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Abstract

We extend our earlier macrostatistical treatment of hydrodynamical fluctuations about
nonequilibrium steady states to viscous fluids. Since the scale dependence of the Navier-
Stokes equations precludes the applicability of any infinite scale (hydrodynamical) limit,
this has to based on the generic model of a large but finite system, rather than an infinite
one. On this basis, together with the assumption of Onsager’s regression hypothesis and
conditions of local equilibrium and chaoticity, we show that the hydrodynamical fluctua-
tions of a reservoir driven fluid about a nonequilibrium steady state execute a Gaussian
Markov process that constitutes a mathematical structure for a generalised version of Lan-
dau’s fluctuating hydrodynamics and generically carries long range spatial correlations.

Key Words. Macrostatistics, fluctuating hydrodynamics, nonequilibrium steady
states, chaoticity conditions, long range correlations.

* e-mail: g.l.sewell@qmul.ac.uk

1

http://arxiv.org/abs/1206.2750v2


1. Introduction

The theory of fluctuations is a key area of statistical physics, which is essential to both
equilibrium [1] and nonequilibrium thermodynamics [2]. Further, Landau [3] introduced
fluctuation theory into fluid dynamics by adding white noise terms to the Navier-Stokes
equations and employing the fluctuation-dissipation theorem to relate their intensities to
the viscosity and thermal conductivity coefficients.

In relatively recent works [4, 5], we have presented a macrostatistical approach to
the theory of hydrodynamical fluctuations of reservoir driven quantum systems about
nonequilibrium steady states. This was designed to relate the stochastic properties of the
fluctuations to the phenomenological continuum mechanics of these systems on the basis
of general arguments centred on the hydrodynamical observables, subject to assumptions
of macroscopic classicality, local equilibrium, chaoticity and a generalised version of On-
sager’s regression hypothesis* [2], all pertaining to states that may be far from global
thermal equilibrium. On this basis, it was shown that, in a certain large scale limit, the
fluctuations of the hydrodynamical variables executed a classical macroscopic stochastic
process, whose parameters were expressed in terms of purely phenemenological quantities,
namely thermodynamical variables and transport coefficients, the underlying quantum me-
chanics of the system being buried in the forms of these variables. Among the results that
ensued from a treatment of this stochastic process [4, 5] were a non-linear generalisation
of Onsager’s reciprocity relations and a proof that the spatial correlations of the hydro-
dynamical variables are generically of long range. However, as it stands, the theory of
those works is limited to systems whose phenomenological evolutions are scale invariant**
and is therefore not applicable to viscous fluids, as described by the Navier-Stokes (NS)
equations, since these are scale dependent.

The object of the present article is to extend our macrostatistical treatment to viscous
Navier-Stokes fluids and thereby to provide a mathematical structure for a generalised form
of Landau’s picture of hydrodynamical fluctuations and to establish that, generically, their
spatial correlations in nonequilibrium steady states are of long range. However, the scale
dependence of the NS equations precludes the applicability of a hydrodynamical limit***,
which was basic to the methodology of the previous works. Consequently, the theory has
to be based on the generic model of a large, but finite, system, rather than an infinite one.

Our treatment here is based on a classical macrostatistical model, whose presumed re-
lationship to an underlying quantum mechanics is only briefly indicated in the concluding
Section. Thus, the model comprises a continuous distribution of matter that is confined to

* In the present setting, this signifies essentially that small deviations of the hydrody-
namical observables from their values in a nonequilibrium steady state evolve according to
the same dynamical law whether this deviation arises from a spontaneous fluctuation or
from a small external perturbation.
** Specifically, those evolutions had to be invariant under space- time scale transforma-

tions of the form x→λx, t→λ2t.
*** This is a limit in which the space and time scales for the phenomenological description
becomes infinite and the macroscopic equations of motion become exact.
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a bounded spatial region Ω and coupled to an array of reservoirs at its boundary. We as-
sume that the scales of mass, distance and time whose units represent characteristic values
of these variables are macroscopic: thus, for example, the constants h̄ and kB of Planck and
Boltzmann are extremely small on these scales*. We take the hydrodynamical observables
to be the position and time dependent densities of energy, mass and momentum, and we
assume that their phenomenological evolution is given by the NS equations. We then con-
struct the model of the hydrodynamical fluctuations about a nonequilibrium steady state
on the basis of assumptions of the Onsager regression hypothesis, local equilibrium and
chaoticity. Although no hydrodynamical limit is available here, we exploit the fact that
Boltzmann’s constant is extremely small on the employed macroscopic scaling: specifically,
we pass to a limit in which kB→0 in our formulation of local equilibrium conditions via
Einstein’s relation, P = const.exp(S/kB), between the equilibrium probability distribution
of the macroscopic variables and the entropy function S. On this basis we obtain a gener-
alisation of Landau’s picture, wherein the hydrodynamical fluctuations execute a Gaussian
Markov process whose parameters are completely determined by macroscopic variables in-
volved in the phenomenological thermodynamic and hydrodynamic pictures of the system:
the underlying quantum mechanics is assumed to be buried in the forms of these variables
as functions of the control parameters. Futhermore, we show that the spatial correlations
of the hydrodynamical variables are generically of long range.

We present our treatment as follows. In Section 2 we formulate the thermodynamics
and hydrodynamics of the model in purely phenomenological terms. In Section 3 we
construct the stochastic process executed by the hydrodynamical fluctuations, subject to
the assumptions specified in the previous paragraph. In Section 4 we prove that the spatial
correlations of these fluctuations are generically of long range. We conclude in Section 5
with some brief comments on the basis of the model and on its presumed relationship to
its underlying quantum mechanics. There are two Appendices: the first is devoted to a
calculation leading to a key formula, the second to a proof of a lemma.

Note on distributions. As we shall represent the hydrodynamical fluctuations by dis-
tributions, in the sense of L. Schwartz [6], we now specify our notations for these.We denote
by D(Ω), DV (Ω) and DT (Ω) the Schwartz spaces of real valued, infinitely differentiable
scalar, vector and second order tensor valued functions on the bounded open region Ω
with support in that region. These spaces are reflexive and their duals are distributions,
which we denote by D′(Ω), D′

V (Ω) and D′
T (Ω), respectively. We define D̃(Ω) and Ď(Ω)

to be the Cartesian products D(Ω)×D(Ω)×DV (Ω) and DV (Ω)×DV (Ω)×DT (Ω), respec-
tively, and we denote their duals by D̃′(Ω) and Ď′(Ω), repectively. Further, if α and ψ
are elements of a D-class space and its dual, respectively, then ψ(α) will sometimes be
denoted by 〈ψ, α〉. We also employ angular brackets to denote the L2 inner product 〈α, α′〉
between pairs of elements α and α′ of the same D(Ω) space. Evidently, these two uses of
the angular brackets are mutually consistent since any D space is a subset of its dual. To
avoid ambiguity in the definition of scalar products of tensor valued functions, we define

* For example, if SI units and degrees Kelvin are appropriate, h̄ and kB are of the order
of 10−34 and 10−23, respectively.
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that of elements α (= {αij |i, j = (1, 2, . ., d)}) and α′ (= {α′
ij |i, j = (1, 2, . ., d)}) of DT (Ω)

to be

〈α, α′〉 :=

∫

Ω

dxαij(x)α
′
ji(x), (1.1)

where, as elsewhere in this article, the repeated index summation convention has been
employed.

