be soluble in samples of a 

similar type. Lustig et al. (1996) found that 3.9 % of the total Pt was water soluble in tunnel 

dust samples, whereas no significant dissolution was observed in most of the organic solvents 

(dichloromethane, hexane), but 3.11 % of the total Pt was received in the methanolic fraction. 

These experiments proved the importance of using real samples (e.g. tunnel dust), instead of 

model materials for the dissolution studies. Direct analysis of car exhaust fumes revealed that 

less than 10 % of the total evolved PGM particulate for new catalysts is soluble, whereas this 

fraction was higher for aged catalysts, especially, for Rh and Pd (Moldovan et al., 2002). 

 Rainwater usually provides a significant medium for the transportation of PGM 

particles until deposition. In run-off water up to 1 g l
-1

 Pt was found (Helmers et al., 1994; 

Laschka et al., 1996). The sample from the sediment cores of a drainage basin (Frankfurt) 

reflected a low mobility and slight solubility of PGMs (Zereini and Alt, 1999). Traffic-related 

metals (Cr, Ni, Cu, Zn, Cd, Pb, As, Rb and Ba) were also concentrated in the upper 20-25 cm 

layer (Golwer and Zereini, 1998). 

 Similarly to soil samples (Rankenburg et al., 1995; Zereini et al., 1997b), the Pt:Rh 

ratio in run-off reservoir sediments remained relatively constant (4.6), and a strong correlation 

was found between Pt and Rh. These results are indicative for a common source, the catalytic 

converter, during the time interval 1987-1995 (correlated with 0-25 cm depth). Surface water 

samples from run-off reservoirs along different highways gave the same coherence. Zereini et 

al. (1997b) reported the presence of only small amounts (9-78 ng l
-1

) of Pt in water samples at 

pH=5.8-6.7. No consistent trends have been found in individual basins, or among their 

groups, and additionally, the data scattered to a great extent. Dependency on the traffic flow, 

area of occupation, water quantity, and the residence time may affect these values. These 

results are in accordance with those of reported by Fuchs and Rose (1974), who investigated 

the geochemical behaviour of Pt in soil in the vicinity of the Stillwater Complex (Montana, 

USA), at a major Pd/Rh ore deposit. Platinum showed considerable mobility, only in 

extremely acidic, and chloride-rich soils, possibly as a consequence of complex formation of 

the divalent Pt yielding [PtCl4]
2-

. These findings may eventually have an influence on the 

drinking water quality. Laschka and Nachtwey (1993) found Pt in drinking water below 0.1 
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ng l
-1

, whereas groundwater exhibited values of 3-38 ng l
-1

, and rainwater yielded values of 

1.4-74.5 ng l
-1

. 

 Hodge et al. (1986) pointed out that marine waters from the Pacific Ocean contained 

0.23 ng l
-1

 Pt, whereas Messerschmidt and coworkers (1992b) found 2.2 ng l
-1

 Pt in shallow 

waters of the Baltic Sea. By taking into account the increasing density of civilization and the 

industrial areas around the sampling area, this ten-fold enrichment may be interpreted as an 

anthropogenic impact. 

 In Sweden, the particle fraction below 63 m in the roadside dust samples contained 

39-88 % less Pt than the gully pot sediments with a Pt content from 3.5 to 15 ng g
-1

 (Wei and 

Morrison, 1994b). Sequential extraction of Pt from road surface sediments showed that Pt 

appeared in the following operationally determined fractions: exchangeable, 15 %; carbonate, 

10 %; Fe/Mn, 32 %; organic, 26 %; and residue, 26 %. In gully pot sediments, Pt was found 

only in organic form. Consequently, a transformation mechanism of Pt was offered, based on 

the interaction of inorganic Pt with the high organic content of gully pot sediments (Wei and 

Morrison, 1994b). The interaction of metallic Pt with micro-organisms in humic soil was 

found negligible, thus a chemical dissolution route was justified (Lustig et al., 1997c). 

 Inorganic mineral phases, particularly in the clay fraction, as well as organic soil 

materials, like humic substances, can adsorb heavy metals (Herms and Brümmer, 1978). 

However, their behaviour in connection to PGMs is not well established. Some experimental 

data on the montmorillonites (Skerstupp et al., 1996), and synthetic ferrihydrite (Skerstupp et 

al., 1995) illustrate PGM enrichment at these phases, most obviously in the case of 

ferrihydrite. The behaviour of Pt compounds in soil is reported to be dependent on chemical 

(oxidation state, complexation; Lustig et al., 1996) and physical (colloidal particle size; 

Nachtigall et al., 1996) characteristics. 

 Lustig et al. (1998a) studied the interactions between various Pt species (PtCl4
2-

, 

PtCl6
2-

, Pt powder, or tunnel dust with 0.02 M Pt) and soil/humic acid using diverse reaction 

times (3, 7, 14, 30 and 60 days). The Pt containing aqueous fraction, “extract”, was taken and 

analyzed. It was found that the total amount of PtCl4
2-

, PtCl6
2-

, was converted into the extract, 

whereas in the extract of the “native sample”, i.e. tunnel dust with Pt, the presence of apolar 

Pt species was found. The same trend was observed when Pt powder was tested with humic 
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acid, which indicates the presence of many species transformation in these particular matrices. 

These results indicate well the very efficient transformation of some Pt species in connection 

with soils, in a relatively short time. These findings do not agree with the results of previous 

works (Zereini et al., 1997a), which state the slight solubility of the Pt species released by the 

catalytic converters. 

 In other works, several natural complexing agents (adenosine, ADP, ATP, L-histidine, 

humic acid fraction, L-methionine, pyrophosphate, and triphosphate) were treated with 

metallic platinum (as Pt black and as a Pt(0) containing tunnel dust) for 3-60 days. Some of 

the compounds used could dissolve Pt(0) to a recognizable degree, whereas others were in the 

range of the aqueous blanks. Comparison of Pt black with a natural dust sample showed that 

L-methionine had in both cases the greatest effect after 60 days. Generally, more Pt(0) was 

dissolved in the dust sample (finer dispersion and smaller particle size) than in the Pt-black 

used. By carrying out the experiment under natural conditions instead of in pure oxygen, the 

amounts of dissolved platinum are about one order of magnitude lower (Lustig et al., 1998b). 

 Automobile exhaust catalytic converters emit mainly finely dispersed metalic Pt in the 

nanometer size range deposited on the layer of aluminium oxide carrier particles. PGMs in 

catalysts form finely dispersed particles in the nm-range. Although the PGMs in these 

“metallic islands” have a formal oxidation state of zero, their colloidal, or rather “cluster” 

state is also meta-stable, and thus, provides a more ready access for chemical reaction than the 

bulk metal. 

 Furthermore, in a recent work, a considerable increase in the Pt, Pd and Rh 

concentrations, by factors of 40, 80, and 120, respectively, has been observed by sampling 

from the remote Greenland snow-cores in the mid 1990, compared to ancient ice dating back 

from B.C. 5000 (Barbante et al., 1999, 2001). These results show that the spread of PGMs in 

the environment is rather a global process, despite some works asserting the low 

transportability of these pollutants.  

 It can be concluded from the above overview that despite the generally accepted fact 

that PGM emission takes place in metallic, or oxide forms (König et al., 1992), there is 

experimental evidence that at least part of the evolved particles is soluble, and can undergo a 

transformation in contact with various kinds of compounds in the environment, thus, 
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providing PGM compounds ready to enter into the food chain. Nevertheless, the existing 

literature data is in some issues somehow contradicting, and much attention should be paid to 

the speciation studies of PGMs in environmental matrices to assess more reliably the 

transformation of the anthropogenically evolved PGM in the nature.  

 

Bioaccumulation and bioavailability of PGMs 

 The increasing use of PGMs in catalysts together with other application has resulted in 

the spread and bioaccumulation of these species in the environment. Pd, Pt and Rh in the 

catalyst dust are deposited along roadways, on adjacent vegetation and soil, and in water 

bodies either directly, or through run-off (Wei and Morrison, 1994a). 

 Very little is known about a possible uptake of the traffic related PGMs by the 

terrestrial biosphere. Elevated and continuously increasing Pt and Pd concentrations were 

described in field studies for roadside grass samples (Helmers and Mergel, 1997; Hees et al., 

1998; Laschka et al., 1999; Schuster et al., 2000). In greenhouse experiments, various plant 

species like spinach (Spinacia oleracea L.), cress (Lepidium sativum L.), stinging nettle 

(Urtica dioica L.), and phacelia (Phacelia tanacetifolia, Angelia) were grown in soils 

containing PGMs (Schäfer et al., 1998). Sauerbeck (1989) defined the transfer coefficient as 

the ratio of the concentration in plant and the concentration of the element in soil. Following 

this concept by Schäfer and co-workers (1998), the transfer coefficients of Pt, Rh and Pd were 

found to be within the range from immobile to moderately mobile elements. The transfer 

coefficients decreased in the order of Pd>PtRh; consequently, it can be concluded that Pd is 

the most biologically available of this group. 

 In some model experiments, a standardized culture of grass (Lolium multiforum) was 

exposed at heavy and light traffic locations with diverse PGM emission intensity (Rosner et 

al., 1991; Wäber et al., 1996). The Pt content of the grass ranged from 0.8 to 2.9 ng g
-1

 at the 

exposed sites, and from 0.2 to 0.5 ng g
-1

 at locations with less exposure in 1992 and 1993 

(Wäber et al., 1996). However, the increased concentration of PGMs was due to the 

deposition on the plant surfaces rather than on the real uptake. 

