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Bound Modesin Dielectric Microcavities

P.M. Visser, K. Allaart, and D. Lenstra
Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081HV Amsterdam, The Netherlands[l

We demonstrate how exactly bound cavity modes can be rdalizéielectric structures other than 3d pho-
tonic crystals. For a microcavity consisting of crossedainopic layers, we derive the cavity resonance fre-
guencies, and spontaneous emission rates. For a dielstrtriture with dissipative loss and central layer with
gain, thes factor of direct spontaneous emission into a cavity modetl@daser threshold is calculated.

PACS numbers: 42.60.-v,32.80.-t,78.67.-n.

I. INTRODUCTION index of refraction. The occurrence of bound states relies o
the use of dielectric material with particular polarizatmrop-

One of the motivations for making a small and efficientertie_s- As we will show, the structure of F@. lisin fact only_
laser is to enter a regime where quantum correlations in th@ne in a class of systems with bound modes. The systems in
emitted light can be created and studied. For this purposE!S class are characterized by the dielectric functi@hwith
spontaneous photons must be emitted into the cavity mod&€ tensor form
with high efficiency (thes factor), so that the noise from the _ s s
random emission in other modes is smBJI[fL, 2]. At the same e(fer = 1+2U () +V(y)] + (1 -22W(2). @)

:|me”, thefhfet;me ;)ftthde Ias_lng mo?_(re] n?el(ojg tot_be Ia;%ee?npuwhereal is the dielectric constant of the (isotropic) background
o allowtor stimurated emission. ' 1€ fabrication of CICIEC  agium. The functiond, V, andW represent the spatial de-

microstructures, like m_|c_rospher , 4] and VCSELs (Ver'pendence of the vertical and horizontal layered structures
tical cavity surface-emitting laserg)l [B, ﬂ 8] for thalre

the case that the layers have a lower susceptibility than the

ization of strong coupling and high finesse is therefore a bi . : g
challenge for cavity OED-type experiments. From a fur]d{;ibackground (for instance, when they represent air holes in d

mental point of view this also raises the question: what arg ccric materiahl, v or W will be negative. These func-
P q : Sions will be specified later. In a dielectric environmentlod

the different types of systems where a small mode volume Form (ﬂ), fields with a polarization in the horizontal planélw

still compatible with little leakage? Neither an ideal sphe : :
. : only be affected by the structures describedviifz), while
[E’ ] nor a stack of disks (an ideal VCSEL), for eXample’vertically polarized fields are only perturbed by the stuues

give rise to mathem_atical_ly_ bou_nd solutions. These_ SyStemaescribed byJ(X) + V(y). Moreover, because the structures
have resonances with a finite width, which only vanishes for pend on one or two spatial coordinates only, the propaga-

large dimensions. When these structures have dlmensmnsR n of these particular fields in the other directions iefre

the dorder o{)one optllcal Wavi:etﬂgthbthtif'eld stlr_ength OftthEere we consider another specific type of polarization, tvhic
mode may become large (and thereby the coupling constant governed by all three functiots, V, W. The electric field

but at the cost of an increasing loss rate. Systems with ex: ;
act bound states can exist in so-called photonic matefials. xstrength of this type can be expressed as
well known examples are photonic crystals with a point defec

[L1,[12] and disordered structurgs|[13] [L4, 15]. These syste

are intgrgsting forcav.ity .QED' because ideally (no_di_sﬂ;impma in terms of scalar function$(x), g(y), h(z) and eigenvalues
and infinite size) the lifetime of the bound state is infinitela k,, k. This is proven by direct substitution into the Maxwell

propagating modes occur at other frequencies only. Photoni o= s o P -
materials are complicated structures, however, so thattb equation] x O x E = (w/c)™=(ME. After projecting out the

tion and modeling is not easy. In this paper we demonstratgartes'an vector components, one finds that this equatfsn se

the occurrence of exact 3d-bound states in dielectrictstres % 20° into independent equations for the scalar functions
that are not a photonic crystal.

