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Bound Modes in Dielectric Microcavities
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Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081HV Amsterdam, The Netherlands*

We demonstrate how exactly bound cavity modes can be realized in dielectric structures other than 3d pho-
tonic crystals. For a microcavity consisting of crossed anisotropic layers, we derive the cavity resonance fre-
quencies, and spontaneous emission rates. For a dielectricstructure with dissipative loss and central layer with
gain, theβ factor of direct spontaneous emission into a cavity mode andthe laser threshold is calculated.

PACS numbers: 42.60.-v,32.80.-t,78.67.-n.

I. INTRODUCTION

One of the motivations for making a small and efficient
laser is to enter a regime where quantum correlations in the
emitted light can be created and studied. For this purpose
spontaneous photons must be emitted into the cavity mode
with high efficiency (theβ factor), so that the noise from the
random emission in other modes is small [1, 2]. At the same
time, the lifetime of the lasing mode needs to be large enough,
to allow for stimulated emission. The fabrication of dielectric
microstructures, like microspheres [3, 4] and VCSELs (ver-
tical cavity surface-emitting lasers) [5, 6, 7, 8] for the real-
ization of strong coupling and high finesse is therefore a big
challenge for cavity QED-type experiments. From a funda-
mental point of view this also raises the question: what are
the different types of systems where a small mode volume is
still compatible with little leakage? Neither an ideal sphere
[9, 10] nor a stack of disks (an ideal VCSEL), for example,
give rise to mathematically bound solutions. These systems
have resonances with a finite width, which only vanishes for
large dimensions. When these structures have dimensions of
the order of one optical wavelength, the field strength of the
mode may become large (and thereby the coupling constant),
but at the cost of an increasing loss rate. Systems with ex-
act bound states can exist in so-called photonic materials.The
well known examples are photonic crystals with a point defect
[11, 12] and disordered structures [13, 14, 15]. These systems
are interesting for cavity QED, because ideally (no dissipation
and infinite size) the lifetime of the bound state is infinite and
propagating modes occur at other frequencies only. Photonic
materials are complicated structures, however, so that fabrica-
tion and modeling is not easy. In this paper we demonstrate
the occurrence of exact 3d-bound states in dielectric structures
that are not a photonic crystal.

II. BOUND MODES IN ANISOTROPIC DIELECTRIC

The system with the simplest design is shown in Figure 1.
This cavity consists of horizontal layers reminiscent of a VC-
SEL, with two crossed vertical planes of a material with lower
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index of refraction. The occurrence of bound states relies on
the use of dielectric material with particular polarization prop-
erties. As we will show, the structure of Fig. 1 is in fact only
one in a class of systems with bound modes. The systems in
this class are characterized by the dielectric functionε(~r) with
the tensor form

ε(~r)/ε1 = 1 + ẑ ẑ[U(x) + V (y)] + (1 – ẑ ẑ)W (z). (1)

Hereε1 is the dielectric constant of the (isotropic) background
medium. The functionsU , V , andW represent the spatial de-
pendence of the vertical and horizontal layered structures. In
the case that the layers have a lower susceptibility than the
background (for instance, when they represent air holes in di-
electric material),U , V or W will be negative. These func-
tions will be specified later. In a dielectric environment ofthe
form (1), fields with a polarization in the horizontal plane will
only be affected by the structures described byW (z), while
vertically polarized fields are only perturbed by the structures
described byU(x) + V (y). Moreover, because the structures
depend on one or two spatial coordinates only, the propaga-
tion of these particular fields in the other directions is free.
Here we consider another specific type of polarization, which
is governed by all three functionsU , V , W . The electric field
strength of this type can be expressed as

~E(~r) =
(

k2
z
~∇/k2 – ẑd/dz

)

f (x)g(y)h(z), (2)

in terms of scalar functionsf (x), g(y), h(z) and eigenvalues
kz, k. This is proven by direct substitution into the Maxwell
equation~∇ × ~∇ × ~E = (ω/c)2ε(~r)~E. After projecting out the
Cartesian vector components, one finds that this equation sep-
arates into independent equations for the scalar functions:

– (d/dx)2 f (x) = k2
x f (x) + (k2 – k2

z )U(x) f (x), (3)

–(d/dy)2g(y) = k2
y g(y) + (k2 – k2

z )V (y)g(y), (4)

–(d/dz)2h(z) = k2
z h(z) + k2

zW (z)h(z). (5)

