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We present a novel method for the comparison of multiple protein align-
ments with assessment of statistical significance (COMPASS). The method
derives numerical profiles from alignments, constructs optimal local
profile–profile alignments and analytically estimates E-values for the
detected similarities. The scoring system and E-value calculation are
based on a generalization of the PSI-BLAST approach to profile–sequence
comparison, which is adapted for the profile–profile case. Tested along
with existing methods for profile–sequence (PSI-BLAST) and profile–
profile (prof_sim) comparison, COMPASS shows increased abilities for
sensitive and selective detection of remote sequence similarities, as well
as improved quality of local alignments. The method allows prediction
of relationships between protein families in the PFAM database beyond
the range of conventional methods. Two predicted relations with high sig-
nificance are similarities between various Rossmann-type folds and
between various helix-turn-helix-containing families. The potential value
of COMPASS for structure/function predictions is illustrated by the detec-
tion of an intricate homology between the DNA-binding domain of the
CTF/NFI family and the MH1 domain of the Smad family.
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Introduction

With the rapid growth of the number of known
protein sequences, the development of improved
automated methods to determine remote sequence
similarities becomes increasingly important. The
detection of such similarities provides valuable
information about the structural and functional
relationships between proteins. In the case of a
novel protein with unknown structure and func-
tion, this information can lead to further character-
ization of the protein. In the case of a protein
family analysis, comparing multiple sequences
might provide clues about the structure, function
and evolution of the family as a whole.

Current methods for pairwise sequence compari-
son provide confident detection of similarity
between sequences with more than ,30%
identity.1,2 The region of residue identity some-
where between 20% and 35% does not generally
allow statistically trustable results of pairwise com-

parison and is traditionally called the twilight
zone.1,3 A series of successful efforts have been
made to improve the inference of remote homologs
from protein sequences in the twilight zone. Per-
haps the most powerful methods involve the com-
parison of multiple protein alignments to single
sequences or to other multiple alignments. The
rationale for the use of multiple alignments is that
the information extracted from aligned related
sequences may represent general features of the
family and allow the prediction of similarity to a
remote sequence (or family), even if its similarity
to each of the individual aligned sequences is
insignificant. The residue composition of the
multiple alignment is statistically represented in
the form of a numerical profile,4,5 which is used in
further comparison procedures. The methods
involving profile–sequence comparisons include
several widely accepted searching protocols. PSI-
BLAST6 and IMPALA7 share the same profile
representation and scoring system. PSI-BLAST is
an iterative method for sequence database searches
with a profile constructed from the hits obtained
after the previous iteration step. IMPALA is
designed to search a database of profiles with a
given sequence. The SAM-T998 and HMMER9
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packages represent another successful approach to
profile–sequence comparison, using the formalism
of hidden Markov models (HMM).10,11

As a further step in the use of the alignment
information, several methods have been developed
for the comparison of multiple alignments to
multiple alignments. Gotoh12 introduced iterative
methods based on a straightforward but computa-
tionally costly sum-of-pairs scoring system, which
is used for multiple alignment construction. The
protocol of the profile–profile comparison
(LAMA) with no gaps permitted was developed
by Pietrokovski13 for the comparisons of pairs of
blocks from the BLOCKS database.14,15 This proto-
col was further used in the CYRCA method16 to
identify multiple consistently aligned blocks
within two compared alignments.

Here, we introduce the COMPASS (comparison
of multiple protein alignments with assessment of
statistical significance) method, which involves the
construction of local profile–profile alignments
allowing gaps by means of a dynamic program-
ming algorithm. To our knowledge, two similar
methods for the construction of local profile–
profile alignments have been reported: FFAS17 by
Rychlewski et al., and prof_sim18 by Yona & Levitt.
The main differences between these two methods
include the protocols used to produce profiles
from the multiple alignments and the scoring
systems used for the alignment construction. To
assess the similarity between profile columns,
FFAS uses the “dot-product” scores that are related
to the correlation coefficients between the amino
acid frequencies within the two columns. Prof_sim
employs a more sophisticated scoring approach,
applying Jensen–Shannon measure for the diver-
gence between two probability distributions and
computing two terms that are interpreted as the
divergence score and the significance score. These
terms are combined to produce a single similarity
score.18 In both methods, the calculated substi-
tution scores for the profile columns are further
adjusted by means of simple linear transform-
ations, and a dynamic programming algorithm is
applied with optimized gap penalties. To charac-
terize the reliability of the detected similarity, the
statistical significance for the produced local align-
ment is estimated by constructing the empirical
score distribution obtained from a number of com-
parisons between unrelated families,18 or between
the given protein family and other families from
the database.17,18