2. The Phenomenological Picture

We assume that the fluid is a macroscopic system, Σ, that occupies a fixed bounded
open connected region Ω of a d-dimensional Euclidean space X , which constitutes the
laboratory reference frame. We assume that Σ is in contact at its boundary, ∂Ω,with an
array, R, of reservoirs, and that these determine the boundary conditions for the flow
of the system, in a way that we shall specify in Sec. 2.2. We further assume that its
dynamics is Galilei covariant. We employ a continuum model for Σ, which we formulate
on macroscopic scales wherein the magnitudes of its energy, mass and volume are of the
order of unity: for simplicity, we take its volume to be unity.

2.1. The Thermodynamic Potentials

We assume that, at equilibrium, Σ is at rest, that its densities, e0 and ρ0, of energy
and mass are spatially uniform and that its entropy density is a function, s0, of these
variables. Thus, as the volume of Ω is unity, e0, ρ0 and s0(e0, ρ0) are also the total energy,
mass and entropy, respectively, of Σ and satisfy the fundamental formula

ds0 = β(de0 − µdρ0), (2.1)

where β−1 is the temperature, in degrees Kelvin, say, not in units of kB, and µ is the
chemical potential, as related to the mass*. Thus

β =
(∂s0
∂e0

)

|ρ0

(2.2)

and

µ = −β−1
(∂s0
∂ρ0

)

|e0
. (2.3)

The pressure is then
p = β−1s0(e0, ρ0)− e0 + µρ0. (2.4)

and the heat function (enthalpy density) is

ε = e0 + p. (2.5)

* We relate the chemical potential to mass, by Eq. (2.3), rather than particle number,
since the continuum model does not involve any concept of the latter.
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Turning now to the nonequilibrium situation, the densities of energy, mass and mo-
mentum are generally non-uniform. We assume that they are locally conserved and we
denote their local densities by e, ρ and j, respectively. These are functions of position
x (∈Ω) and time t (∈R). The local drift velocity is defined to be

u = j/ρ. (2.6)

We denote the components of j and u, relative to some chosen coordinate system, by
(j1, . ., jd) and (u1, .., ud), respectively.

We define a local rest frame for the point x to be one that moves with velocity u(x)
relative to the laboratory frame. It therefore follows from Galilei covariance that the local
energy and mass densities relative to this frame are

e0 = e−
1

2
ρu2 = e−

j2

2ρ
and ρ0 = ρ. (2.7)

We assume that, even in a nonequilibrium state, the system is in local equilibrium in the
phenomenological sense* that its local enthalpy density ε is still given by Eq. (2.5) and
its entropy density at a point x is the same function, s0, of the energy and mass densities
relative to a local rest frame as that governing the equilibrium entropy density relative to
the laboratory frame. Thus, by the Galilei invariance of entropy [7 ], its density at the
point x, relative to the laboratory frame, is the function s of e(x), ρ(x) and j(x) given by
the formula

s(e, ρ, j) = s0(e0, ρ0), (2.8)

We now compactify the notation by denoting the triple (e, ρ, j) by φ. Thus, defining
ν := (d+2), φ is the ν-component variable (φ1, . ., φν) := (e, ρ, j1, . ., jd) and s is a function
of φ. Its derivative s′(φ)

(

:= (∂s/∂φ1, .., ∂s/∂φν)
)

is then the conjugate, θ (= (θ1, ., θν))
of φ and, by Eqs. (2.2), (2.3), (2.7) and (2.8), it is given explicitly by the formula

θ = s′(φ) = β(1,−µ+ u2/2,−u1, ..,−ud) (2.9)

or, more compactly,
θ = s′(φ) = β(1,−µ+ u2/2,−u). (2.9a)

The thermodynamic conjugate, π, of s is the function of θ defined by the formula

π(θ) = supφ
(

s(φ)− θ.φ
)

. (2.10)

We assume that all parts of this system are in a single thermodynamical phase at all times
and consequently that the function s′ is invertible and the supremum on the r.h.s. of Eq.
(2.10) is attained when φ = [s′]−1(θ). Hence

π(θ) = s(φ)− θ.φ,with s′(φ) = θ, (2.11)

* A further, macrostatistical kind of local equilibrium will be assumed in Section 3.3
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which, together with Eqs. (2.2)-(2.4), (2.8) and (2.9a), implies that

π(θ) = βp. (2.12)

Furthermore, it follows from Eq. (2.11) that

π′(θ) = −φ. (2.13)

Consequently, the Hessians s′′(φ)
(

=
(

[∂2s/∂φj∂φk]
))

and π′′(θ) are related by the equa-
tions

π′′(θ)s′′(φ) = s′′(φ)π′′(θ) = −I,

i.e.
π′′(θ) = −s′′(φ)−1. (2.14)

2.2. The Navier-Stokes Equations.

These hydrodynamical equations comprise local conservation laws for the energy, mass
and momentum, together with constitutive equations for the associated fluxes. The local
conservation laws are

∂e

∂t
+∇.q = 0;

∂ρ

∂t
+∇.j = 0; and

∂j

∂t
+∇.τ = 0, (2.15)

where q is the energy current, τ is the stress tensor [τkl] and (∇.τ)k := ∂τkl/∂xl. The
constitutive equations are then [3]

q =
(

ε+
1

2
ρu2

)

u− σ.u+ κ∇β, (2.16)

τ = pI + ρuu− σ (2.17)

and
σ = γ1

(

Du− 2d−1(∇.u)I
)

+ γ2(∇.u)I, (2.18)

where

(Du)kl =
∂uk
∂xl

+
∂ul
∂xk

, (2.19)

uu is the dyadic whose kl component is ukul and κ, γ1 and γ2 are positive, scalar valued
functions of β and µ that represent the thermal conductivity, the bulk viscosity and the
shear viscosity, respectively.

Thus, in view of the one-to-one correspondence between the variables (e, ρ, j) and
(β, µ, u), the combination of the conservation laws (2.15) and the constitutive equations
(2.16)-(2.18) describe an autonomous evolution of the hydrodynamical variables. Further,
as remarked at the beginning of Section 2, the boundary conditions are determined by the
reservoirs with which the system is in contact. Specifically, we assume that the contact
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is restricted to the surface, ∂Ω, of Ω and the boundary conditions are taken to be the
following ones.

(a) u = 0 on ∂Ω.

(b) At any point of ∂Ω that is in contact with a reservoir, the values of the temperature
and chemical potential of Σ are just those of the reservoir.

(c) Any part of ∂Ω not in contact with a reservoir is insulated and the normal part of ∇θ
is zero there.