The separation constantskx, ky, and kz in these equations,
which denote wave vector components, must be related by
k2

x + k2
y + k2

z = k2, with the length of the wave vector given by
k = ε1/2

1 ω/c. It can now be verified directly, that the field (2) is
transversely polarized in the isotropic background. Note also
that components normal to interfaces (whereU , V or W have
steps) of the electric field~E, the displacement field~D = ε(~r)~E
and of the magnetic field~B = –(i/ω)~∇ × ~E are all continuous.
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That a dielectric structure of form (1) with specific choice
of U , V , andW can indeed support bound modes now follows
from the following general considerations. Solutions thatare
localized in thex, y or z direction can be created whenk2

x , k2
y or

k2
z is negative. Such solutions represent electromagnetic fields

that are guided by vertical structures or a horizontal structure.
Because Eqs. (3-4) are Schrödinger-type equations, it follows
from standard wave mechanics that whenU andV are posi-
tive in a finite region, the prefactork2 – k2

z = k2
x + k2

y must be
positive for such a guided wave. In that case both functions
U(x) andV (y) act as attracting potentials, but only one of the
two eigenvaluesk2

x , k2
y is negative. When, on the other hand,

U andV both become negative, an attractive potential is ob-
tained for negativek2 – k2

z , so that the sign in front of both
functions is reversed. Therefore a wave can be localized both
in the x andy directions simultaneously whenU andV be-
come less than –1/2. Eq. (5), is of the Helmholz type, with the
effective potentialW (z) multiplied by the eigenvalue. Only
whenW becomes less than –1, an attractive potential with a
localized solution occurs. Localized solutions for each ofthe
scalar functionsf , g or h can also be obtained when the corre-
sponding functionU , V orW is periodic in two half spaces. In
that situation the wave function can be a defect state in a band
gap. A fully bound state for the electric field (2) will occur
when all three scalar wave functions are localized simultane-
ously. This can be achieved by means of combination of the
different localizing effects.

The conclusion of this analysis may be summarized as fol-
lows. When the structures described byU andV have a higher
index of refraction than the background, the functionsU and
V are positive and a 3d bound state requires periodic struc-
tures in one of the two horizontal directions and also in the
vertical direction, i.e. the system must be a 2d photonic crys-
tal. When bothU andV become less than –1/2, they describe
crossed vertical slabs with a low index, and a 3d bound state is
found with a 1d periodic structure of horizontal layers. When
W describes a horizontal layer of negative-index material, a
1d photonic crystal of vertical layers is needed for a 3d bound
state. Becausek2

x + k2
y + k2

z = k2, at least one of the eigenval-
uesk2

x , k2
y or k2

z must be positive, so that localized solutions
are not possible without the use of periodicity in at least one
dimension. Because the type of systems proposed here is not
a 3d photonic crystal, the frequency of a bound state will ly in
the continuum of propagating modes.

III. EXAMPLE: A 1D PERIODIC STRUCTURE

A. Mode Solutions

We will now consider the most interesting situation: the
1d periodic structure illustrated in Fig. 1, which has a 3d
bound state. The vertical and horizontal layers have widths
d andb respectively and the layer-to-layer separation distance
is a, so that the fundamental resonant wavelength 2π/kz will
lie in the interval between 2a and 4a. The anisotropy in-
side the vertical layers is described with the dielectric tensor
ε = (1 –ẑ ẑ)ε1 + ẑ ẑε2, while the tensorε = ẑ ẑε1 + (1 –ẑ ẑ)ε2 de-
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FIG. 1: Example of an empty-cavity geometry where bound field
modes are realized. For the vertical and horizontal layers,an
anisotropic dielectric structure of the form of Eq. (1) is required, as
discussed in the text below. The layers are depicted transparent, be-
cause their refractive index is lower than the index of the background.
These layers, with their specific anisotropy, could be fabricated of air
holes. The cylindrical boundary is not essential, because the bound
modes decay exponentially with the distance from the origin.

scribes the horizontal layers. The (real part of the) dielectric
constantε2 must be smaller thanε1. This kind of anisotropy
can be obtained by drilling air holes in isotropic high-index
material in, respectively, the vertical and horizontal directions.
We will discuss the cavity resonances of this structure and in-
clude absorption in the layers by allowing an imaginary com-
ponent of the dielectric function. The exact bound states of
our system must then arize from the resonances in the limit
of zero loss. This idea is illustrated in the thin-layer approx-
imation, neglecting the overlap regions (intersections oftwo
crossing layers) in order to obtain analytical expressions.