 The first attempts to isolate Pt species from grass were focused on the high molecular 

weight range (>10 kDa) by Messerschmidt et al. (1994, 1995). For “native” grass (not treated 
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with Pt), they isolated one main Pt-binding protein with 180-195 kDa. In grass, treated with Pt 

(uptake exclusively by the roots), this fraction of high molecular weight species increased and 

seven additional species were detected in the 19-1000 kDa range. In contrast to the native 

grass, however, most of the adsorbed Pt (>90 %) was found in the low molecular weight 

range (Messerschmidt et al., 1994). The study of low molecular weight species (<1500 Da) in 

grass revealed that the Pt binding ligands can be characterized as partly oxidized 

oligosaccharides (about 2-5 monomeric units of aldonic, aldaric, or uronic acids). The origin 

of these species was attributed to the hydrolysis of biopolymers, such as pectin 

(polygalacturonic acid) (Alt et al., 1998). 

 Lustig et al. (1997a, 1997b) also gave a proof of the platinum uptake under natural 

conditions by some nutrient plants, i.e.: onion (Allium cepa L.), radish (Raphanus sativus L.), 

broad bean (Vicia faba L.), Maize (Zea mays L.) and Potato (Solanum tuberosum L.). For 

assessing the mass balance of Pt, all possible transport routes into and out of these plant-

systems were monitored during the growing period. Plants grown in untreated soil took up 

less than 1 % of Pt, naturally present in the soil (0.15±0.11 ng g
-1

), whereas the plants grown 

in Pt-treated soil (in the form of tunnel dust) took up slightly more Pt. The examined onion 

and radish did not take up Pt to a higher degree in their tubercules. This observation for radish 

is in contradiction with the results of previous experiments (Pallas and Jones, 1978), which 

were performed on a cultivation substrate of a high Pt content, generally, from which a higher 

Pt uptake could be expected. 

 Klueppel et al. (1998) studied platinum metabolites in cultivated grass treated with 

aqueous platinum solutions, and also, in model studies, the binding capabilities of methionine, 

cysteine and glutathione to Pt. The size-exclusion chromatographic analysis of the low 

molecular mass components (<10 kDa) revealed five well-distinguisable Pt fractions. The 

binding properties of Pt could be drawn from the multi-element monitoring of some possible 

partners (C, S, Ca, Pb). It was also concluded that the major part of Pt taken up was not 

metabolized, but deposited, or stored in the phloem and xylem of the plant, or precipitated in 

the vacuoles. Most of the Pt was found to being accumulated in the roots of the plants, which 

is in an agreement with the observations of Ballach (1995) and Ballach and Wittig (1996) on 

poplar cuttings. 
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 The platinum uptake of rye grass (Lolium perenne) cultivated on a sandy loam soil, 

and cucumber (Cucumis sativus) plants grown hydroponically (i.e. without the use of soil) 

were studied by the assistance of the aqueous solution of the [Pt(NH3)4](NO3)2 (nutrient) in 

the range of 0.5-50 g l
-1

 Pt (Verstraete et al., 1998). The accumulation factor (AF) was 

defined as the ratio of Pt concentration in the plant to that in the soil, or the nutrient solution. 

The grass grown on spiked soil accumulated Pt only to a slight degree (AF: 0.008-0.032). 

However, the hydroponically grown cucumber plants strongly accumulated platinum (AF 

ranged from 11 to 42 for shoot, and 1700 to 2100 for the roots). The authors explained the 

large deviation in the AF values found for shoot and roots by three possible causes: (i) 

Cucumbers are dicotyledons, whereas grass is a monocotyledon. The general experience is 

that dicotyledons have higher accumulation ability to metals, compared to monocotyledons. 

(ii) The cucumber plants were exposed to a higher Pt impact than grass cultivates. (iii) The 

immobilization of the Pt compound occurred in soil. 

 It can be concluded from the above studies that in “native” cultures, Pt appears to be 

bound to high molecular mass species (i.e. proteins), whereas in treated (model) cultures a 

variety of Pt species at the low molecular fraction dominate. 

 After anthropogenic emission, Pd, Pt and Rh, as well as other heavy metals, can 

accumulate in fresh water and estuarine sediments and their effects on aquatic life depend on 

their biological availability. Aquatic macro invertebrates form an integral part of the diet of 

freshwater fish and can be considered an important step in food chain. Moldovan et al. (2001) 

examined the bioavailibility of Pd, Pt and Rh by the freshwater isopod, Asellus aquaticus, 

both in a natural ecosystem (collected from the Mölndal river in Göteborg) and under 

laboratory conditions. The isopod showed a Pd, Pt and Rh content of 15573, 3835, and 

1812 ng g
-1

 (dry weight), respectively. The exposure of Asellus aquaticus to PGM standard 

solutions for a period of 24 hours yielded a bioaccumulation factor of 150, 85, and 7 for Pd, 

Pt and Rh, respectively. Exposure of the isopod to environmental samples over various 

exposure periods demonstrated a time-dependent bioaccumulation, and a higher accumulation 

from matrices of higher PGM content. 

 The toxicity of Pt to aquatic life has been studied for several freshwater invertebrates, 

including Daphnia magna (Biesinger and Christensen, 1972), Lumbriculus variegatus (Veltz 
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et al., 1996), and Asellus aquaticus (Rauch and Morrison, 1999). The effects of Pd and Rh on 

aquatic life are not well known. 

 Several studies on the uptake of traffic emitted PGMs by animals demonstrated a 

bioavailability of Pt; i.e. for earthworms (Schäfer et al., 1998), rats (Artelt et al., 1999b), and 

European eels (Sures et al., 2001). Uptake of traffic related Pd by European eels (Anguilla 

anguilla) resulted in a mean liver Pd content of 0.180.05 ng g
-1

 (wet weight). Analysis on the 

feathers of three raptor species in Sweden have revealed a clear temporal increase of Pd, Pt, 

and Rh content from 1917 to 1999 (Jensen et al., 2002). Significantly enhanced Rh content 

was found in peregrin falcon (Falco peregrinus) and sparrowhawk (Accipiter nisus) feathers, 

which dated from later than 1986. For this period, the mean Pt, Pd, and Rh content in the 

feathers ranged from 0.3 to 1.8 ng g
-1

, 0.6 to 2.1 ng g
-1

 and 0.1 to 0.6 ng g
-1

, respectively. The 

prey of the raptors, i.e. house sparrows (Passer domesticus), in urban areas had a considerably 

higher Pt and Pd concentrations than the urban sparrowhawks. This PGM contamination of 

the feathers was found to be external, consisting of nanometer-sized particles, and 

additionally, the Pt and Pd concentrations were significantly higher in the vane than in the 

shaft of the feathers. The higher Pd concentration, comparing to Pt and Rh, may be a sign of a 

greater mobility of Pd in the environment, possibly through airborne particles. Although a 

higher PGM content was found in the feathers of birds living at urban areas, no significant 

spatial pattern could be established, partly because of the widespread distribution of cars, and 

partly the birds forage and integrate PGM exposure over large areas (Jensen et al., 2002).  

 In addition to the availability of PGMs in terrestrial ecosystem, these metals were also 

introduced passively in aquatic biotopes, e.g. by road run-off (Laschka et al., 1996). 

Biomethylation of dissolved Pt compounds by bacteria (Brubaker et al., 1975; Peterson and 

Minski, 1985; Wei and Morrison, 1994b), and biaccumulation of Pt in urban river sediments 

should be also a possible route to produce bioavailable Pt species (Peterson and Minski, 1985; 

Wei and Morrison, 1994b). 

 The only information on the uptake of PGM has been derived from experiments with a 

high dose of well-soluble salts. The uptake and accumulation effects of PGMs could be 

advantageously studied on water hyacinth (Eichhornia crassipes), because of its remarkable 

ability to assimilate high levels of transition metals from solutions (Farago and Parsons, 
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1983). Water hyacinth was capable of recovering PGMs even from dilute solutions to a 

varying degree, depending on the complex forming ability of the metal, according to the 

queue of Pt
2+

 > Pd
2+

 > Os
4+

  Ru
3+

 > Ir
3+

  Rh
3+

 (decreasing % recovery at the 0.05 ppm 

level). The same queue of decreasing relative toxicity was observed for PGMs at the 10 ppm 

level. The most prominent toxic symptom, even at low Pt
2+

 levels, was the appearance of 

reddish-brown streaks in the leaves. In contrast to the toxic effect of Pt
2+

, on the addition of 

10 ppm Rh
3+

, applied as Na3[RhCl6], water hyacinth increased its biomass some 6.7 % more 

than the control plants. When the South African grass (Setaria verticillata) was treated with 

0.5 ppm Pt
2+

 (as K2PtCl4), the vascular discolouration was absent, and the roots were 

stimulated to grow some 65 % more compared to control plants. It was concluded that the 

toxic effects of Pt substantially depend on the sort of plant species treated. In exposure studies 

of the same plant, using 0.05-0.10 g l
-1

 solutions of various Pt, Pd, and Rh salts, the highest 

accumulation of these noble metals were found in the roots of Eichhornia crassipes (Farago 

and Parsons, 1994). Relative toxicity order, determined from visual appraisal and in terms of 

oxidation states, was Pt
2+

, Pd
2+

 > Ru
3+

  Ru
2+

  Ir
3+

 > Pt
4+

  Os
4+

 >> Rh
3+

. In most cases, the 

metals are accumulated in the roots, and where the metal was translocated to the tops, this was 

associated with toxic symptoms. Sequential extractions of tissue from plants treated with 

cis[Pt(NH3)2Cl2] showed that in the leaves and floats almost half the platinum was insoluble 

and associated with alpha-cellulose and lignin, 16 % was removed by the enzyme pronase and 

can be considered to be associated with proteins or amino acids. In the roots, about a third of 

the Pt is insoluble and 9.5 % is removed by pronase. More Pt in the roots appeared in the 

fraction containing water soluble, low molecular weight materials (Farago and Parsons, 

1994). Also the Lumbriculus variegatus was able to bio-concentrate Pt after exposure to 

H2PtCl6 (Veltz et al., 1994). 