E(7) = (ICDIK —2d/dz) F()g(y)h(2), )

—(d/dX)*f(x) = KF(x) + (K> =KUY F (), (3)
—(@/dy)’g(y) = kg(y) + (K =KV ), (4)
II. BOUND MODESIN ANISOTROPIC DIELECTRIC —(d/d2)*h(2) = K2h(z) + KXW(2h(2). (5)

The system with the simplest design is shown in Figﬂjre 1_The separation constankg, k,, andk; in these equations,

This cavity consists of horizontal layers reminiscent of @&V which denote wave vector components, must be related by

2 2 2 — |2 H i
SEL, with two crossed vertical planes of a material with lowe ki + K +k; = k% with the length of the wave vector given by

k = ef2wlc. It can now be verified directly, that the field (2) is
transversely polarized in the isotropic background. Nége a
that components normal to interfaces (where/ or W have

Electionic  address: PMV@natvunl,  Allaat@natvu.n, Steps) of the electric fiel, the displacement fiel = ¢(F)E

Lenstra@nat.VU.nl and of the magnetic fielB = —(i/w)C] x E are all continuous.
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That a dielectric structure of fornﬂ(l) with specific choice
of U, V, andW can indeed support bound modes now follows

'<.

<)

from the following general considerations. Solutions et ‘ '
localized in the, y or zdirection can be created whif kZ or ! ! a
k2 is negative. Such solutions represent electromagnetitsfiel \~/ """" }
that are guided by vertical structures or a horizontal stmec \ ,, ’
Because Eqgs[]@-4) are Schrodinger-type equations|dtiel \[U{ ,,,,,,,,
from standard wave mechanics that wheérandV are posi- \Ivl _/

tive in a finite region, the prefactd? —kZ = kZ + ki must be y ~|’v‘|' 2
positive for such a guided wave. In that case both functons — : ~ || || |
U(x) andV(y) act as attracting potentials, but only one of the \-_-{

two eigenvalues?, kf, is negative. When, on the other hand, \wj

U andV both become negative, an attractive potential is ob- !‘[8]! '
tained for negativé?® — k2, so that the sign in front of both \r 1’ :‘“} b
functions is reversed. Therefore a wave can be localizel bot %y%

in the x andy directions simultaneously whdu andV be- w

come less than —1/2. E(ﬂ (5), is of the Helmholz type, with the
effective potentiaW(z) multiplied by the eigenvalue. Only
whenW becomes less than -1, an attractive potential with ; 4 ;

localized solution occurs. Localized solutions for eaclthef ques are r_eallze_d. For the vertical and honzor_ltal_ layars,

. . anisotropic dielectric structure of the form of EEl. (1) igueed, as
scalar.functlonlé, gorhcan lalso t_>e c_)b_talned when the corre- giscyssed in the text below. The layers are depicted tragshde-
sponding functiot, V or W is periodic in two half spaces. In  cause their refractive index is lower than the index of thekigeound.
that situation the wave function can be a defect state in d banThese layers, with their specific anisotropy, could be fatgd of air
gap. A fully bound state for the electric fiel (2) will occur holes. The cylindrical boundary is not essential, becansébund
when all three scalar wave functions are localized simaktan modes decay exponentially with the distance from the origin
ously. This can be achieved by means of combination of the
different localizing effects. ) ) ]

The conclusion of this analysis may be summarized as folSCTibes the horizontal layers. The (real part of the) dieiec
lows. When the structures describedbgndV have a higher ~ constantz must be smaller thamy. This kind of anisotropy
index of refraction than the background, the functibhand ~ ¢&n be obtained by drilling air holes in isotropic high-irde
V are positive and a 3d bound state requires periodic Stru({nater_lal in, respecnvely, the vertical and ho_nzontadadtrons. .
tures in one of the two horizontal directions and also in the'Ve Will discuss the cavity resonances of this structure and i
vertical direction, i.e. the system must be a 2d photonis-cry clude absorption in the layers by allowing an imaginary com-
tal. When bottU andV become less than —1/2, they descripePonent of the dielectric fl_mctlon. The exact bounq states_ o_f
crossed vertical slabs with a low index, and a 3d bound state PUr System must then arize from the resonances in the limit
found with a 1d periodic structure of horizontal layers. Whe ©Of Zéro loss. This idea is illustrated in the thin-layer appr
W describes a horizontal layer of negative-index material, dmation, neglecting the overlap regions (intersectionsiaf
1d photonic crystal of vertical layers is needed for a 3d lipun €r0Ssing layers) in order to obtain analytical expressions
state. Becausk? + kf, +k2 = K2, at least one of the eigenval- | The functlonSU_andV in Eq. (]_]r) descrlbe_ the vertical low-
ueskg, k7 or kX must be positive, so that localized solutions index layers of widtdl and are expressed in terms of the pa-