The functionsU andV in Eq. (1) describe the vertical low-
index layers of widthd and are expressed in terms of the pa-
rameterχ = (ε2–ε1)d/ε1. The horizontal layers with thickness
b are described withW and are likewise expressed in the pa-
rameterξ = (ε2 – ε1)b/ε1. We adopt the forms

U(x) = θ(d – 2|x|)χ/d, V (y) = θ(d – 2|y|)χ/d, (6)

W (z) =
∞

∑
l=–∞

θ(b – 2|z – la|)ξ/b + θ(b – 2|z|)(α – ξ)/b. (7)

whereθ(x) the Heaviside function. The central horizontal
layer atz = 0 has a different parameterα = (ε3 – ε1)b/ε1.
The situationα = 0 describes the empty cavity of Fig. 1. We
consider Imχ > 0, Imξ > 0 to model dissipative structures
and Imα < 0 to represent a central layer with gain. It follows
from continuity and the Bloch theorem that the desired solu-
tions of Eqs. (3-5) with potentials given by (6-7) are, outside
the thin layers, of the form

f (x) = eikx |x|, g(y) = eiky |y|,

h(z) = ei(l+1)pa sinkz(|z|–la) + eil pa sinkz(la + a – |z|), (8)



3

with l = int(|z|/a) the number of layers between positionz and
the origin. (Note that|z|–la andla + a – |z| are the distances to
the nearest layer below and abovez.) The solutionh(z) is an
even function ofz and forz > b/2 one hash(z + a) = eipah(z),
so thatp acts as a quasi momentum. Because the system is
open andχ, ξ, α are not real,kx, ky, kz, k, andp will generally
be complex valued. The condition for an outgoing resonance
implies Rekx > 0, Reky > 0, and Rep > 0. These wave
vector components can be expressed in terms ofkz and the
material constants by

kx = ky = 2i/(–2χ – d),

k2 = k2
z – 8/(2χ + d)2. (9)

eipa = coskza – (kzα/2) sinkza,

The values ofkz are the solutions of the closed equation

(2/kz)2[1 + ξkz cotkza] = ξ2 – (ξ –α)2. (10)

Modes that decay in time (Imk < 0), describe loss of energy
both by leakage of light out of the system to infinity and by
absorption of the light in the structure. The amplified modes
(Im k > 0) are not realistic for long times, because saturation
effects can not be neglected at high intensities. The spatially
localized solutions describe the situation that the energycre-
ated atz = 0 is fully dissipated in the other layers. In the limit
of a passive cavity without loss, one hasα = Imχ = Im ξ = 0,
so that the right-hand side of Eq. (10) disappears. Then the
kz are real and ly inside the energy gaps of the band structure
for the fully periodic potentialW (z) (the caseα = ξ). Be-
causekx andky are purely imaginary andkz is real,k is real.
This identifies the 3d-bound states. Outside the layers the field
is exponentially decaying in all directions. The decay in the
z direction in Eq. (8) derives from the quasi momentum of
the form pn = nπ/a + iqn (the indexn = 1, 2,. . . labels the
resonances). The solutions to lowest order inξ are given by
kzn = nπ(a – ξ)/a2 andqn = (nπξ)2/2a3.

We give two numerical examples for the geometryd = a =
4b. Forε1 = 13,ε2 = 1 (air holes in GaAs), one finds a period
of a = 0.46λ, (λ is the wavelength of the first resonance) and
q1a = 0.29. Whenε1 = 2.3,ε2 = –20 (silver in glass), then
a = 0.68λ, q1a = 0.80.

B. Spontaneous emission factor and laser threshold

In presence of absorption, the imaginary part of the fre-
quencyωn = ckn/ε1/2

1 of an outgoing resonance determines
the decay rate of the probability that a photon is present in
the corresponding mode. For small values of the absorption
in the layers and for small gain, the following approximation
applies. Define from here on the real and (small) imaginary
parts of the effective 2d susceptibilities and the wave vector
with the notationχ + iη, ξ + iζ andkn – iγn. The small decay
rate of a resonance is thencγn/ε1/2

1 . This can be interpreted as
an imaginary correction term to the real frequencyωn of the
3d-bound state. The result of the expansion of Eqs. (9-10) is

γn =
(k2

zn – k2
n)3/2η

kn

√
2

+
k2

znζ – ik4
znξ

2α/2
(ξ + a + k2

znξ
2a)kn

. (11)
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FIG. 2: Spontaneous emission ratesΓn andΓprop into a cavity reso-
nance and into the propagating modes, for a horizontal dipole emitter
in the center of the geometry of Fig. 1, as a function of the wave vec-
tor (the frequency isω = ck/ε1/2