 A number of studies report on the PGM concentration in human body fluids and 

tissue. Studies in the Australia have suggested that a major pathway of Pt into the human 

body is via the diet with an average dietary intake of 1.44 g Pt per day for adults (male: 1.73 

g day
-1

; female: 1.15 g day
-1

). Platinum in material of plant and animal origin appears to be 

bioavailable (Vaughan and Florence, 1992). Toxic effects of metallic Pt, as emitted from by 



 30 

automobile exhaust converters, are only expected if the Pt is bioavailable. The natural levels 

of Pt significantly fluctuate in human body fluids of various types. Values of 0.8-6.9 ng l
-1

 

and 0.56 g l
-1

 for blood, and 0.5-15 ng l
-1

 and 0.18 g l
-1

 for urine have been reported 

(Vaughan and Florence, 1992). 

 In model experiments, a proper simulation substance was selected for substituting the 

particles, emitted by a three-way catalytic converter equipped engine (Artelt et al., 1998). The 

bioavailability of Pt from these particles and the form of Pt species in vivo were assessed. An 

in vitro solubility test showed that 10 % of Pt content from the model substance was soluble 

in physiological NaCl solutions. In some short-term animal tests, Pt was detectable in all the 

studied tissues (lungs, kidney, liver, spleen, stomach, adrenal glands) and body fluids. The 

contribution of the swallowed Pt (via oral application) to the Pt content of the matrices 

studied was very low; therefore, its contribution to the overall bioavailability is negligible. In 

another study (Artelt et al., 1999b), the model substance was applied to rats in tracheal 

instillation, inhalation, and by gavages. Pt was found in the blood, urine and faeces and all 

important part organs (liver, spleen, kidney, adrenals, stomach, femur). Based on the Pt 

content determination in the body fluids and all organs (except the lungs and faeces), it was 

calculated that up to 16 % of the Pt was retained in the lung 1 day after intratracheal 

instillation and up to 30 % of that the finely dispersed Pt deposited on average during 90 days 

inhalation in the lung was bioavailable. It was also reported that greater than 90 % of the 

bioavailable Pt was bound to high molecular weight compounds (80-800 kDa), most likely 

proteins. The authors suggested further investigations on the possible toxicity of the 

bioavailable Pt to humans. 

 Nygren et al. (1990) reported that the natural Pt levels in human blood range between 

0.1 and 2.8 g l
-1

 (median: 0.6 g l
-1

). The median concentration of Pt determined in urine, 

scalp hair, sweat, saliva and fingernails were found to be 0.11, 3.02, 0.02, 0.07, and 19.0      

g l
-1

, respectively. The informative values (0.49 and 1.80 g l
-1

 Pt) reported by Johnson et al. 

(1975) for composite urine samples from a population of California lies in this range. 

According to Schramel et al. (1995), the Pt concentration in urine samples of 10 different 

persons, collected during 24 hour periods, were between 1.2 to 35 ng l
-1

 with a median value 

of 5.4 ng l
-1

. These values are in the concentration interval accepted as “normal”, i.e. in the 
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range between 0.5 to 40 ng l
-1

 (Schierl et al., 1994). Biomonitoring of traffic-exposed people 

showed no elevated daily urinary excretion (Schierl et al., 1994) compared to non-

occupationally exposed people (Alt et al., 1993; Ensslin et al., 1994a). Schierl (2000) found a 

mean urinary Pt concentration of 6.5 ng per g of creatinine with a maximum value of 45 ng g
-1

 

after examining 178 individuals (non-exposed persons). Enhanced urinary Pt concentrations 

(above 20 ng g
-1

) and long term excreations were observed for persons having dental gold 

alloys (Begerow et al., 1999; Begerow and Dunemann, 2000).  

 Begerow et al. (1997a) analysed the urine of 21 unexposed persons in Germany. The 

Pd levels ranged from 33 to 220 ng l
-1

 (mean: 140 ng l
-1

), while the Pt level was between 0.48 

and 7.7 ng l
-1

 (mean: 1.8 ng l
-1

). On the other hand, Messerschmidt et al. (1992a) described 

the Pt concentration in urine of occupationally exposed persons in the range of 21 to 2900    

ng l
-1

. Nygren and Lundgren (1997) found increased Pt levels of blood in both graduate 

(2.21.7 g l
-1

) and staff nurses (3.84.0 g l
-1

), but low values in pharmacists (0.470.31   

g l
-1

), in comparison with unexposed subjects (1.20.69 g l
-1

). The variation was, however, 

high for all groups. The mean Pt level in urine samples was 12692 ng l
-1

. On the contrary, in 

Germany an elevated level of urinary Pt was found in pharmacists (23 ng g
-1

 creatinine) in 

comparison with a non-exposed control group (Ensslin et al., 1997). An average level of 0.6 

ng l
-1

 was found in the blood of citizens from Sydney (Vaughan and Florence, 1992). Caroli et 

al. (2001) evaluated the exposure of 310 school children to the PGMs in Rome, Italy. The 

mean concentration value of these metals in urine were found to be 7.55.4 for Pd, 0.91.1 

for Pt, and 8.58.0 ng per g of creatinine for Rh. These values were found to be strongly 

associated with traffic density in the area of residence. 

 Freiesleben et al. (1993) investigated the solubility of Pd and Pt blacks (fine metal 

powders) in aqueous solutions containing biogenic substances. These finely dispersed 

materials mainly resemble the state of PGMs in catalytic converters. It was shown, for 

example, that the finely dispersed Pt significantly dissolved in the presence of adenosine 

triphosphate (ATP), the well-known bioactive compound of the living organisms, as well as 

human body. 
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 Most analytical measurements have focused on the level of Pt in body fluids and 

tissues after administration of Pt-containing anticancer agents. The Pt concentrations in these 

samples are in order of 0.1-10 g g
-1

. On the contrary, the natural levels are two to three 

orders of magnitude lower. The analytical difficulties in measuring low concentrations of Pt 

in biological materials have led to a lack of data on baseline levels of the PGMs, which make 

health risk studies difficult on humans. The transformation mechanism of metallic Pt into 

bioavailable forms is still unknown and has to be investigated. The bioavailability of the 

particular essential, or toxic element depends on its chemical form (Cornelis et al., 1993) and 

investigations of Pt species in various matrices become a great challenge. The problem of 

environmental dispersion of PGMs should be carefully followed by decision-makers for its 

potential, and serious, large-scale consequences. Summarized data on the PGM concentrations 

in various biological matrices are listed in Table 13. 

 According to the above survey, plants can biaccumulate anthropogenic PGMs to a 

diverse extent depending on the sort of the plant, the time interval of the contact with the 

emission source, the state, and dispersion of the PGM species (particularly the ability to 

complex formation), the local weather conditions. It was demonstrated that some animals and 

humans are also involved in the bioaccumulation process, which may cause a possible health 

risk.  

 

Health effects of PGMs 

 Amongst PGMs, Pt provides an excellent example of the significance of speciation in 

metal toxicity. Platinum allergy is confined to a small group of charged compounds that 

contain reactive ligand systems, the most effective of which are chloride ligands (Cleare et al., 

1976; WHO, 1991; Merget, 1999). Metallic Pt is considered to be biologically inert and non-

allergenic, and since the emitted Pt is probably in metallic, or oxide form, the sensitising 

potential is probably very low. Platinum from the road dust, however, can be solubilized, and 

enters into waters, sediments, soils, and the food chain. Adverse occupational health effects in 

a photographic studio following exposure to complex Pt salts were first describes in 1911 

(Karasek and Karasek). In 1945, Hunter et al. conducted studies on precious metal workers in 



 33 

four British Pt refineries, and reported 52 out of 91 persons having symptoms of sneezing, 

wheezing and shortness of breath.  

 The main hazard of the Pt can be seen in workers occupationally exposed to 

halogenated salts (Rosner and Merget, 1990), which includes in a high rate of occupational 

asthma and dermatitis in refinery workers (Dhara, 1984). It has been also reported that 50 % 

of the exposed workers are likely to developed immediate type respiratory hyper-sensitivity 

reaction following exposure to platinum salt such as ammonium tetrachloroplatinite(II), or 

ammonium hexachloroplatinate(IV), used in the production of industrial catalysis (Hughes, 

1980; Roberts, 1951). Latency from first contact with Pt to the development of symptoms 

varied from a few months to 6 years. It has also been shown that sensitised workers removed 

immediately from further contact with Pt salts showed no evidence of long-term effects. The 

Health and Safety Executive (1990) lists watering of eyes, sneezing, tightness of chest, 

wheezing, breathlessness, cough, eczematous and urticarial skin lesions, sign of mucus 

membrane inflammation, as a typical of Pt salt sensitisation. In addition, some Pt complexes 

can bind to N and S in proteins producing a possible reduction in enzymatic activity (Helmers 

et al., 1994).  

 Platinum compounds, especially the soluble salts, are toxic, and chronic industrial 

exposure to these compounds is responsible for the development of a syndrome known as 

Platinosis, which is characterized by respiratory and cutaneous hypersensitivity (Brubaker et 

al., 1975). Employees exposed during the production and recycling of Pt based catalytic 

converters revealed Pt levels in urine and blood up to 100 times higher compared to non-

exposed control individuals (Zereini and Alt, 1999). In addition, some Pt coordination 

complexes that are used as tumour treatment agents, are mutagenic, and are suspected human 

carcinogens (Leopold et al., 1979). Application of cis-dichlorodiamine Pt as an anticancer 

agent has been associated with the development of systematic anaphylactic and cutaneous 

immediate hypersensitivity reactions in some patients (von Hoff et al., 1976; Kahn et al., 

1975). On the contrary, Pt is non-toxic and non-allergenic in its metallic state. 

 Complex salts of Pt, especially chloroplatinates, are potential sensitizing agents 

(Hughes, 1980; Roberts, 1951). Chloroplatinates irritate the skin and mucous membranes. 