Among the methods for detection of sequence
similarity, PSI-BLAST is considered one of the
most powerful and successful. An important
advantage of BLAST and its successors (e.g. PSI-
BLAST) is that the statistical significance of the
local alignment (E-value) allows fast and simple
analytical estimation.6 To our knowledge, no
similar analytical estimation of E-value has been
proposed for profile–profile comparisons. There-
fore, we intended to develop a method for con-
structing local profile–profile alignments, which

would be based on a simple generalization of the
PSI-BLAST approach to the scoring system and to
assessing E-value. Our main expectations were (i)
to increase the sensitivity and selectivity of the
detection of remote similarities between protein
groups; (ii) to improve the quality of the produced
local alignments; (iii) to search for the previously
unknown relationships between the protein
families.

When testing COMPASS for the quality of pro-
duced alignments and for the detection of remote
similarities between protein families, we used
alignments of known protein structures as the
reference. Thus, our goal was to improve the pre-
diction of similarities between the proteins in the
sense of their structural relationship. We compared
the performance of COMPASS to that of PSI-
BLAST as a method for profile–sequence com-
parison (the blastpgp program was downloaded
from the NCBI site)†, and to that of prof_sim as
a method for profile–profile comparison (the
prof_sim program was generously provided by Dr
G. Yona).

The COMPASS program can be downloaded
from our web site‡.

Theory

Several major steps are required to produce a
local alignment of two multiple alignments: (i) con-
struction of numerical profiles from the two input
alignments; (ii) calculation of scores for matches of
positions in the two constructed profiles; (iii)
applying an algorithm for aligning the profiles
using scores for position matches; (iv) statistical
evaluation of the resulting alignment.

Construction of profiles from the alignments

Compensating for sequence redundancy
(effective counts)

A profile is a position-specific numerical rep-
resentation of the residue content of a multiple
alignment. For an alignment of length n, the profile
is the matrix n £ 21, where each column corre-
sponds to a position in the alignment and includes
20 numbers for each type of amino acid residue,
plus one number for gap symbols. It is important
to avoid situations where a large number of closely
related sequences make a greater contribution to
the profile than a small number of divergent
sequences, which results in losing valuable infor-
mation about the alignment. A common way to
compensate for the redundancy of similar
sequences is to down weigh the contributions of
the residues from redundant sequences.

To perform such a weighting, we use a method
based on the scheme of position-specific independent

† ftp://ftp.ncbi.nih.gov/blast/
‡ ftp://iole.swmed.edu/pub/compass/
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counts (PSIC).19 Residue content at each position is
derived not from the overall weights for the
sequences of the alignment but from the similarity
of the sequence subset, which contains the given
residue at the given position. This scheme is
implemented as described, with one further modi-
fication. We calculate 21 counts neff

PSIC for each sym-
bol in the alignment column (including gaps,
which are considered the 21st symbol), and then
apply the following transformation:20

neff ¼ 2ln
20 2 nPSIC

eff

20
ð1Þ

Here, neff corresponds to the number of random
sequences in the random alignment that has the
average number of different residues per position
equal to neff

PSIC (for more details, see Ref. 20). If all
sequences that contain the given symbol at the
given position are independent then neff is equal to
the number of these sequences; if they are identical
then neff ¼ 1.

Purging columns with high effective gap content

Aligning regions that include positions with
high gap content can present a major problem to
the construction of extended local alignments.
These gapped regions of the input alignments cor-
respond to insertions in a small portion of
sequences and do not reflect general features of
the protein family. Including such regions in local
alignments is often problematic for the Smith-
Waterman algorithm, which tends to stop extend-
ing the local alignment rather than to introduce a
number of gaps. This tendency would result in a
short optimal alignment that would not include
many possible regions of high similarity because
these regions could not be “linked” in the process
of the alignment extension. As a simple way to
overcome this problem, only the positions with
low effective gap content are considered in the pro-
cess of the alignment construction. Specifically, if
the effective count for gaps is not greater than the
sum of the effective counts for all residue types,
the position is used for the alignment construction
described below; otherwise it is disregarded (in
the final output alignment, such positions are
marked as “non-aligned”).