1 ). The adopted effective 2d dielectric
susceptibilities areχ = –12a/13, ξ = –3a/13, with absorptive parts
η = 0.01χ, ζ = 0.01ξ. This could correspond tod = a = 4b and a
background dielectric constantε1 = 13 and withε2 = 1. The dashed
and dotted curves are the emission rates in the back ground and in
vacuum. The width of the sharp resonances (n = 1, 2, 3) vanishes
for ζ = 0 and when the absorptive loss is compensated by gain in an
active layer atz = 0.

Before including a linear gain medium atz = 0, we first con-
sider spontaneous emission rates from a single dipole placed
at the origin of the cavity. The probability that a sponta-
neous photon is emitted directly into a cavity resonance is
βn = Γn/(Γn +Γprop) in terms of the partial rate into a cavity res-
onanceΓn and into the total of propagating modesΓprop. The
contribution of the resonances to the emission rate is givenby
a sum of the Lorentzians

Γn(k) = (6πΓ/Rn)γn

/

[(k – kn)2 + γ2
n ].

Here, Rn = (1/ξ +k2
zna/ sin2kzna)(4χ2 –d2)(kn/kzn)4 is the in-

tensity of the (normalized) bound state at the origin,Γ =
12k3µ2ε5/2

1 /h̄(2 +ε1)2 is the emission rate in the background
medium [16], and the widthγn is given by Eq. (11) forα = 0.
The rates are plotted in Fig. 2, as a function of the wave
vector for a fixed value of the effective susceptibilitiesχ,
ξ. The efficiency factor at the resonances is plotted in Fig.
3a). There are several types of propagating modes; their clas-
sification and specific features will be discussed elsewhere
[17]. For strong coupling,cγn/ε1/2

1 << Γ, the decay is no
longer exponential [18] and one enters the cavity QED regime,
[19, 20, 21, 22, 23].
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FIG. 3: a) Spontaneous emission factorβ into the cavity mode versus
the dielectric constant of the structureε2, at the first three resonant
valueskn (n = 1, 2, 3). These correspond to the maxima of the peaks
in Fig. 2. b) Gain constantα versus dielectric constantε2 that is
required to reach the lasing threshold, according to Eq. (12). The
absorptive components of the effective dielectric susceptibility were
taken asη = 0.01χ, ζ = 0.01ξ.

For the parameter Imα > 0 our model represents a cavity
with a gain layer atz = 0. This gain compensates the loss in
the layers and reduces the width of the cavity resonances, as
can be seen from Eq. (11). When the loss is fully compen-
sated, the stationary situationγn = 0 arizes. This corresponds
to the lasing threshold. The gainα needed to compensate for
a small loss, is linear in the loss constantsη, ζ. From Eq. (11)
it follows that the required value ofα is given, including the
effect of the beta factor, by

α =
–2i
βn

[ ζ

k2
znξ

2
+

(k2
zn – k2

n)3/2η
√

2

ξ + a + k2
znξ

2a

k4
znξ

2

]

. (12)

The behavior as a function of the susceptibilityξ is plotted in
Fig. 3b). We conclude that the required value of the effective

gain constantα can easily be reached for semiconductor ma-
terial (for which the valueα = –10iη is quite realistic). The
behavior of the laser above threshold is not discussed here,
because then the stationary state is determined by saturation,
not included in our model.

IV. CONCLUSION

Apart from absorption, a structure of finite size (layers of fi-
nite extent and finite in number) will also give rise to leakage.
This, of course, is also the case for a defect state in a common
three-dimensional photonic crystal. The finite size approxi-
mation is likely to be very good, however, since the (analytic)
mode functions are exponentially localized evanescent waves.
Therefore, the coupling to the outside world is exponentially
small in the system size, while the mode volume remains of
the order of one cubic wavelength. For a cubic system of size
Nd×Nd×Na, the fraction of mode volume outside the system
is roughly exp(–2N|kx|d –Nq1a). ForN > 6 (GaAs case), and
for N > 23 (glass/silver case), this fraction is less than 10–10.
In this respect, the proposed device of Figure 1 provides an
interesting alternative to the use of whispering gallery modes
in dielectric spheres, where smaller mode volume leads to in-
creasing loss. Semiconductor structures with 3d-bound states
may be very promising for future cavity QED experiments and
quantum communication applications.
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