They can cause allergic reaction in high rates of occupational asthma and dermatitis (Schulze-
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Werninghaus et al., 1985). The allergic response of Pt increase with increasing number of 

chlorine atoms, the most potent compounds being hexachloroplatinic(IV) acid and its 

ammonium and K salts, and the K and Na tetrachloroplatinite(II). There is epidemiological 

evidence that the sensitizing potential of Pt compounds is restricted to halogenated 

compounds (Linnet and Hughes, 1999). Contact hypersensitivity was also observed on mice 

by the administration of hexachloroplatinate (Schuppe et al., 1997). 

 Non-halogenated complexes and neutral complexes, including in the anti-cancer drug, 

cisplatin [(NH3)2Pt(Cl2)2], are not allergenic, perhaps because they do not act as haptens (i.e. 

chemical compounds, which can bind to a biological macromolecule, e.g. a protein). 

Pharmacodynamic, as well as toxic properties of cisplatin are due to its specific planar 

structure (intra-strand DNA cross-linking activity), which is exceptional compared to other Pt 

compounds. This is particularly true for nephro-, myclo-, and ototoxic side effects observed 

on patients treated with therapeutic doses, and additionally, mutagenic and carcinogenic 

effects observed in experimental animal studies (WHO, 1991). Further occupational exposure 

in sensitized subjects leads to persistence, and sometimes to progressive deterioration of 

asthma, irrespective of the reduction of exposure to the specific sensitizer. 

 The administration of Pt drugs often accompanied by undesirable side-effects 

including in nausea (See-Lasley and Ignoffo, 1981), hearing loss (Evans et al., 1982; Loehrer 

and Einhorn, 1984) and nephrotoxicity (Safirstein et al., 1986). There is also concern about 

the mutagenecity and the potential carcinogencity of these drugs especially in relation to 

occupational exposure (IARC, 1981; Vaughn and Christensen, 1985). Tumoral cells are more 

prone to attack by the Pt containing substances than normal cells as a consequence of higher 

permeability of the former in vivo, as well as to the high dose, short-term conditions of 

administration (short of acute exposure), which leave the healthy cells practically unaffected. 

This situation may dramatically change as the permanent presence of much lower 

concentration of Pt in the environment completely switches the scenario to that of chronic 

exposure, the impact of which on healthy cells of living organism is partly unknown and 

partly worrisome (Ensslin et al., 1994a, 1994b). 

 Nursing staffs are evidently concerned about the risk of hazardous exposure of Pt due 

to the increasing use and contact with anti-neoplastic drugs. Many studies have indicated that 
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increased urine mutagenicity, chromosome aberrations and sister chromatid exchange as well 

as increased hairloss, increased spontaneous abortions, and malformed offspring among 

nursing staff handling cytotoxic drugs (Waksvik et al., 1981; Kolmodin-Hedman et al., 1983; 

Nikula et al., 1984; Bingham, 1985; Hemminki et al., 1985; Selevan et al., 1985; Vaughn and 

Christensen, 1985; Stücker et al., 1986). One drawback of the general methods used in 

examining such problems, however, is that they lack in specificity. The search for a biological 

parameter reflecting the possible damage induced by these drugs is ongoing. Several studies 

have focused on different cytogenetic effects, leading to contradictory results. However, only 

limited data combine exact information on the degree of drug exposure, incorporation and 

potential cytogenetic damage. 

 Halogenated Pt compounds have been reported as potent respiratory allergens leading 

to rhinitis, conjunctivitis, asthma and urticaria (Rosner and Merget, 1990). Sensitization level 

of 0.1 g m
-3

 in air for soluble platinum compounds was reported (Rosner and Merget, 2000). 

Certain Pt compounds are also known to be cytotoxic and have mutagenic and carcinogenic 

effects and have some effects on microorganisms at very low concentration (WHO, 1991, 

Bünger et al., 1996; Gebel et al., 1997; Lantzsch and Gebel, 1997). The first inhalation study 

on Pt and its compounds using radioactive labeled materials, was reported by Moore et al. 

(1975a). Platinum and its compounds were mainly retained in the respiratory tract (lungs, 

Trachea); moreover, significant concentrations were also determined in the kidneys and 

femur. The whole body retention after 24 hours depended on the applied Pt species, and 

decreased according to the queue (PtCl4 > Pt(SO4)2 > PtO2 > Pt) (Moore et al., 1975b; see also 

Artelt et al., 1999b). 

 Micro-toxicity tests have shown that the EC50 of platinum chloride for photo 

bacterium phosphoreum is 25 g l
-1

 , which is much lower than that of Cu (200 g l
-1

) (Wei 

and Morrison, 1994a). The diagnosis of platinum-related occupational disease can be 

confirmed by skinprick tests using minute doses (10
-2

 to 10
-8

 mol l
-1

) of Pt salts, although such 

tests can be hazardous. An immunological study reported on the allergenic effects of 

particulate exhaust on workers already sensitive to Pt salts. Skin prick tests, in a preliminary 

study, only on three subjects, were negative up to a concentration of 5 g ml
-1

, which would 

normally be sufficient to elicit a response (Cleare, 1977). Metallic Pt is considered to be non-
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allergenic, since the emitted Pt from catalysts is probably in the metallic, or oxide form, and, 

thus, its sensitizing potential is probably very low. 

 Topical exposure of mice to respiratory sensitizing Pt salts elicited a similar quality of 

immune response to that induced by epicutaneous application of organic allergens, such as 

toluene diisocyanate, trimellitic anhydride, or cyanuric chloride (Dearman et al., 1998). 

Despite an association, in some cases, between respiratory symptoms and the production of 

specific IgE antibody and elevated total serum IgE (Baker et al., 1990; Cromwell et al., 1979; 

Murdoch et al., 1986), non-specific effects have been reported (Merget, 1999; Merget et al., 

1999), even after the allergen avoidance (Merget et al., 1994). Hexa- and tetra-chloroplatinum 

salts have been shown to act synergistically with classical adjuvants to enhance IgE 

production and specific IgE response to unrelated proteins in rats (Murdoch and Pepys, 1984). 

It has been demonstrated, however, that these Pt salts and cis-dichlorodiammine platinum(II) 

are potent immunogens in mice, involving in vigorous proliferation, when administrated 

subcutaneously in the popliteal lymph node assay (Schuppe et al., 1992).  

 Increased Pt concentrations, compared to natural levels, were reported not only in 

human body fluids (blood, urine, etc.) and tissue of occupationally exposed persons (Rosner 

and Merget, 1990), but also in body fluids of non-occupationally exposed persons (Vaughan 

and Florence, 1992; Begerow and Dunemann, 1996; Begerow et al., 1997a, 1997b, 1997c). 

Unfortunately, the toxicity of bioavailable, anthropogenic Pt is not very clear (Pallas and 

Jones, 1978; Rosner et al., 1991; Ballach and Wittig, 1996; Nachtigall et al., 1996). On the 

other hand, certain Pt species are known to exhibit an allergenic potential (Summer, 1990; 

Schulze-Werninghaus et al., 1990), which raises questions for the health effect from the long-

term exposure of low-level Pt compounds. 

 With regards to the other Pt group metals, Rh occurs in a lower amount in catalyst 

than Pt. On the other hand, palladium gains an increasing application in catalytic converters, 

and Ir was just recently introduced in Japan, as the so-called “DeNOx” catalysator, with the 

aim to drastically reduce the nitrogen oxide emission in the exhaust of lean burning engines.  

 For halogenated Pd and Rh salts (PdCl2 and RhCl3), increased tumor incidences were 

observed in a lifetime drinking-water carcinogenicity study on mice (Schroeder and 

Mitchener, 1971). However, due to major methodological deficiencies (e.g. only one dose 
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applied; higher longevity in treated as compared to control group; number of the tumors 

pooled despite the sex-specific differences), the validity of this study was questioned (Merget 

and Rosner, 2001). 

 As regards the sensitizing potential of the other PGMs, there is no evidence for a 

higher potency than Pt salts. On the other hand, there is a striking difference between metallic 

Pt and Pd, since metallic Pd causes contact dermatitis. However, this effect can not be 

projected to the respiratory sensitizing potential of Pd and its compounds. Immediate type 

reactions to Pd have been reported only on refinery workers sensitized to Pt, and limited 

cross-reactivity between both metals (Murdoch and Pepys, 1987). The latter study showed a 

low prevalence of sensitization to PGMs other than Pt. Bergman et al (1995) reported one 

case of an occupational Ir salt immediate-type allergy without Pt salt allergy. 

 Studies over more than ten years have shown that the allergenic potential of Pd has 

been underestimated. Allergic reaction was first reported in connection with the use of dental 

alloys rich in Pd (Van Ketel and Niebber, 1981; Castelain and Castelain, 1987). Similar 

observations were made in skin test with Pd chloride, which also revealed a distinct cross 

sensitivity to nickel. About 90 % of those tested, reacting against Ni also demonstrated 

sensitivity towards Pd (Olivarius and Menné, 1992). Occupational asthma caused by Pd metal 

reported only in one case (Daenen et al., 1999). 

 

Conclusion 

 Platinum group elements, mainly released by automotive catalytic converters, are 

continuously increasing in environmental matrices over the time. It is still under discussion, 

whether the emitted PGMs are toxic for living organisms, and human beings. It is known that 

the metallic form of these elements is inert as far as biological reactions are concerned, but 

that, in contrast, some of their compounds, such as hexacholoroplatinate, and 

tetrachloroplatinite complexes, etc., are among the most potent allergens and sensitizers. 