We now compactify the hydrodynamical equations by expressing them in terms of
the triples φ := (e, ρ, j) and χ := (q, j, τ), the latter of which we shall term the flux.
Inserting subscripts t to indicate time dependence of the hydrodynamical variables, the
local conservation laws (2.15) may be expressed as the single equation

∂φt
∂t

+∇.χt = 0, (2.20)

and Eqs. (2.16)-(2.18) comprise a constitutive equation for χt of the form

χt(x) = G(φt : x). (2.21)

By Eqs. (2.20) and (2.21), φt evolves according to the autonomous equation of motion

∂φt(x)

∂t
= F(φt; x), (2.22)

where
F(φt; x) := −∇.G(φt; x). (2.23)

We assume that the equation of motion (2.22) has a unique stationary solution, subject to
the prevailing boundary conditions, described above. We denote this solution by φ(x) =
(e(x), ρ(x), j(x) and denote the corresponding steady state value of θ(x) by θ(x).

The Perturbed flow. We assume that the stationary flow is stable under ‘small’ pertur-
bations δφt(x) =

(

δet(x), δρt(x), δjt(x)
)

of φ(x), that preserve the boundary conditions.
The resultant linearised equation of motion is then

∂

∂t
δφt(x) = (Lδφt)(x) :=

∂

∂λ
F
(

φ+ λδφt; x
)

|λ=0
. (2.24)

Thus, by Eqs. (2.23) and (2.24),

Lδφt = −∇.Kδφt, (2.25)

where

(Kδφt)(x) =
∂

∂λ
G
(

φ+ λδφt; x
)

|λ=0
. (2.26)
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Further, by Eqs. (2.21) and (2.26), the increment δχt in χt is given by the formula

δχt(x) = Kδφt(x). (2.27)

In anticipation of the demands of the macrostatistical picture of the system, formu-
lated in the next Section, we assume that δφt is a distribution, in the sense of L. Schwartz
[6]. Thus, since δφt = (δet, δρt, δjt), where the first two components are scalar fields and
the third is a vector field, we assume that δφt is an element of the space D̃′(Ω), defined at
the end of Section 1. Thus, employing the notations introduced there, it follows from the
definition of δφt that, for F = (f, g, h), with f, g∈D(Ω) and h∈DV (Ω),

δφt(F ) = δet(f) + δρt(g) + δjt(h), (2.28)

where the three terms on the r.h.s. are the integrals of δet, δρt and δjt against f, g and h,
respectively.

We now assume that the linear operator L, defined in Eq. (2.24), is the generator of
a one parameter semigroup T := {Tt|t∈R+} of linear transformations of D̃′(Ω). Hence, by
Eq. (2.24),

δφt = Ttδφ0 ∀ t∈R+, (2.29)

from which it follows that

δφt(F ) = δφ
(

T ⋆
t F ) ∀ F∈D̃(Ω). t∈R+, (2.30)

where T ⋆ := {T ⋆
t |t∈R+} is the dual of the semigroup T : its generator, L⋆, is the dual

of L. We assume the dissipativity condition that, for all perturbations δφ, Ttδφ tends to
zero, in the D̃′(Ω) topology, as t→∞. As the space D̃(Ω) is reflexive, this is equivalent to
the assumption that

D̃(Ω) : limt→∞T
⋆
t F = 0 ∀ F∈D̃(Ω). (2.31)

Re-expression of NS in terms of θ. Since the constitutive equations (2.16)-(2.19)
relate the heat and mass currents, as well as the stress tensor, directly to θ, it is sometimes
convenient to express the r.h.s.’s of Eqs. (2.22)-(2.24) in terms of this variable rather than
φ. Thus we rewrite Eq. (2.22) as

∂φt
∂t

= −∇.Ψ(θt; x), (2.32)

where Ψ(θt; x) = F(φt; x). Eq. (2.24) for the perturbed flow then becomes

∂

∂t
δφt = Λδθt := −

∂

∂λ
∇.Ψ(θ + λδθt; x)|λ=0. (2.33)

Further, by Eq. (2.13) and the equivalence of Eqs. (2.24) and (2.33),

Λδθ = Lδφ = −Lπ′′(θ)δθ
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for all perturbations δθ of θ and hence

Λ = −Lπ′′(θ). (2.34)

It follows immediately from this equation and the symmetry of π(θ)′′ that the dual, Λ⋆,
of Λ is related to that, L⋆, of L by the formula

Λ⋆ = −π′′(θ)L⋆. (2.35)

In particular, as we shall show in Appendix A, it follows from our definitions that the
equilibrium form, Λ⋆

eq, of Λ
⋆ is given by the equation

Λ⋆
eq(f, g, h) =

−
(

κ∆f − β−1ε∇.h, −β−1ρ∇.h,

−β−1ε∇f − β−1ρ∇g + β−1γ1∇.(Dh− 2d−1(∇.h)I) + β−1γ2∇(∇.h)
)

∀ (f, g, h)∈D̃)Ω). (2.36)

3. The Stochastic Fluctuation Process

According to elementary statistical mechanics, the thermodynamic and hydrodynamic
variables undergo fluctuations, which are not taken into account in the phenomenological
picture of the previous Section. We now seek to provide a general description of the
hydrodynamical fluctuations about nonequilibrium steady states by treating the fields
φ = (e, ρ, j) and χ = (q, j, τ) as expectation values of random fields φ̂ = (ê, ρ̂, ĵ) and
χ̂ = (q̂, ĵ, τ̂), respectively, where the tensor τ̂ , like the phenomenological τ , is symmetric*.
We assume that these fields satisfy the local conservation law given by the canonical
analogue of Eq. (2.20), namely

∂φ̂t
∂t

+∇.χ̂t = 0. (3.1)

The differences between the random fields φ̂t and χ̂t and their classical expectation values
then represent the hydrodynamical fluctuations. In a standard way, we normalise them by
a factor N 1/2, where N is chosen to be the ratio of characteristic values of corresponding
macroscopic and microscopic quantities. In the present situation, where we are formulat-
ing the model on a macroscopic scale, a natural choice for N is the reciprocal, k−1

B , of
Boltzmann’s constant, which arises in Einstein’s formula, P = const.exp(S/kB), relating
the equilibrium probability distribution of the macroscopic variables to the entropy S.
Thus, we define the fields representing the fluctuations of φt and χt about their steady
state values to be

ξt(x) = k
−1/2
B

(

φ̂t(x)− φ
)

(3.2)

* This symmetry property may be regarded vas basic, as it prevails in standard micr-
roscopic pictures of stress tensors.
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and

ηt(x) = k
1/2
B

(

χ̂t(x)− χ
)

, (3.3)

respectively. Hence, defining

ζt,s :=

∫ t

s

duηu, (3.4)

it follows from Eqs. (3.1)-(3.4) that

ξt − ξs = −∇.ζt,s ∀ t, s∈R. (3.5)

In accordance with the general requirements of field theories [8], we assume that these
fields are distributions, in the sense of L. Schwartz [6]. Specifically, in the notation of the
last Note of Section 1, we assume that ξt∈D̃

′(Ω) and ηt∈Ď
′(Ω). We denote the smeared

fields obtained by integrating ξt and ζt,s against test functions F
(

∈D̃(Ω)
)

and G
(

∈Ď(Ω)
)

by ξt(F ) and ηt(G), respectively;

We aim to derive the stochastic process executed by the fluctuation fields ξ and ζ
from the assumptions of

(a) a generalised version of Onsager’s regression hypothesis,

(b) a macrostatistical local equilibrium hypothesis and

(c) a chaoticty hypothesis for the random currents and stresses.