are not possible without the use of periodicity in at least on rametefy = (e2—1)diey. The horizontal layers with thickness

dimension. Because the type of systems proposed here is nignare described with/ and are likewise expressed in the pa-

a 3d photonic crystal, the frequency of a bound state wilhly i '2MeeE = (2 —e1)b/ey. We adopt the forms
the continuum of propagating modes. UX) = 6(d—2x)x/d, V(y)=6(d-2y])x/d, (6)

zflG' 1. Example of an empty-cavity geometry where bound field

W@ = Y 8(b—2z-la)lb+0(b—22)(a—E)b. (7)
I11. EXAMPLE: A 1D PERIODIC STRUCTURE [

where 6(x) the Heaviside function. The central horizontal
layer atz = 0 has a different parameter = (e3 — e1)ble;.
The situationn = 0 describes the empty cavity of F. 1. We

We will now consider the most interesting situation: theconsider Imy > 0, Im¢ > 0 to model dissipative structures
1d periodic structure illustrated in Fif} 1, which has a 3dand Ima < O to represent a central layer with gain. It follows
bound state. The vertical and horizontal layers have widthérom continuity and the Bloch theorem that the desired solu-
d andb respectively and the layer-to-layer separation distancéons of Egs. [[{]5) with potentials given by} [-7) are, otési

A. Mode Solutions

is a, so that the fundamental resonant wavelength2will the thin layers, of the form
lie in the interval between®and 4. The anisotropy in- i o
side the vertical layers is described with the dielectritste fx) = €, g(y) ="M,

£ = (1-22)e1 + 222, while the tensot = 22:1 + (1 —22)e, de- hz) = €*YPsink,(|7-a) + €'Psink,(la+a—|z), (8)



with | = int(|z/a) the number of layers between positipand
the origin. (Note thalzl-la andla+ a—|Z] are the distances to
the nearest layer below and abavg The solutionh(2) is an
even function o and forz > b/2 one ha$(z+ a) = €Ph(2),

so thatp acts as a quasi momentum. Because the system
open andy, &, o are not realk, ky, k,, k, andp will generally

be complex valued. The condition for an outgoing resonance

implies Reky > 0, Reky, > 0, and Reg > 0. These wave
vector components can be expressed in termk, @ind the
material constants by

ke = ky = 2i/(=2x —d),
K2 = k2 —8/(2y +d)>2.
€ = coskya— (k/2) sinka,
The values ok, are the solutions of the closed equation
(2/k;)?[1 + £k, cotkya] = €2 — (€ — )2 (10)

Modes that decay in time (llkn< 0), describe loss of energy
both by leakage of light out of the system to infinity and by

(9)

absorption of the light in the structure. The amplified modes
(Imk > 0) are not realistic for long times, because saturation

effects can not be neglected at high intensities. The djyatia
localized solutions describe the situation that the energy
ated atz = 0 is fully dissipated in the other layers. In the limit
of a passive cavity without loss, one has Imy = Im¢ =0,

so that the right-hand side of Eq. [10) disappears. Then th
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FIG. 2: Spontaneous emission rafgsandl,p iNto a cavity reso-
nance and into the propagating modes, for a horizontal elipaiitter
in the center of the geometry of Fﬂ. 1, as a function of theenaac-
for (the frequency is) = ck/c}’?). The adopted effective 2d dielectric

k, are real and ly inside the energy gaps of the band structurgsceptibilities are, = —123/13, ¢ = —3a/13, with absorptive parts

for the fully periodic potentialW(2) (the casen = £). Be-
causek, andky are purely imaginary ank, is real,k is real.
This identifies the 3d-bound states. Outside the layersdk fi
is exponentially decaying in all directions. The decay ia th
z direction in Eq. [B
the formp, = nn/a +iq, (the indexn = 1, 2,... labels the
resonances). The solutions to lowest ordef @re given by
kz = nm(a—¢)/a? andg, = (nré)?/2a°.
We give two numerical examples for the geometry a =

n = 0.0y, ¢ = 0.0%. This could correspond td = a = 4b and a

background dielectric constant = 13 and withe, = 1. The dashed
and dotted curves are the emission rates in the back grouwhéhan
vacuum. The width of the sharp resonances=(1, 2, 3) vanishes

) derives from the quasi momentum offor ¢ = 0 and when the absorptive loss is compensated by gain in an

active layer az = 0.