Hence, the potential health risk from these elements would have to be taken in consideration, 

which further raise questions for the possible risk of exposure for those living in urban 

environments, or along major highways. In this context, the transportation, transformation, 

and bioavailability of PGMs play a key role, especially, in the view of some contradictory 
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results of the relevant literature (eg. estimates on the soluble PGM portion of the evolved 

exhaust, and interpretation on the PGM uptake by plants). All the above topics need further 

investigation (both experimental and model), partly on the base of health studies of PGM 

salts, to reach a better understanding of the behaviour of PGMs in the environment. 
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Figure 1  Catalytic converter 
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Table 1  Platinum group metal demand by application (worldwide) 

________________________________________________________________________ 

Application                                1999 (kg)                             2000 (kg) 

________________________________________________________________________ 

PLATINUM 

Autocatalysts: gross      45600     51000 

Autocatalysts: recovery  -12000     -13000 

Jewellery      79400     83300 

Industrial       38400     41400 

Investment         5100      -1420 

Total Demand (Pt)    159000   146000 

 

PALLADIUM 

Autocatalysts: gross    166700   146000 

Autocatalysts: recovery     -5530      -6520 

Dental        31500     24700 

Electronics       56100     58600 

Other        16600     15000 

Total Demand (Pd)    265000   238000 

 

RHODIUM 

Autocatalysts: gross     14400      16000 

Autocatalysts: recovery   -1870      -2240 

Chemical          964          992 

Electronics          170          170 

Glass           851        1050 

Other           312          312 

Total Demand (Rh)    14900      16200 

 

RUTHENIUM 

Chemical        2440       1930 

Electrochemical       2040       2270 

Electronics        5560       6580 

Other         1160       1360 

Total Demand (Ru)    11200     12100 

 

IRIDIUM 

Automotive         964        397 

Chemical         198        170 

Electrochemical        794        680 

Other          936      1450 

Total Demand (Ir)      2890      2690 

________________________________________________________________________ 
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Table 2  Platinum demand by application in Europe (kg) 

_________________________________________________________________________________________________ 

Platinum demand       1992 (kg)  1994 (kg)  1996 (kg)  1998 (kg)  2000 (kg) 

_________________________________________________________________________________________________ 

Autocatalyst: gross     16300  17200  14600  15500  17900 

Autocatalyst: recovery    -142     -284    -567      -851    -1130 

Chemical     1420      1420    1700    1700    2410 

Electrical       851        709      709     1280     2270 

Glass         425        851    1130       709       709 

Investment:small       992     1276      142       142           0 

Jewellery      2410     2840    3540     4540     5670 

Petroleum        567        709      425       425       284 

Other       1560      1840    2130     2410     2840 

Totals (Pt)    24400   26500   23800   25800   30900 

_________________________________________________________________________________________________ 
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Table 3  Palladium demand by application in Europe (kg) 

_________________________________________________________________________________________________ 

Palladium demand   1992 (kg)  1994 (kg)  1996 (kg)  1998 (kg)  2000 (kg) 

_________________________________________________________________________________________________ 

Autocatalyst: gross     1130    7370  24400   38800   51600 

Autocatalyst:recovery          0          0      142     -142      -425 

Chemical      2100    1700    1840     1840     2690 

Dental      8500    7230     7230    5950     3120 

Electronics      5950    7230     8500     7660     7370 

Jewellery        992      851       851     1420     1280 

Other         425      709       567       709       567 

Totals (Pd)    19100  25100   43200   56300   66200 

_________________________________________________________________________________________________ 
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Table 4. Direct determination of PGMs from car exhaust fumes 

________________________________________________________________________ 

Catalyst Operation 

condition 

PGMs emission  Reference 

Pellet-type 48 km h
-1

 

96 km h
-1

 

 

Pt: 1.2 g km
-1 

Pt: 1.9 g km
-1

 

Hill and Mayer, 

1977 

Three-way Idle Pt: 67 ng m
-3

 Rosner and 

Hertel, 1986 

 

Three-way 60 km h
-1

 

100 km h
-1

 

140 km h
-1

 

US-Cycle 75 

Pt: 3.3±1.6 ng m
-3

 

Pt: 11.9±5.8 ng m
-3

 

Pt: 39.0±16.6 ng m
-3

 

Pt: 6.4±6.3 ng m
-3 

 

König et al., 1992 

Three-way 

(Pt-Rh ) 

140 km h
-1

 Pt: 120 ng m
-3

 

Rh: 20 ng m
-3

 

Pd: 0.3 ng m
-3

 

Ir: 0.02 ng m
-3 

 

Lüdke et al., 

1996 

Three-way Engine: 1.8 l, 

66kW 

New converter: 

at 80 km h
-1

 

at 130 km h
-1

 

Old converter: 

at 80 km h
-1

 

at 130 km h
-1

 

Pt: 7-124 ng km
-1 

(mean) 

 

 

Pt: 12 ng km
-1

 

Pt: 90 ng km
-1

 

 

Pt: 9 ng km
-1

 

Pt:  18 ng km
-1

 

Artelt et al., 

1999a 

Three-way (fresh) 

a) Petrol 

 

 

b) Diesel  

 

 

 

 

 

 

Pt: 100 ng km
-1

 

Pd: 250 ng km
-1

 

Rh: 050 ng km
-1

 

Pt: 400-800 ng km
-1

 

Palacios et al., 

2000b 
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Three-way (aged: 

30 000 km) 

a) Petrol 

 

 

 

b) Diesel  

 

 

 

 

 

 

 

 

 

80 km h
-1

 constant 

speed 

 

 

 

 

 

Pt:    6-8 ng km
-1

 

Pd:   12-16 ng km
-1

 

Rh:   3-12 ng km
-1

 

 

Pt:    6.3-7.5 ng km
-1

 

Pd:   1.2-1.9 ng km
-1

 

Rh:   0.6-1.2 ng km
-1

 

Pt:   11-58 ng km
-1

 

Pd:   2-24 ng km
-1

 

Rh:   1.5-7 ng km
-1

 

Fresh gasoline 

catalyst 

Pt/Pd/Rh 

Pd/Rh 

 

Diesel Pt 

 

 Pt:   27-313 ng km
-1

 

Pd:  6-108 ng km
-1

 

Rh:  8-60 ng km
-1

 

 

 

Pt: 47-170 ng km
-1

 

Moldovan et al., 

1999 

Three-way Pd-Rh 

gasoline 

 

Diesel Pt 

 

  

Pd: 2.59-9.38 g l
-1

 

 

Pd: 11.25 g l
-1

 

 

García et al., 

2001 

Three-way 

Gasoline 

 

 

 

Diesel 

 

 

 

 

 

 

Pt: 10.2 ng km
-1

 

Pd: 14.2 ng km
-1

 

Rh: 2.6 ng km
-1

 

 

Pt: 223 ng km
-1

 

Pd: 75.8 ng km
-1

 

Rh: 33.7 ng km
-1

 

 

Rauch et al., 

2002 

________________________________________________________________________ 
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Table 5  Particulate (p), soluble (s) and total (t) PGMs (ng km
-1

) in exhaust fumes from 

different automotive catalytic converters as a function of the engine ages (driven kms) 

 

________________________________________________________________________ 

 

      

  Type of catalytic converter 

____________________________________________________ 

      

  Pt-Pd-Rh Pd-Rh Pt (c1) Pt (c2) 

      

0 km      

Pt p  99.882   99.7119 8091441 402785 

 s  1.62.2 2.61.7 3.12.6 1.42.1 

 t 10185 102119 8121443 404785 

      

Pd p 256380 243378 213.9344.9  25.949 

 s 8.73.9 2.82.3 2.72.9  1.20.9 

 t 264378 246378 217345  27.149 

      

Rh p 63.388 36.650 181286   79.9145 

 s 2.61.7 1.41.4 3.21.8 1.61.6 

 t 65.989 3852 184288   81.5145.2 

      

30000 km      

Pt p  5.62.2   5.61.7 15060 108105 

 s  0.70.6   2.67.4 2.41.6 1.91.4 
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 t  6.32.5   8.28.0 15260 110106 

      

Pd p  5.33.5   7.42.6 39.519  73.571 

 s  6.76.4   8.57.5 6.45.5  8.09.7 

 t 125.7 15.95.1 45.923  81.575 

      

Rh p 1.70.8 2.50.8 23.311  36.444 

 s 2.02.1 9.717 2.51.6  2.53 

 t 3.72.1 12.215 25.811  38.944 

      

________________________________________________________________________ 

c1 catalyst (Pt):  

c2 catalyst (Pt):  

 (Palacios et al., 2000a, 2000b) 
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Table 6 Platinum emission by cars 

_____________________________________________________________________ 

 

     

 D 1994 D 1996 A 1996 NL 1996 

     

Pt emission by cars     

Number of cars 32 000 000 32 000 000 3 593 600 5 740 500 

With VEC 12 800 000 19 200 000 1 607 700 3 307 300 

% with VEC 40.0 60.0 44.7 57.6 

Kilometers/car 15 000 15 000 14 400 13 540 

Total kms (VEC only) 1.92x10
11

 2.88x10
11

 2.31x10
10

 4.49x10
10

 

Emission (g km
-1

) 0.65 0.65 0.5 0.5 

Total emission by cars (kg) 124.8 187.2 11.6 22.5 

     

_____________________________________________________________________ 

Abbreviations: D – Germany, A – Austria, NL – The Netherlands, VEC – vehicle exhaust 

catalyst. 
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Table 7 Emission of platinum by hospitals 

_____________________________________________________________________ 

 

 D 1994 D1996 A 1996 NL 1996 

     

Total hospital beds (approx.) 645 000 645 000 77 500 60 000 

Maximum medical performance  

45 000 

 

45 000 

 

6 500 

 

N/A 

Pt per bed and year (mg) 

- maximum medical service 

- medium medical service 

 

154.0 

14.0 

 

130.4 

14.0 

 

58.7 

N/A 

 

22.3 

N/A 

Pt emissions by hospitals (kg yr
-1

) 

- maximum medical service 

- medium medical service 

 

6.9 

8.4 

 

5.8 

8.4 

 

0.38 

N/A 

 

1.3 

N/A 

Total emissions by hospitals 

 (kg yr
-1

) 

 

15.3 

 

14.2 

 

N/A 

 

N/A 

All hospitals as maximum 

medical service 

 

99.3 

 

84.1 

 