Further, as the continuum model harbours only macroscopic variables, we take any coun-
terparts to microscopic correlation lengths and memory times of this model to be zero.

3.1. Regression Hypothesis.

The regression hypothesis signifies that the fluctuations of the hydrodynamical ob-
servables evolve, from a given starting point, according to the same dynamical law that
governs the evolution of small perturbations of those variables from their steady state
values. Thus, noting the formula (2.30) for the latter evolution and denoting conditional
expectations of the stochastic variables with respect to the value of the field ξ at time t0
by E(.|ξt0), we assume that

E(ξt(F )|ξt0) = ξt0
(

(T ⋆(t− t0)F
)

∀ F∈D̃(Ω), t0, t(≥t0)∈R. (3.6)

Since the process ξt is stationary, an immediate consequence of this formula is that

E
(

ξt(F )ξt′(F
′)
)

= E
(

ξ[T ⋆(t− t′)F ]ξ(F ′)
)

∀ F, F ′∈D̃(Ω), t, t′(≤t)∈R. (3.7)

We now note that, by Eq. (2.27), the increment in the integrated phenomenologi-

cal flux,
∫ t

s
duχu, due to a perturbation δφ of φ is

∫ t

s
duKδφu. Correspondingly, as the

10



phenomenological dynamics of the model is secular, we designate the secular part of the
integrated fluctuation flux, ζt,s, to be

ζsect,s :=

∫ t

s

duKξu. (3.8)

We then define the remaining part, ζ̃t,s, of ζt,s to be the stochastic part of the integrated
flux. Thus

ζ̃t,s := ζt,s −

∫ t

s

duKξu. (3.9)

We shall presently show, in Prop. 3.1, that this field does indeed enjoy strong, Wiener-like,
stochastic properties.

By Eqs. (2.25), (3.5) and (3.9),

ξt(F )− ξs(F ) =

∫ t

s

duξu(L
⋆F ) + wt,s(F ) ∀ s, t∈R, F∈D̃(Ω), (3.10)

i.e.

ξt − ξs =

∫ t

s

duLξu + wt,s, (3.10a)

where
wt,s(F ) = ζ̃t,s(∇F ). (3.11)

The following Proposition, which was proved in [5, Prop. 5.1], establishes that w simulates
a Wiener process, at least as far as its two-point function is concerned; and hence that Eq.
(3.10a) is an integrated Langevin equation.

Proposition 3.1. Under the assumption of the regression hypothesis, w has the
following properties.

(i)
E
(

wt,s(F )ξu(F
′)
)

= 0 ∀ t≥s≥u, F, F ′∈D̃(Ω). (3.12)

(ii)
E
(

wt,s(F )wt′,s′(F
′)
)

= E
(

ξ(L⋆F )ξ(F ′) + ξ(F )ξ(L⋆F ′)
)

|[s, t]∩[s′, t′]|

∀ s, t(≥s), s′, t′(≥s) ∈R, F, F ′∈D̃(Ω), (3.13)

where |I| denotes the length of an interval I in R.

3.2. The Chaoticity Hypothesis.

We now strengthen Prop. 3.1 by the assumption that the stochastic part, ζ̃ of the
integrated fluctuation flux is chaotic in the sense that its space-time correlations are of
microscopic range, idealised here as zero range on our macroscopic scale. This assumption
is designed to represent Boltzmann’s molecular chaos hypothesis, as transferred to the
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stochastic flux. Here we take it to signify that the field ζ̃ is Gaussian, due to statistical
independence of its values in disjoint space-time regions. Thus, our chaoticity hypothesis
comprises the following conditions.

(C.1) The process ζ̃ is Gaussian, and

(C.2) E
(

ζ̃s,t(G)ζ̃s′,t′(G
′)
)

vanishes if the intersection of either the intervals [s, t] and [s′, t′]
or of the supports of G and G′ is empty.

Further, we supplement these conditions by the following continuity assumption.

C. The correlation function of (C.2) is continuous in its time variables.

The following Proposition was proved in [5, Prop. 5.2].

Proposition 3.2. Under the assumption of (C.2) and C, the two=point function of
ζ̃ takes the following form.

E
(

ζ̃t,s(G)ζ̃s′,t′(G
′)
)

= Γ(G,G′)|[s, t]∩[s′, t′]| ∀ G,G′∈D̃′(Ω), s, t, s′, t′∈R, (3.14)

where Γ is a continuous bilinear form on Ď(Ω)⊗Ď(Ω), whose support lies in the region
{(x, x′)∈Ω2|x = x′}.

We shall derive the explicit form of Γ from the local equilibrium hypothesis in Section
3.3. The following Corollary to Prop. 3.2 is a simple consequence of Eq. (3.13), assumption
(C.1) and Prop. (3.2).

Corollary 3.3. Under the above assumptions, the process w is Gaussian with zero
mean and its two-point function takes the form

E
(

wt,s(F )wt′,s′(F
′)
)

= Γ(∇F,∇F ′)|[s, t]∩[s′, t′]| ∀ F, F ′∈D̃(Ω), t, s, t′, s′∈R. (3.15)

The following Proposition was shown in [5, Prop. 5.5] to ensue from the Langevin
equation (3.10a), Prop. 3.1 (i) and Cor. 3.3.

Proposition 3.4. Under the above assumptions, ξ is a Gaussian Markov process,
and the fields wt,s and ξu are statistically independent of one another if s and t are greater
than or equal to u.

3.3 Equilibrium and Local Equilibrium Conditions.

Equilibrium Statistics of ξ. We base our formulation of these statistics on the canonical
version of Einstein’s formula for the probability distribution, P of the hydrodynamical
variables. This is given formally by the equation

Peq = const.exp
(

k−1
B

∫

Ω

dx[s(φ̂(x)− θ.φ̂(x)]
)

,
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i.e., by Eq. (3,2),

Peq = const.exp
(

k−1
B

∫

Ω

dx[s(φ+ k
1/2
B ξ(x))− θ.(φ+ k

1/2
B ξ(x)]

)

. (3.16)

Since the integrand of this formula is maximised at ξ = 0, its ratio to kB reduces to
(

ξ(x).s′′(θ)ξ(x)
)

/2 in the limit kB→0, which we term the Botzmann limit: here the dot
denotes the Rν scalar product. Thus, operating henceforth in this limit, the equilibrium
characteristic function for the fluctuation field ξ is given formally by

Eeq

(

exp[iξ(F )]
)

= const.