Before including a linear gain medium at 0, we first con-

4b. Forey = 13,¢; = 1 (air holes in GaAs), one finds a period Sider spontaneous emission rates from a single dipole ghlace

of a = 0.46\, (\ is the wavelength of the first resonance) andat the origin of the cavity. The probability that a sponta-

qua = 0.29. Where; = 2.3,¢, = —20 (silver in glass), then Neous photon is emitted directly into a cavity resonance is

a=0.68\, g;a = 0.80. Bn = Tal(Th + Torop) in terms of the partial rate into a cavity res-
onancel, and into the total of propagating modgso,p. The
contribution of the resonances to the emission rate is diyen

B. Spontaneous emission factor and laser threshold a sum of the Lorentzians

— 2 2
In presence of absorption, the imaginary part of the fre- Fn(k) = (GWF/R“)%/[(k_k”) * 7l
quencywn = ckn/c12 of an outgoing resonance determines _ : , ,
the decay rate of the probability that a photon is present if1€r€: Rn = (L€ + k38 sinPen@) (4x® — ) (kfkan)* is the In-
the corresponding mode. For small values of the absorptioffnSity of the (normalized) bound state at the oridin=

in the layers and for small gain, the following approximatio
applies. Define from here on the real and (small) imaginar
parts of the effective 2d susceptibilities and the wave arect
with the notationy + in, £ +i¢ andk, —iv,. The small decay
rate of a resonance is themn/si’z. This can be interpreted as

an imaginary correction term to the real frequengyof the
3d-bound state. The result of the expansion of E[th 9-10)is
2 L2)\32 2 2
Gy | G —ikgal2

knv/2 (€ +a+kgc2a)ka

12k3u222(2 +¢1)? is the emission rate in the background
edium [1], and the widthy, is given by Eq.[(11) for = 0.
he rates are plotted in Fig| 2, as a function of the wave
vector for a fixed value of the effective susceptibilitigs
&. The efficiency factor at the resonances is plotted in Fig.
Ea). There are several types of propagating modes; thair cla
sification and specific features will be discussed elsewhere
[L7]. For strong couplingeyn/c}? << T, the decay is no
longer exponentiam8] and one enters the cavity QED regime

[£9.[29.[21[22] 331
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gain constantv can easily be reached for semiconductor ma-
terial (for which the valuex = =107 is quite realistic). The
behavior of the laser above threshold is not discussed here,
because then the stationary state is determined by saturati
not included in our model.

IV. CONCLUSION

Apart from absorption, a structure of finite size (layers-of fi
nite extent and finite in number) will also give rise to leakag
This, of course, is also the case for a defect state in a common
three-dimensional photonic crystal. The finite size approx

FIG. 3: a) Spontaneous emission fagtidnto the cavity mode versus  mation is likely to be very good, however, since the (ana)yti

the dielectric constant of the structurg at the first three resonant
valuesk, (n =1, 2, 3). These correspond to the maxima of the peak

in Fig. @ b) Gain constant: versus dielectric constant, that is
required to reach the lasing threshold, according to . (The
absorptive components of the effective dielectric susb#ipy were
taken as) = 0.01y, ¢ = 0.0%.

mode functions are exponentially localized evanescenésav
“Therefore, the coupling to the outside world is exponelytial
small in the system size, while the mode volume remains of
the order of one cubic wavelength. For a cubic system of size
Nd x Nd x Na, the fraction of mode volume outside the system
is roughly exp(—Rl|ks|d —Ng:a). ForN > 6 (GaAs case), and
for N > 23 (glass/silver case), this fraction is less than'40

For the parameter Im > 0 our model represents a cavity In this respect, the proposed device of Fig[ire 1 provides an
with a gain layer az = 0. This gain compensates the loss in interesting alternative to the use of whispering galleryde®
the layers and reduces the width of the cavity resonances, #3dielectric spheres, where smaller mode volume leads-to in
can be seen from Eq_({11). When the loss is fully compencreasing loss. Semiconductor structures with 3d-bourtdssta
sated, the stationary situatiop = 0 arizes. This corresponds Mmay be very promising for future cavity QED experiments and
to the lasing threshold. The gainneeded to compensate for quantum communication applications.

a small loss, is linear in the loss constamtg. From Eq. )
it follows that the required value af is given, including the

effect of the beta factor, by

-3, (k) cratkieia
‘T B [k%@z V2 k€2 }

The behavior as a function of the susceptibiljtis plotted in

(12)
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