4.6 

 

1.3 

_____________________________________________________________________ 

Abbreviations: D – Germany, A – Austria, NL – The Netherlands, N/A – no data available. 
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Table 8  PGM content in airborne samples 

City/Country   Other specification  PGM concentration (pg m
-3

,   Reference 

        if not indicated, otherwise) 

 

California, USA  -    Pt: <0.05    Johnson et al., 1975 

California   -    Pd: <0.06    Johnson et al., 1976 

Belgium, Italy   -    Pd: <0.7    Schutyser et al., 1977 

Tsukuba, Japan  -    Pt: 0.014-0.184 g g
-1

   Mukai et al., 1990 

Dortmund, Germany  urban environment  Pt: 0.02-5.1     Alt et al., 1993 

California   PM10     Pd: 1     Lu et al., 1994 

Caesarea, Israel  PM2.5 (1993)   Pd: 3.3     Gertler, 1994 

Bruck/Mur, Austria  Tanzenberg tunnel dust Pt: 13.03.8    Wegscheider and Zischka, 1993 

Munich, Germany  bus, tramway (1993-94) Pt: 0-43.1 (mean: 7.3)   Schierl and Fruhmann, 1996 

Graz, Austria   tunnel dust   Pt: 11.03.8     

Chicago, USA   (1990)    Pd: 12 700 (mean)   Scheff et al., 1997 

Chernivtsi, Ukraine  (1990)    Pd: 56 600 (mean)    

Stuttgart, Germany  urban area (1997)  Pt: 68 ng g
-1

    Helmers and Mergel, 1998 

Stuttgart    urban area (1997)  Rh: 8 ng g
-1

     

Czech Republic  various observation sites Pt: 9-62     Vlašánkova et al., 1999 

        Pd: 30-280      
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Italy        Pt: 6.4-38.8     Caroli et al., 2000 

Germany    background level  Pt: <2     Rosner and Merget, 2000 

Germany    -    Pd: 9-106     

Munich, Germany  -    Pt: 4.42-42.4 (mean: 13.6)  Dietl et al., 2000 

Berlin     urban environment (1997) Pd: 0.2-14.6    Tilch et al., 2000 

Munich   bus, tramway (1993-94) Pt: 7.3 (mean)    Schierl, 2000 

Munich   bus, tramway (1995-96) Pt: 21.5 (mean)    

Rome    urban sites (heavy traffic) Pd: 21.2-85.7    Petrucci et al., 2000 

        Pt: 7.8-38.8     

        Rh: 2.2-5.8     

Coppenhagen, Denmark heavy traffic (1993)  Pt: 13     Probst et al., 2001 

Coppenhagen   heavy traffic (1995-1997) Pt: 250-2740     

Madrid, Spain       Pt: <0.1-57.1 (mean: 12.8)  Gómez et al., 2001 

Madrid        Rh: <0.2-12.2 (mean: 3.3)   

Germany   1988    Pt: 91.5    Zereini et al., 2001a 

    1998    Pt: 464      

    1988    Rh: 7.5      

    1998    Rh: 31.5     

____________________________________________________________________________________________________________ 
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Table 9  Comparative results of Pt and Pd in garden soil (0-5 cm) and road dust in Nottingham (Hutchinson et al., 2000) 

________________________________________________________________________ 

 

Year 

 

Sample 

 

n 

Pt (ng g
-1

) Pd (ng g
-1

) 

range mean range mean 

1982 soil 42 0.27-1.37 0.61 0.64-0.99 0.05 

1996 soil 42 0.19-1.33 0.80 0.21-1.11 0.18 

       

1982 road dust 10 0.46-1.58 0.90 0.69-4.92 1.24 

1996 road dust 8 0.82-6.59 2.29 0.19-1.43 0.75 

1998 road dust 20 7.3-298 69.55 5.6-556 92.95 

________________________________________________________________________ 

n – number of parallel determinations 
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Table 10  PGM concentrations in soil and road dust 

Samples  Location  Other conditions  Concentration (ng g
-1

,  References 

          if not indicated, otherwise) 

Roadside dust  San Diego  heavy traffic (1985)  Pd: 38-280    Hodge and Stallard, 1986 

      (freeways)   Pt: 100-680     

      light traffic   Pd: 15-24     

      (residential streets)  Pt: 300     

Filter dust  Hannover      Pt: 0.19    Hoppstock et al., 1989 

Dust   Dortmund      Pt: 12    Beinrohr et al., 1993 

Street dust  Graz, Austria      Pt: 14.5   Wildhagen and Krivan, 1993 

Roadside soil  Germany  motorway   Pt: 27    Zereini et al., 1993 

Roadside dust  Germany      Pt: 100   Zereini et al., 1994 

Roaddust  Germany  from roadside grass  Pt: 5-8    Helmers et al., 1994 

Sewage sludge ash Germany  from incinerator  Pt: 605     

Road dust  Göteborg  car park (1991)  Pt: 26 ng m
-2

   Wei and Morrison, 1994a 

      kerbside   Pt: 1.28 g m
-2

   

Tunnel dust  Austria   tunnel ceiling   Pt: 68.2    Schramel et al., 1995 

Continental crust        Pt, Pd: 0.4   Wedepohl, 1995 

          Rh: 0.06    

Roadside dust  Germany  highway   Pd: 1-146   Schäfer et al., 1996 

Road dust  SE Germany  16000 car/day   Pt: 14 ng m
-2

 daily  Laschka et al., 1996 
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Soil   Richmond (1996) minor/intermediate roads Pt: 0.3-8   Farago et al., 1996 

Dust   Richmond (1996) major road intersection (A3) Pt: 0.42-29.8    

Soil   Kent, UK (1996) botanic garden   Pt: 0.8-1.6    

Roadside dust  Belgium      Pt: 12.04   Parent et al., 1996 

Soil          Pt: 79.4    

Roadside dust  Frankfurt  (1995)    Pt: 170    Zereini et al., 1997a 

Roadside dust  Frankfurt  (1994)    Pd: 6-117   Zereini et al., 1997b 

          Rh: 1-26    

Cultivated soil  Germany  garden, agriculture, mould Pt: 0.15-3.9 (mean:1.1)  Alt et al., 1997 

Uncultivated soil Germany  mountain, forest, coast Pt: 0.03-0.26 (mean:0.14)   

Roadside soil  Germany  motorway   Pt: 15.6-31.7 (mean: 20.9)    

Soil   Germany  -    Pt: 25.3-253   Cubelic et al., 1997 

          Pd: 1.2-12.5    

      -    Rh: 4.8-39.7    

Dust      highway   Pt: 7-198    

          Rh: 8-31    

Dust   Germany  tunnel (1997)   Pt: <730   Helmers and Mergel, 1998 

          Rh: <60    

Tunnel dust  Japan   (1987)    Pd: 297   Helmers et al., 1998 

Tunnel dust         Pt: 170     

          Pd: 20     
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Roadside soil  Stuttgart, Heidelberg highway (background) Pt: 10 (max)   Schäfer and Puchelt, 1998 

          Rh: 35 (max)    

Roadside soil  Hanau, Germany near motorway (1995)  Pt: 23-112   Zereini et al., 1998 

Soil   Germany  highway (southeast)  Pt: 0.9-200   Schäfer and Puchelt, 1998 

Roadside dust         Pt: 23 ng m
-2

   Schäfer et al., 1999 

Road sediment         Pt: 30-180    

          Pd: nd-28    

          Rh: 5-45    

Road dust  Karlsruhe, Germany (1997)    Pt: 112-169   Schäfer et al., 1999 

Road dust     motorway   Pt: 340    Beyer et al., 1999 

Road dust  Sweden  -    Pt: 213 ng g
-1

   Rauch et al., 1999 

          Pd: 56 ng g
-1

    

          Rh: 74 ng g
-1

    

Road dust  Italy       Pt: 1.9-62.2 ng g
-1

  Caroli et al., 2000 

Road dust  Nottingham  (1998) n=20   Pt: 96.8   Hutchinson et al., 2000 

Road dust  Birmingham  (1997) n=14   Pt: 6.48    

Road dust  Nottingham  (1998) n=20   Pd: 92.9    

Soil along motorways Frankfurt  n=69    Pt: 72    Zereini et al., 2000 

          Pd: 6     

          Rh: 18     
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Soil in city area Frankfurt  n=10    Pt: 46    Zereini et al., 2000 

          Pd: 4     

          Rh: 9     

Road tunnel dust Theatre (Frankfurt) 1994 summer   Pd: 40.312.0   Boch et al., 2002 

   Harbor (Frankfurt) 1994 summer   Pd: 113.735.4   

Road tunnel dust Candid (Munich) (August 1994)   Pd: 13.53.7   Boch et al., 2002 

   Trappentreu  110 000 car/day (1994) Pd: 17.74.1    

   Landshuter Allee 100 000 car/day (1994) Pd: 21.83.5    

Road tunnel dust Candid (Munich) 94 000 car/day (Aug 1997) Pd: 41.612.2   Schuster et al., 2000 

   Trappentreu  126 000 car/day (1998) Pd: 32.910.1    

   Landshuter Allee 118 000 car/day (1998) Pd: 100.515.1   

Road tunnel dust Candid (Munich) (February 2001)  Pd: 138.213   Boch et al., 2002 

   Trappentreu  (2001)    Pd: 281.628.8   

   Landshuter Allee (2001)    Pd: 265.49.9    

Tunnel dust  Styria,   Ventilation shaft, 1994 Pt: 55    Schramel et al., 2000 

   (Tanzenberg tunnel)     Rh: 10.3    

   (Austria)      Pd: 4.0     

Tunnel dust  Styria   Ventilation shaft, 1998 Pt: 81    Schramel et al., 2000 

   (Tanzenberg tunnel)     Rh: 12.8    

   (Austria)      Pd: 5.5     

Soil   Frankfurt  (1996) Highway A66, A67 Pt: 45    Schramel et al., 2000 
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          Rh: 7     