∫

Dξ(x)exp
[∫

Ω
dx

(

ξ(x).s′′(φ)ξ(x)/2 + iξ(x).F (x)
)]

∫

Dξ(x)exp
[∫

Ω
dx

(

ξ(x).s′′(φ)ξ(x)
)

/2
)] ∀ F∈D̃(Ω),

(3.17)
where Dξ denotes functional integration w.r.t. the field ξ. This formula may properly be
defined by resolving Ω into a set of cells, ∆J , denoting the values of ξ and F at the centre
of ∆J by ξJ and FJ , respectively, and then expressing Eq. (3.17) as

Eeq

(

exp[iξ(F )]
)

= lim∆ΠJ

[

∫

Rν
dξJexp

(

ξJ .s
′′(θ)ξJ/2 + iξJ .FJ

)

∫

Rν
dξJexp

(

ξJ .s′′(θ)ξJ/2
)

]

, (3.17a)

where lim∆ is the limit in which the cells shrink to points. It now follows easily from
Eqs.(2.14) and (3.17a) that, in the notation specified at the end of Section 1,

Eeq

(

exp[iξ(F )]
)

= exp
(

−
1

2
〈F, π′′(θ)F 〉

)

∀ F∈D̃(Ω). (3.18)

Thus, at equilibrium, ξ is a Gaussian random field, with zero mean and two- point function
given by the formula

Eeq

(

ξ(F ))2
)

=
1

2
〈F, π′′(θ)F 〉 ∀ F∈D̃(Ω),

or equivalently, by polarisation,

Eeq〈ξ(F )ξ(F
′)
)

= 〈F, π′′(θ)F ′)〉 ∀ F, F ′∈D̃(Ω). (3.19)

Equilibrium two-point function for ζ̃. By Eqs. (2.34), (3.11), (3.13) and (3.19),

Eeq

(

ζ̃t,s(∇F )ζ̃t′,s′(F
′)
)

=
[

〈Λ⋆
eqF, F

′〉+ 〈F,Λ⋆
eqF

′〉
]

|[s, t]∩[s′, t′]|

∀ F, F ′∈D̃(Ω), s, t, s′, t′∈R. (3.20)

Hence, for F = (f, g, h) and F ′ = (f ′, g′, h′), it follows from Eqs. (2.36) and (3.20) that

Eeq

(

ζ̃t,s(∇F )ζ̃t′,s′(∇F
′)
)

=
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[

2κ〈∇f,∇f ′〉+ β−1γ1
(

〈Dh,Dh〉 − 2d−1〈∇.h,∇.h′〉
)

+ 2β−1γ2〈∇.h,∇.h
′〉
]

×

|[s, t]∩[s′, t′]|. (3.21)

We now express ζ̃t,s in the form

ζ̃t,s = (ζ̃
(1)
t,s , ζ̃

(2)
t,s , ζ̃

(3)
t,s ), (3.22)

where the components are the time integrals of the stochastic fluctuations of q, j, τ and
therefore lie in D′

V (Ω), D
′
V (Ω) and D′

T (Ω), respectively. Thus,

ζ̃t,s(∇F ) = ζ̃
(1)
t,s (∇f) + ζ̃

(2)
t,s (∇g) + ζ̃

(3)
t,s (∇h)

and similarly

ζ̃t,s(∇F
′) = ζ̃

(1)
t,s (∇f

′) + ζ̃
(2)
t,s (∇g

′) + ζ̃
(3)
t,s (∇h

′).

The substitution of these last two equations in Eq. (3.21) yields the formulae

Eeq

(

ζ̃
(1)
t,s (∇f)ζ̃

(1)
t′,s′(∇f

′)
)

= 2κ〈∇f,∇f ′〉|[s, t]∩[s′, t′]|, (3.23)

and

Eeq

(

ζ̃
(3)
t,s (∇h)ζ̃

(3)
t,s (∇h

′)
)

=
[

2β−1γ1
(

〈Dh,Dh′〉 − 2d−1〈∇.h,∇.h′〉
)

+ β−1γ2〈∇.h,∇.h
′)〉

]

|[s, t]∩[s′, t′]|. (3.24)

and implies that all other two-point functions for the components of ζ̃t,s(∇F ) are zero

The following lemma for the generalised functions ζ̃
(1)
t,s and ζ̃

(3)
t,s on Ω corresponding

to the distributions denoted by the same symbols will proved in Appendix B.

Lemma 3.5. Under the above assumptions, supplemented by the condition that the
equilibrium two-point function of ζ̃ is locally translationally and rotationally invariant, and
indicating the components of X-vectors by subscripts i, j, l,m

Eeq

(

ζ̃
(1)
t,s;i(x)ζ̃

(1)
t′,s′;j(x

′)
)

= 2κδ(x− x′)|[s, t]∩[s′, t′|, (3.25)

Eeq

(

ζ̃
(3)
t,s;il(x)ζ̃

(3)
t′,s′;jm(x′)

)

=

2β−1
(

γ1(δijδlm + δimδjm − 2d−1δilδjmδjl) + γ2δilδjm
)

δ(x− x′)|[s, t]∩[s′, t′]| (3.26)

and all other two-point functions of the components of ζ̃t,s are zero.This result concurs
with that of Landau [3, Eqs. (132.11-13)].

In order to re-express the two-point functions of ζ̃ in terms of smeared fields, we denote
elements G and G′ of Ď(Ω) by triples (a, b, c) and (a′, b′, c′), respectively, where the first
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two components of both G and G′ lie in DV (Ω) and the third lie in DT (Ω). We then define
the elements c(1), c′(1) of DT (Ω) and c

(2), c′(2) of D(Ω) by the formulae

c
(1)
ij := cij + cji; c

′(1)
ij := c′ij + c′ji (3.27)

and
c(2) := cjj ; c

′(2) = c′jj . (3.28)

and infer from Eqs. (3.26)-(3.28) that

Eeq

(

ζ̃t,s(G)ζ̃t′,s′(G
′) =

[

2κ〈a, a′〉+

β−1γ1〈c
(1), c′(1)〉+ 2β−1(γ2 − 2d−1γ1)〈c

(2), c′(2)〉
]

|[s, t]∩[s′, t′]|. (3.29)

This formula and Eq. (3.19) constitute our equilibrium conditions. In order to obtain
their local properties, we consider their forms when their test functions are concentrated
around points of Ω. Thus, for x0∈Ω and ǫ∈R+, we define the transformations F→Fx0,ǫ

and G→Gx0,ǫ of D̃(Ω) and Ď(Ω), respectively, by the equations

Fx0,ǫ = ǫ−d/2F
(

ǫ−1(x− x0)
)

(3.30)

and
Gx0,ǫ = ǫ−d/2G

(

ǫ−1(x− x0)
)

(3.31).