Road dust  Austria   highway tunnel  Pt: 47±3.1   Müller and Heumann, 2000 

          Pd: 3.2±0.4    

          Ru: 2.0±0.2    

          Ir: 0.16±0.06    

Soil   Mainz, Germany 0.6 m from highway(BAB66) Pt: 87±17   Müller and Heumann, 2000 

      1.8 m     Pt: 8.7±1.5    

      3.0 m    Pt: 2.5±1.4    

   Mainz, Germany 0.6 m from the highway Pd: 7.2±1.5   Müller and Heumann, 2000 

      1.8 m     Pd: 1.2±0.3    

      3.0 m    Pd: 1.1±0.5    

   Mainz, Germany 0.6 m from the highway Ru: 3.6±0.5   Müller and Heumann, 2000 

      1.8 m     Ru: 2.3±1.0    

      3.0 m    Ru: 1.6±1.0    

   Mainz, Germany 0.6 m from the highway Ir: 0.37±0.09   Müller and Heumann, 2000 

      1.8 m     Ir: 0.16±0.07    

      3.0 m    Ir: 0.13±0.07    

Soil   Darmstadt, Germany near roads, highways  Pd: 7.2-58.6   Patel et al., 2000 

Road sediment  Göteborg  1998    Pt: 157 (171)   Rauch et al., 2000a 

      <63m particle fraction, Pd: 472 (395)    

      (63-250 m particle fraction) Rh: 60.4 (46)    
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Road sediment  Göteborg  1984    Pt: nd (nd)   Rauch et al., 2000a 

      <63 m particle fraction,/ Pd: 43.3 (54.1)   

      (63-125 m particle fraction) Rh: 2.82 (1.65)   

Road dust  Rome   urban sites (heavy traffic) Pd: 102-504   Petrucci et al., 2000 

          Pt: 14.4-62.2    

          Rh: 1.9-11.1    

Soil   Nottingham  highway (1982)  Pt: 0.05-1.37   Farago et al., 2000 

          (1996)  Pt: 0.19-1.33    

Soil   Birmingham  highway (1982)  Pt: 0.09-4.13   Farago et al., 1996 

          (1996)  Pt: 0.05-4.45    

Urban dust         Pt: 525    Zereini et al., 2001a 

Parking place dust    Indoor    Pt: 232    Zereini et al., 2001a 

          Pd: 108    

Tunnel dust         Pt: 141    Zereini et al., 2001a 

          Pd: 48     

Road dust  Göteborg, Sweden 1998, heavy traffic road Pt: 196±22   Motelica-Heino et al., 2001 

      (<63 m particle fraction) Rh: 93±15    

          Pd: 80±13    

Soil    Mexico City  high traffic (stop and go) Pt: 307.5-332.7   Morton et al., 2001 

   (Insurgentes/  (200 cars min
-1

 at rush hours) Pd: 53.2-74    

   Periférico)      Rh: 26-39.1    
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   (Insurgentes/  low density (stop and go) Pt: 2.2-8.5   Morton et al., 2001 

   Sta. Teresa)  (60 cars min
-1

 at rush hours) Pd: 12.2-32.4    

          Rh: 0.7-2.7    

   (Periférico)  high traffic (constant speed) Pt: 91.2-172.4    

      (110 cars min
-1

 at rush hours) Pd: 15.2-82.7    

          Rh: 4.7-18.4    

   (Periférico/  high traffic (constant speed) Pt: 161.7-207.7   

   Viaducto)  (180 cars min
-1

 at rush hours) Pd: 62.5-101.2    

          Rh: 18.2-22.7    

Road dust  Madrid   six sampling locations  Pt: 31-2252 (mean: 317)  Gómez et al., 2001 

          Rh: 11-182 (mean: 74)  

Road dust  Madrid   ring road, city centre (<65 m) Pd: 39-191 ng g
-1

  García et al., 2001 

Roadside dust  Scotland  dual carriageway/motorway Pt: 13-335   Higney et al., 2002 

Surface soil      far of roads   Pt: <1.0    

Dust   East Kilbride town residential area  Pt: 1.8-11.8    

Urban soil          Pt: 3.1    Dongarrá et al., 2002 

          Pd: 1.66    

Soil   Rome   1992    Pt: 0.8-6.3   Cinti et al., 2002 

      2001    Pt: 7.0-23.7    

Street dust  Germany  Saarbrücken   Pt: 17820           Kovacheva and Djingova, 2002 

          Pd: 1077    
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Road dust  Germany  Motorway (A-1)  Pt: 28340           Kovacheva and Djingova, 2002 

          Pd: 592    

      Motorway (A-61)  Pt: 30760    

          Pd: 958    

      Highway (B-262)  Pt: 25240    

          Pd: 683    

Tunnel dust  Austria (Styria) Sampling from the ceiling Pt:  62.53.8   Köllensperger et al., 2000 

          Pd: 17.42.3    

          Rh:  9.40.8    

Road dust  Poland (Białystok) Main crossroad (town) Pd: 36.6             Godlewska and Zaleska, 2002 

Road dust  Hungary (Budapest) streets with heavy traffic Pt: 0.076-0.667 ng/m
2
/day Dani et al., 2001 

Road soil (surface) Hungary (Budapest)     Pt: 4.09-89.7     

Road soil (5cm depth) Hungary (Budapest)     Pt: 1.51-78.2     

Road dust  Germany, Karlsruhe road B10 (heavy traffic) Pt: 101.3   Sures et al., 2001 

          Rh: 18.7    

          Pd: 21.3    

____________________________________________________________________________________________________________ 
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Table 11  PGM concentrations in vegetation 

Samples  Location  Other parameters  Concentration (ng g
-1

)   References 

Radish, barley, tobacco Stuttgart  entire plant (unpolluted) Pt: 40   Alt et al., 1988 

Radish   Stuttgart  entire plant (polluted)  Pt: 1450-2070000   

      root    Pt: 530    

      leaves    Pt: 180    

Barley   Stuttgart  root (polluted)   Pt: 5670000    

      ear    Pt: 4380    

      leaves    Pt: 29800    

Tobacco  Stuttgart  entire plant (polluted) Pt: 1050000    

      root    Pt: 110000    

      leaves    Pt: 23300    

Clover          Pt: 2.26   

Rye grass         Pt: 26.7   

Bean   Belgium  stalk    Pt: 11.05  Parent et al., 1996 

      leaves    Pt: 3.76   

Plants      ultrabasic soil   Pt: 100-830  Valente et al., 1982 
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Corn   Germany  Stuttgart   Pt: 80   Hoppstock et al., 1989 

Rye grass  Hannover  control    Pt: 0.32   

Rye grass  Hannover  treated with car exhaust Pt: 1.5     

Beans   Dortmund      Pt: 550   Beinrohr et al., 1993 

Beans   Dortmund      Pt: 130   Lee et al.,1993 

Corn   Graz, Austria      Pt: 642   Wildhagen and Krivan, 1993 

Roadside grass Stuttgart  60 000 car day
-1

  Pt: 2.9   Helmers et al., 1994 

   Stuttgart  0.2 m road distance  Pt: 4.6    

Pine, birch, grass Germany  80-120 000 car day
-1

  Pt: 12   Helmers, 1997 

      (1995/96)   Pd: 2    

          Rh: 2    

Salad, spinach, green kale -  -    Rh: 0.2-0.9  Alt et al., unpublished results 

Roadside grass Stuttgart  60 000 car day
-1

 (1993) Pt: 2.9   Helmers et al., 1994 

      0.2 m off the road (1994) Pt: 4.6    

Roadside grass Ghent, Belgium near the motorway (1995) Pt: 1.4-1.7  Hees et al., 1998 

   Siegen, Germany near the motorway (1996) Pt: 17.0-95.6   

Grass   Germany  road side (1994)  Pt: 3.61  Helmers and Mergel, 1998 



 62 

      (~96 000 car day
-1

)  Rh: 0.65   

      road side (1997)  Pt: 10.6   

          Rh: 1.54   

      unpolluted areas (1997) Pt: <0.03   

          Rh: <0.03   

Grass      rural site   Pt: 0.1-0.3  Angerer and Schaller, 1994 

Roadside grass Munich  0.2 m from motorway  Pd: 1.31  Schuster et al., 2000 

      0.5 m from motorway  Pd: 0.70   

      1.0 m from motorway  Pd: <0.3   

Tree bark  Sheffield, London rural, industrial areas, cities Pt: 0.07-5.4  Becker et al., 2000 

Tree bark         Pt: <9   Ma et al., 2001 

   UK,Sheffield, London     Pt: ~9    

   Spain   Madrid, Tenerife  Pt: ~9    

   USA   San Francisco, Hawaii Pt: 38    

   Japan   Tokyo, Yahushima  Pt: 38    

Pine needles   Palermo, Italy   Urban and rural areas  Pt: 1-102  Dongarrá et al., 2002 

      (2000 June-July)  Pd: 1-45   
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Grape culture     1991 vegetation     Alt et al., 1997 

 (soil)  near high traffic roads/(traffic free field-paths) Pt: 0.84 (0.30)   

 leaf         Pt: 0.33 (0.10)   

 stalk         Pt: 0.13 (0.05)   

 berry         Pt: 0.009 (0.002)  

 (wine)         Pt: 0.0004 (0.0001)  

Grass   Dormund, Germany city and its vicinity  Pt: 0.14-0.29  Alt et al., 1997 

Potatoe     (peeled)   Pt: 0.10   

Carrot          Pt: 0.31   

Cabbage         Pt: 1.1    

Lettuce         Pt: 2.1    

Celery          Pt: 1.3    

Onion      (peeled)   Pt: 0.03   

Spruce shoot  Jülich, Germany     Pt: 0.55  León et al., 1997 

          Rh: 0.022   

____________________________________________________________________________________________________________ 
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Table 12  PGM concentrations in the water ecosystem 