We then remark that Eqs. (3.19) and (3.29) are invariant under these transformations and
therefore that they enjoy the local (punctual!) property that

limǫ↓0Eeq

(

ξ(Fx0,ǫ)ξ(F
′
x0,ǫ

)
)

= 〈F, π′′(θ)F ′〉 ∀ x0∈Ω, F, F
′∈D̃(Ω). (3.32)

and
limǫ↓0Eeq

(

ζ̃t,s(Gx0,ǫ)ζ̃t′,s′(G
′
x0,ǫ

)
)

= 2κ〈a, a′〉+

β−1γ1〈c
(1), c′(1)〉+ 2β−1(γ2 − 2d−1γ1)〈c

(2), c′(2)〉]|[s, t]∩[s′, t′]|. (3.33)

Local Equilibrium Conditions. We now assume that, even in a nonequilibrium steady
state, the two point functions of ξ and ζ̃ enjoy the same local properties as at equilibrium.
Thus, bearing in mind that β, θ, κ, γ1 and γ2, are generally position dependent in the
nonequilibrium situation, we take the local equilibrium conditions to be the following ones.

limǫ↓0E
(

ξ(Fx0,ǫ)ξ(F
′
x0,ǫ)

)

= 〈F, π′′(θ(x0))F
′〉 ∀ x0∈Ω, F, F

′∈D̃(Ω). (3.34)

and
limǫ↓0E

(

ζ̃t,s(Gx0,ǫ)ζ̃t′,s′(G
′
x0,ǫ

)
)

=
[

2κ(x0)〈a, a
′〉+

β(x0)
−1γ1(x0)〈c

(1), c′(1)〉+2β(x0)
−1(γ2(x0)−2d−1γ1(x0))〈c

(2), c′(2)〉
]

|[s, t]∩[s′, t′]|. (3.35)
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The following Proposition, whose proof ensues from a trivial modification of that of
[5, Prop. 5.3], provides an explicit formula for the bilinear form Γ, which governs the form
of the two-point function for ζ̃ according to Eq. (3.14).

Proposition 3.6. Under the assumptions of Prop. 3.2, together with the local equi-
librium condition (3.35), Γ is given by the following formula.

Γ(G,G′) = 2〈a, κa′〉+ 〈c(1), β−1γ1c
′(1)〉+ 2〈c(2), β−1(γ2 − 2d−1γ1)c

′(2)〉, (3.36)

where a, a′, c(1), c′(1) c(2), c′(2) are related to G and G′ according to the above specifications
and now β1, κ, γ1 are functions of position, through their dependence on β and µ, that
act multiplicatively on Ď(Ω).

3.4.The Macrostatistical Model.

The stationary processes ξ and w, which are connected by the integrated Langevin
equation (3.10a), comprise our macrostatistical model. In view of Cor. (3.3) and Prop.
(3.4), these processes are both Gaussian, and the two-point function of w is given by Eqs.
(3.15) and (3.36). To complete the formulation of the model, it remains for us to obtain
the two-point function of the process ξ.

To this end, we infer from Eq. (3.10a) that, since L is the generator of the semigroup
T ,

ξt = Tt−t0ξt0 +

∫ t

t0

Tt−sdws,t0 ∀ t≥t0

and hence that

ξt(F ) = ξt0(T
⋆
t−t0

F ) +

∫ t

t0

dws,t0(T
⋆
t−sF ) ∀ F∈D̃(Ω), t, t0(≤t)∈R. (3.37)

In view of the stationarity of the ξ-process, it follows from Eq. (3.37) and Prop. 3.4 that
the static two-point function for the field ξ is

W (F, F ′) := E
(

ξ(F )ξ(F ′
)

= E
(

ξ(T ⋆
t−t0

F )ξ(T ⋆
t−t0

F ′
)

+

∫ t

t0

dsΓ(∇T ⋆
s F,∇T

⋆
s F

′) ∀ F, F ′∈D̃(Ω), t, t0(≤t)∈R (3.38)

On invoking the dissipative condition (2.31) and passing to the limiting form of Eq. (3.38)
as t0→−∞, we obtain the formula

W (F, F ′) =

∫ ∞

0

dsΓ(∇T ⋆
s F,∇T

⋆
s F

′) ∀ F, F ′∈D̃(Ω). (3.39)

We note that, as L⋆ is the generator of the semigroup T ⋆, it follows from this formula and
Eq. (3.38) that

W (L⋆F, F ′) +W (F,L⋆F ′) + Γ(∇F,∇F ′) = 0. (3.40)
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Moreover, in view of the stationarity of the process ξ, it follows from Eqs. (3.38) and
(3.39) that the two-point space time correlation function is given by the formula

E
(

ξt(F )ξt′(F
′
)

=

∫ ∞

0

dsΓ(∇T ⋆
t−t′+sF,∇T

⋆
s F

′) ∀ F, F ′∈D̃(Ω), t, t′(≤t)∈R. (3.41)

As the process ξ is Gaussian, this completes our formulation of the model.

4. Long Range Correlations.

We term the space correlations of ξ to be of short range, which we idealise as zero
range in our macroscopic scaling, if the support of its static two-point function W lies in
the region {(x, x′)∈Ω2|x = x′}. Then, by direct analogy with the proof of [5, Cor. 5.4], it
follows from Schwartz’s point and compact support theorems [6, Ths. 35 and 26] that if
the correlations are of short range then W takes the form

W (F, F ′) = 〈F, π′′(θ)F ′〉 ∀ F, F ′∈D̃(Ω). (4.1)

On the other hand, we term the static space correlations of ξ to be of long range if this
condition is violated. Thus, in the present context, ‘long’ is taken to mean non-zero on
the employed macroscopic scale.

Our aim now is to establish that these correlations are generically of long range, i.e.
that it is only in exceptional circumstances that the condition (4.1) is valid. To this end,
we note that, in view of Eqs. (2.35) and (3.40), this condition may be expresses in the
form

〈F,Λ⋆F ′〉+ 〈F ′,Λ⋆F 〉 = Γ(∇F,∇F ′) (4.2)

. Thus, the condition for long range correlations is that of the violation of Eq. (4.2) for
some F and F ′ in D̃(Ω).

Proposition 4.1. A sufficient condition for the process ξ to have long range space
correlations is that one of the following ones is violated.

u = 0 (4.3)

and
∇.

(

(β−1µκµ − κβ)∇β
)

= 0, (4.4)

where κβ and κµ are the derivatives of κ w.r.t. β and µ, respectively. Since these conditions
can be satisfied only by certain particular forms of the space-dependent variable β, µ and
u, this signifies that the space correlations of ξ are generically of long range.

Remark. It will be seen that the proof of this Proposition is based on the choice
F = F ′ = (f, 0, 0) for the forms of the test functions, with the result that long range
correlations prevail if either the condition (4.3) for the drift velocity or (4.4) for the thermal
conductivity is violated. We remark here that further sufficient conditions for long range
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correlations, expressed in terms of the bulk and shear viscosities, may similarly be derived
from other choices of the forms of F and F ′.