____________________________________________________________________________________________________________ 

Samples  Location  Other parameters  Concentration   References 

____________________________________________________________________________________________________________ 

Seawater  Pacific Ocean  -    Pd: 40 pg l
-1

   Lee, 1983 

   Pacific Ocean      Pt: 150 pg l
-1

   Goldberg et al., 1986 

Seawater  Menai Straits  August 1986   Pt: 332 pg l
-1

           Van den Berg and Jacinto,1988 

   Indian Ocean  depth of 6 m (1986)  Pt: 37 pg l
-1

    

      depth of 2000 m (1986) Pt: 154 pmol l
-1

   

Tap water  Livepool      Pt: 58.5 pmol l
-1

   

River water  Germany  Rhein, Schwarzbach  Pd: 0.4 ng l
-1

   Eller et al., 1989 

Seawater  Indian Ocean  below 500m depth  Pt: 74 pg kg
-1

           Jacinto and Van den Berg,1989 

Seawater  Indian Ocean  below 500m depth  Pt: 55 pg kg
-1

   Colodner et al., 1993 

Pelagic sediment    1440-1442 cm   Ir: 2.1 ng g
-1

    

      1420-1422 cm   Ir: 1.5 ng g
-1

    

Pelagic sediment    1440-1442 cm   Ir: 1.9 ng g
-1

   Kyte et al., 1986 

      1420-1422 cm   Ir: 1.5 ng g
-1

    

Seawater     unpolluted   Pt: 0.1-0.2 ng l
-1

  Bertine et al., 1996 

          Rh: 0.04-0.1 ng l
-1

   

Drinking water Germany      Pt: 0.1 ng l
-1

   Laschka and Nachtwey, 1993 

Groundwater  Germany      Pt: 3-38 ng l
-1
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Rainwater  Germany      Pt: 1.4-74.5 ng l
-1

   

River water  Germany      Pt: 0.22-0.64 ng l
-1

   

Surface water  Frankfurt  pH 5.8-6.7   Pt: 9-78 g l
-1

   Zereini et al., 1997b 

Run-off from roads Germany      Pt: 15-1600 ng l
-1

 (mean: 117) Laschka et al., 1996 

Run-off from roads Germany  at the end of rain periods Pt: 2 ng l
-1

     

Communal sewage Germany      Pt: 8.7-33.4           Laschka and Nachtwey, unpub. 

Fresh-water  Canada  mineralized sites  Pt, Pd: <5 ng l
-1

  Hall and Pelchat, 1993 

Rainwater  Germany      Pt, Pd: <5 ng l
-1

  Helmers et al., 1998 

River sediment Sweden  urban area   Pt: 4.8-15 ng g
-1

  Rauch et al., 1999 

          Rh: 2.5 ng g
-1

    

Seawater  Baltic Sea      Pt: 2.2 ng l
-1

   Laschka et al., 1996 

Seawater  California coast at the surface water  Pt: 100 pg l
-1

   Hodge et al., 1986 

      at 4500m depth  Pt: 250 pg l
-1

    

          Ir: 9x10
-4

 ppt    

Macro algae         Pt: range 0.1 ppb-1 ppm (from algae to nodules)  

Ocean sediments             

Manganese nodules        Ir: 7.4 ppb    

Manganese nodules deep-sea      Pd: 3.7-11.4 ng g
-1

   Hodge et al., 1986 

Sediment  three rivers  Göteborg   Pt: <0.5-2.2 ng g
-1

  Wei and Morrison, 1994a 

   Mölndal river  Göteborg, 1998  Rh: 0.67 ng g
-1

  Rauch et al., 2000a 

          Pd: 13.9 ng g
-1
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          Pt: 1.0 ng g
-1

    

Surface sediments Boston Harbor  1987, 1993, 1996  Pt: 4.2; 4.62; 3.75 ng g
-1

 Tuit et al., 2000 

      1987, 1993, 1996  Pd: 19.93; 3.24; 4.22 ng g
-1

  

   Massachusetts Bay     Pd  Pt: 0.6 ng g
-1

   

River sediment Mölndal river  Sweden, 1999   Pt: 53.9 ng g
-1

 (mean)  Moldovan et al., 2001 

          Pd: 38.7 ng g
-1

 (mean)   

          Rh: 9.4 ng g
-1

 (mean)   

Sediment  Stour river  1999 June   Pt: <0.29-4.42 ng g
-1

   De Vos et al., 2002 

          Pd:  0.08-5.71    

          Rh: <0.11-0.26   

          Ru: <0.15-3.73   

          Ir:   <0.03-2.69   

Drinking water England  -    Pt: 0.2 g l
-1

   Wildner, 1996 

Drinking water Germany  sites far from traffic  Pt: 1.0x10
-4

 ng g
-1

  Alt et al., 1997 

Well water         Pt: 4.0x10
-6

 ng g
-1

   

Fen water         Pt: 1.3x10
-3

 ng g
-1

   

Rainwater         Pt: 8.0-17x10
-5

 ng g
-1

   

Glacier water         Pt: 1.0x10
-4

 ng g
-1

   

European eels  Germany  exposed eel liver  Pd: 0.14-0.25 ng g
-1

  Sures et al., 2001 

      unexposed eel liver  Pd: < 0.10 ng g
-1

  

____________________________________________________________________________________________________________
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Table 13  PGM concentrations in biological matrices 

____________________________________________________________________________________________________________ 

Samples Location  Other parameters  Concentration     References 

____________________________________________________________________________________________________________ 

 

Urine (concentration unit: ng per g creatinine, or in g l
-1

) 

  California  citizens   Pt: 0.49-1.8     Johnson et al., 1975 

  Australia      Pt: 0.11 (median)   Nygren et al., 1990 

  Lord Howe Isl. Sidney citizens  Pt: 0.18 (median)   Vaughan and Florence, 1992 

  Lord Howe Island one adult male (4 days) Pt: 0.76-1.07 g day
-1

    

  Germany  occupational exposure  Pt: 0.021-2.9     Messerschmidt et al., 1992a 

  Germany  24 h sampling period  Pt: 0.0012-0.035    Schramel et al., 1995 

  Belgium      Pt: 0.0078     Parent et al., 1996 

  Germany      Pt: 0.001              Begerow and Dunemann, 1996 

         Pd: 0.0095     

         Rh: 0.0117      

  Germany  21 unexposed persons  Pd: 0.033-0.22    Begerow et al., 1997a 
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         Pt: 0.00048-0.0077     

  Germany  general population  Pd: <0.020-0.080 (mean: 0.039) Begerow et al., 1997b 

     (unexposed)   Pt: <0.070      

  Germany  pharmacists   Pt: 23 ng g
-1

     Ensslin et al., 1997 

  Umea, Sweden     Pt: 0.1260.092    Nygren and Lundgren, 1997 

  Rome, and outskirts 6-10 year-old school children Pt: <0.0006-0.0014 (med.: 0.001)  Krächler et al., 1998 

         Pd: 0.0052-0.0148 (med.: 0.0095)  

         Rh: 0.0068-0.0179 (med.: 0.0117)  

  United Kingdom 7 precious metal workers Pt: 210-1180     Farago et al., 1998 

     10 motorway maint. workers Pt: 22-135     

     5 of Imperial College staff Pt: 48-224     

  Germany  non-occupational exposure Pt: 6.5 ng g
-1

 (mean)   Schierl, 2000 

  Rome, Italy  310 school children  Pt: 0.91.1 ng g
-1

    Caroli et al., 2001 

         Pd: 7.55.4 ng g
-1

     

         Rh: 8.58.0 ng g
-1

     

  Germany  general population  Pd: <0.036     Schuster et al., 2000 

     occupationally exposed Pd: 0.08-3.4      
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  Germany  general population  Pd: <0.0025     Messerschmidt et al., 2000 

     occupationally exposed Pd: 0.3-1.0      

  Germany  general population  Pd: <0.01-0.028    Philippeit and Angerer, 2001 

     occupationally exposed Pd: <0.01-2.5      

Scalp hair Australia      Pt: 3.02 (median)   Nygren et al., 1990 

Sweat         Pt: 0.02 (median)    

Saliva         Pt: 0.07 (median)    

Fingernails        Pt: 19.0 (median)    

Hair  Lord Howe Isl., Sidney  citizens  Pt: 3.84 ng g
-1

    Vaughan and Florence, 1992 

Faeces  Lord Howe Island     Pt: 10.7 ng g
-1

     

     daily for one adult male Pt: 0.61-0.73 g day
-1

    

Autopsy tissues       Pt: 3-1460 ng g
-1

   Vandiver et al., 1975 

Liver         Pt: 0.05-0.24 ng g
-1

   Zeisler and Greenberg, 1982 

Serum         Pt: 0.0009 (mean)   Krächler et al., 1998 

         Pd: 0.050 (mean)    

Neurological tissue       Pt: 24-1800 ng g
-1

    Screnci et al., 1998 
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Blood (concentrations in g l
-1

) 

  Australia      Pt: 0.1-2.8 (median: 0.6)   Nygren et al., 1990 

  Australia, Sidney citizens   Pt: 0.56 (median)   Vaughan and Florence, 1992 

  Umea, Sweden graduate nurses  Pt: 2.21.7     Nygren and Lundgren, 1997 

     staff nurses   Pt: 3.84.0      

     pharmacists   Pt: 0.470.31      

     unexposed persons  Pt: 1.20.69      

  Germany  non-exposed persons  Pt: 0.0003-0.0013 (mean: 0.0009)   Begerow et al., 1997c 

         Pd: 0.032-0.078 (mean: 0.050)  

         Ir: 0.0001-0.0004 (mean: 0.0003)  

  United Kingdom precious metal workers Pt: 0.152-0.423    Farago et al., 1998 

     motorway maint. workers Pt: 0.126-0.158     

     Imperial College staff  Pt: 0.115-0.139    

____________________________________________________________________________________________________________ 
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