Proof of Prop. 4.1. It suffices to show that the condition (4.2) for zero range spatial
correlations implies Eqs. (4.3) and (4.4). To this end, we choose both F and F ′ to be
(f, 0, 0) and infer from Eq. (3.36) that

Γ(∇F,∇F ) = 2

∫

Ω

dxκ(∇f)2. (4.5)

On the other hand, by Eqs. (2.32) and (2.33),

〈F,Λ⋆F ′〉 = 〈ΛF, F ′〉 =
∂

∂λ
〈Ψ(θ + λF ),∇F ′〉|λ=0 ∀ F, F ′∈D̃(Ω). (4.6)

In order to treat this formula for the case where F = F ′ = (f, 0, 0), we define

θλf (x) := θ + λ
(

f(x), 0, 0
)

(4.7)

On asserting the θ-dependence of the energy current q by referring to q(x) as q(θ; x)−,
defining

qλf (x) := q(θλf ; x) (4.8)

and noting that, by identification of Eq. (2.15) with Eq. (2.32), Ψ := (q, j, τ), we infer
from Eq. (4.6) that

〈F,Λ⋆F 〉 =
[ ∂

∂λ

∫

Ω

dx∇f(x).qλf (x)
]

|λ=0
. (4.9)

In order to determine the explicit form of qλf in terms of the position dependent variables
β, µ and u, we define their canonical counterparts βλf , µλf and uλf , respectively, that
correspond to θλf by the version of Eq. (2.9) obtained by imposing the subscript λf to
each of its terms. Thus

θλf = βλf
(

1, −µλf +
1

2
u2λf , −uλf

)

. (4.10)

It then follows from Eqs. (2.9) and (4.10) that

βλf = β + λf, µλf = (1 + λβ−1f)−1µ− λβf(1 + λβ−1f)−2u2 and

uλf = (1 + λβ−1f)−1u. (4.11)

Further, since the energy current, q, defined by Eq. (2.16), is a functional of θ, we express
qλf as the corresponding functional of θλf , i.e. of βλf , µλf and uλf . Thus,

qλf = ε(βλf , µλf )uλf +
1

2
ρ(βλf , µλf )u

2
λfuλ−

γ1(βλf , µλf )
(

Duλf − 2d−1∇.uλf I
)

.uλf − γ2(βλf , µλf )(∇.uλf )uλf + κ(βλf , µλf )∇βλf .
(4.12)
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Since, by Eq. (4.11),

(∂βλf
∂λ

)

|λ=0
= f ;

(∂µλf

∂λ

)

|λ=0
= −β−1(µ+ u2)f ; and

(∂uλf
∂λ

)

|λ0
= −β−1uf, (4.13)

it follows from Eqs. (4.11)-(4.13) that

(∂qλf
∂λ

)

|λ=0
= κ∇f + β−1γ1

(

u∇f + (∇f)u
)

− 2d−1∇.(fu)I
)

.u+ (γ2(u.∇f)u+

(κβ − β−1µκµ)(∇β)f + C(β, µ; u)f, (4.14)

where κβ and κµ are the derivatives of κ w.r.t. β and µ, respectively, and C is a vector
valued functional of β, µ and u that vanishes when u = 0.

It follows now from Eqs. (4.5) and (4.14) that the condition (4.2) for short range
correlations reduces to the formula

∫

Ω

dxβ−1
[

γ1
(

(∇f)2u2 + (1− 2d−1)(u.∇f)2
)

+ γ2(u.∇f)
2
)]

+

∫

Ω

dx
1

2
f2∇.

(

(β−1µκµ − κβ)∇β − C
)

= 0 ∀ f∈D(Ω). (4.15)

In particular, if we replace f here by fx0,ǫ where x0∈Ω, ǫ∈R+ and

fx0,ǫ = ǫ(1−d)/2f
(

ǫ−1(x− x0)
)

, (4.16)

then the passage to the limit ǫ→0 annihilates the second integral and yields the equation

∫

Ω

dxβ(x0)
−1

[

γ1(x0)
(

(∇f(x))2u(x0)
2 + (1− 2d−1)(u(x0).∇f(x))

2
)

+

γ2(x0)
(

u(x0).∇f(x)
)2]

= 0 ∀ x0∈Ω, f∈D(Ω). (4.17)

For d≥2, this implies that the velocity field u vanishes and consequently that the condition
(4.15) reduces to that of the vanishing of the second integral of that equation, with C = 0;
and for d = 1, γ1 may be equated to zero in the NS equation (2.18) and therefore the
same conclusion is valid. Thus, the short range correlation condition implies Eqs. (4.3)
and (4.4), and therefore the violation of either of those formulae implies that the ξ process
has long range spatial correlations

5. Concluding Remarks

We have shown that the stochastic process executed by the hydrodynamical fluctua-
tions of the continuum model about a nonequilibrium steady state is completely determined
by the conditions of Onsagerian regression, local stability and chaoticity. This process, fully
specified in Section 3.4, constitutes a mathematical generalisation of Landau’s picture of
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hydrodynamical fluctuations. In particular, by Prop. 4.1, the process generically carries
long range spatial correlations. This result appears to be new within the framework of the
Navier-Stokes equations, though it has been previously suggested on rather general heuris-
tic grounds [9, 10] and proved for a certain classical stochastic (non-Hamiltonian) model
[11]-[13]. Most notably, it marks an important difference between equilibrium and nonequi-
librium properties of hydrodynamical fluctuations, as the spatial correlations of the former
are of short (microscopic) range, except at critical points. We remark here that there is no
corresponding qualitative difference between the time correlations of the hydrodynamical
fluctuations about equilibrium and nonequilibrium, since the regression hypothesis implies
that the time scales of both are the macroscopic ones of the Navier-Stokes flow.

The treatment of hydrodynamical fluctuations in this article has been based on a
classical macroscopic continuum model, Σ, of a fluid. Presumably this should arise from
an underlying quantum mechanics, at the microscopic level, in the following way. One
assumes that the quantum system, Σqu, consists of N particles of one species that is
confined to the region Ω and coupled at the boundary ∂Ω to an array, R, of reservoirs
whose temperatures and chemical potentials are just those of the macrostatistical model.
Assuming that these control variables are not the same for all the reservoirs, the system
(Σqu+R) will evolve, under rather general conditions, to a nonequilibrium steady state ω
[14]. The hydrodynamical observables of Σqu may then be formulated along the lines of [4,

5] in terms of the natural counterparts φ̂qu and χ̂qu, of the random classical fields φ̂ and
χ̂ of the model Σ, though those quantum fields are now operator valued functions of the
positions and momenta of the particles of the system. We denote their evolutes at time t,
as governed by the dynamics of the composite (Σqu+R) by φ̂qu;t and χ̂qu;t, and we assume

that these are distributions of class D̃′(Ω) and Ď′(Ω) and that their expectation values for
the state ω are the classical steady state fields φ and χ, respectively, of Section 2. We
then define the quantum fluctuation fields ξqu;t and ζqu;t,s by the canonical analogues of
Eqs. (3.2) and (3.4) and denote the smeared fields obtained by integrating them against
test functions F (∈D̃(Ω)) and G (∈Ď(Ω)) by ξqu;t(F ) and ζqu;t,s(G), respectively. The
correlation functions given by the expectation values, for the state ω of the monomials in
the ξqu;t(F )’s and ζqu;t,s(G)’s then represent the quantum stochastic process [15] executed
by the hydrodynamical fluctuations. Further, under a condition of macroscopic classicality,
whereby the correlation functions are invariant under reordering of the constituent smeared
fields, this process is classical. Thus, under the assumption that this condition is fulfilled,
possibly up to corrections that are o(1) w.r.t. h̄, kB and microscopic relaxation times
and attenuation lengths, the fluctuation process simulates a classical one The further
assumptions of Onsagerian regression, local stability and chaoticity then lead precisely
to the classical macrostatistical one presented here. The ultimate test of the physical
validity of that model is that its correlation functions are those of the hydrodynamical
observables of Σqu, up to the above microscopic corrections

Appendix A: Derivation of the Formula (2.36)

We assume that, at equilibrium, u = 0 and β and µ are spatially uniform. The same
is therefore true of e, ρ, κ, γ1 and γ2, since these are functions of the latter two variables.
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Thus, by Eq. (2.9a),
θ = (β,−βµ, 0) (A.1)

and, as φ = (e, ρ, ρu), it follows from Eq. (2.33), together with the identification of the
NS equations (2.15)-(2.19) with Eq. (2.32), that the equilibrium form, Λeq, of Λ is given
by the formula

Λeqδ(β,−βµ,−βu) =
(

−ε∇.δu−κ∆δβ, −ρ∇.δu, −pβ∇δβ−pµ∇δµ+γ1∇.(Dδu−2d−1(∇.δu)I)+γ2∇(∇.δu)
)

,
(A.2)

where pβ and pµ are the derivatives of p w.r.t. β and µ, respectively. Since φ = (e, ρ, ρu),
it follows from Eqs. (2.5) and (2.10)-(2.12) that

pβ = −β−1(ε− ρµ) and pµ = ρ. (A.3)

Hence, by Eqs. (A.2) and (A.3),

Λeqδθ≡Λeq(δβ,−βδµ− µδβ,−βδu) =

(

−ε∇.δu− κ∆δβ, −ρ∇.δu, β−1(ε− µρ)∇δβ − ρ∇δµ+

γ1∇.(Dδu− 2d−1(∇.δu)I) + γ2∇(∇.δu)
)

. (A.4)

Equivalently, defining (δθ(1), δθ(2), δθ(3)) := δθ = (δβ, −βδµ− µδβ, βδu),

Λeqδθ = β−1
(

ε∇.δθ(3) − βκ∆δθ(1), ρ∇.δθ(2),

ε∇δθ(1) + ρ∇δθ(2) + γ1∇.(Dδθ
(3) − 2d−1∇.δθ(3)) + γ2∇(∇.δθ(3)

)

. (A.5)

Further, the dual, Λ⋆
eq, of Λeq is defined by the identity

(

δθ, Λ⋆
eqF

)

≡
(

Λeqδθ, F
)

∀ F∈D̃(Ω). (A.6),

The formula (2.36) follows immediately from Eqs. (A.5) and (A.6).

Appendix B. Proof of Lemma 3.5.

By the standard relationship between distributions and the corresponding generalised
functions,

ζ̃
(1)
t,s (∇f) = −

∫

Ω

dxf(x)
∂

∂xi
ζ̃
(1)
t,s;i(x) ∀ f∈D(Ω) (B.1)

and

ζ̃
(3)
t,s (∇h) = −

∫

Ω

dxhi(x)
∂

∂xj
ζ̃
(3)
t,s;i,j(x) ∀ h∈DT (Ω). (B.2)

On combining these formulae with Eqs. (2.19), (3.21) and (3.22), we see that

∫

Ω2

dxdx′f(x)f ′(x′)
∂2

∂xi∂x
′
j

Eeq

(

ζ̃
(1)
t,s;i(x)ζ̃t′,s′;j(x

′)
)

=
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2κ

∫

Ω2

dxdx′f(x)f ′(x′)
∂2

∂xi∂x′j
δ(x− x′)×

|[s, t]∩[s′, t′| ∀ f, f ′∈D(Ω) t, s, t′, s′∈R. (B.3)

and
∫

Ω2

dxdx′hi(x)hj(x
′)

∂2

∂xl∂x′m
Eeq

(

ζ̃
(3)
t,s;il(x)ζ̃

(3)
t′,s′;jm(x′)

)

=

2β−1

∫

Ω2

dxdx′hi(x)hj(x
′)

∂2

∂xl∂x′m

(

γ1(δijδlm + δimδjl − 2d−1δilδjm)+ γ2δilδjm
)

δ(x−x′)×

|[s, t]∩[s′, t′]| ∀ h, h′∈DV (Ω), t, s, t
′, s′∈R. (B.4)

Eqs. (B.3) and (B.4) signify that

∂2

∂xi∂x′j

[

Eeq

(

ζ̃
(1)
t,s;i(x)ζ̃t′,s′;j(x

′)
)

− 2κδ(xx′)|[s, t]∩[s′, t′|
]

= 0 (B.5)

and
∂2

∂xl∂x′m

[

Eeq

(

ζ̃
(3)
t,s;il(x)ζ̃

(3)
t′,s′;jm(x′)

)

−

2β−1
(

γ1(δijδlm + δimδjl − 2d−1δilδjm) + (γ2δilδjm
)

δ(x− x′)×

|[s, t]∩[s′, t′]|
]

= 0. (B.6)

We now invoke our assumptions that the tensor τ̂ , and hence ζ̃(3), is symmetric, that
the equilibrium two-point functions of ζ̃(1) and ζ̃(3) are translationally and rotationally
invariant and that they are of zero range. It then follows that these functions take the
following forms.

Eeq

(

ζ̃
(1)
t,s;i(x)ζ̃t′,s′;j(x

′)
)

= A(x− x′)δij (B.7)

and

Eeq

(

ζ̃
(3)
t,s;il(x)ζ̃

(3)
t′,s′;jm(x′)

)

= B(x− x′)(δijδlm + δimδlj) + C(x− x′)δilδjm, (B.8)

where A,B and C are generalised functions on Ω that depend on t, s, t′ and s′. It follows
from Eqs. (B.5) and (B.7) that

∆
[

A(x− x′)− 2κδ(x− x′)|[s, t]∩[s′, t′]|
]

= 0 (B.9)

and from Eqs. (B.6) and (B.8) that

∆
[

B(x− x′)− 2β−1γ1δ(x− x′)|[s, t]∩[s′, t′]|
]

= 0 (B.10)

and
∆
[

C(x− x′)− 2β−1(γ2 − 2d−1γ1)δ(x− x′)|[s, t]∩[s′, t′]|
]

= 0. (B.11)
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In view of Schwartz’s point support theorem [6, Th. 35], these last three equations signify
that

A(x− x′) = 2κδ(x− x′)|[s, t]∩[s′, t′]|, (B.12)

B(x− x′) = 2β−1γ1δ(x− x′)|[s, t]∩[s′, t′]| (B.13)

and
C(x− x′) = 2β−1(γ2 − 2d−1γ1)δ(x− x′)|[s, t]∩[s′, t′]|. (B.14)

Eq. (3.25) now follows from Eqs. (B.7) and (B.12); and Eq. (3.26) follows from Eqs.
(B.8), (B.13) and (B.14). Finally, in view of the observation following Eq. (3.24), a
parallel treatment of the other components of the two-point functions of ζ̃ reveals that
they all vanish.
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