Estimation of target frequencies

To calculate the scores for position matches, we
use the main elements of the scoring system used
in PSI-BLAST6 for profile–sequence comparison
and generalize them for the case of profile–profile
comparison. To generate scores in a log-odds
form, it is necessary to estimate probabilities {Qi}1

20

for the residues to be found at a given position
(predicted frequencies). The observed residue
frequencies { fi}1

20 may be biased compared to the
expected probabilities {Qi}1

20 due to the small
effective size of the alignment, and employing

information about the correlations between the
occurrence of the different amino acid types at
aligned positions6,7,17,18,21 – 24 has proven useful. For
the estimation of the predicted frequencies, we
used the simple pseudocount method proposed
by Tatusov et al.23, which is implemented in PSI-
BLAST6 and IMPALA.7 Given the effective
frequency fi of residue type i in a column, we
estimate Qi as the mixture of fi and pseudocount
frequency gi:

Qi ¼
afi þ bgi

aþ b
ð2Þ

where

gi ¼
X

j

fi

qij

pi
ð3Þ

(qij is the matrix of the probabilities of occurrence
of residue pairs (i– j) corresponding to the substi-
tution matrix sij, whereas pi are the background fre-
quencies of the residues). Parameters a and b
determine the proportion of pseudocounts in the
mixture. A reasonable setting is a ¼ NC 2 1,
where NC is the mean number of different symbols
(including gaps) in the columns of the alignment.6

b remains a free parameter. After testing several
values, we found that a good alignment quality is
produced by our method with b ¼ 10, the same
value as was initially introduced in PSI-BLAST.6

Scoring system

To generate the scores for matching positions of
the two constructed profiles, we use the scheme of
log-odds ratios, which is reasonable from the
theoretical point of view25 and has been extensively
tested in practical applications6,7,22,23,26 – 32 The
general formula of the score for the match of two
profile columns 1 and 2 is as follows:

S ¼ c1S12 þ c2S21 ¼ c1 ln
Pð1l2Þ
Pð1l0Þ

þ c2 ln
Pð2l1Þ
Pð2l0Þ

ð4Þ

where S12 and S21 are symmetrical log-odds ratios
corresponding to the probabilities of occurrence
for columns 1 and 2, respectively; parameters c1

and c2 determine the relative weights of both
terms. P(1l2) is the probability to observe the set
of effective residue counts of column 1, {ni

1}1
20,

given the set of the target frequencies of column 2,
{Qi

2}1
20. P(2l1) is the probability to observe the set of

effective residue counts of column 2, {ni
2}1

20, given
the set of the target frequencies of column 1, {Qi

1}1
20

P(1l0) and P(2l0) are the probabilities to observe
the effective counts {ni

1}1
20, and {ni

2}1
20, respectively,

given the background frequencies of the residues,
{pi}1

20.
Each of the probabilities P(alb) can be expressed

in the form of multinomial distribution generalized
for the non-integer area:

Pð1l2Þ ¼
Y

i

Cðn1
i ; {n1

j }20
1 Þ·ðQ2

i Þ
n1

i ð5Þ
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Pð1l0Þ ¼
Y

i

Cðn1
i ; {n1

j }20
1 Þ·ðpiÞ

n1
i ð6Þ

Pð2l1Þ ¼
Y

i

Cðn2
i ; {n2

j }20
1 Þ·ðQ1

i Þ
n2

i ð7Þ

Pð2l0Þ ¼
Y

i

Cðn2
i ; {n2

j }20
1 Þ·ðpiÞ

n2
i ð8Þ

where Cðn1
i ; {n1

j }20
1 Þ and Cðn2

i ; {n2
j }20

1 Þ are generalized
multinomial coefficients. Their exact form is not
important: since these coefficients are the same
within the pair (5) and (6) and pair (7) and (8),
they are cancelled after the substitutions made in
equation (4). Then equation (4) transforms into:

S ¼ c1

X
i

n1
i ln

Q2
i

pi
þ c2

X
i

n2
i ln

Q1
i

pi
ð9Þ

The terms of the sum (9) depend on the effective
residue counts in columns 1 and 2 (ni

1 and ni
2). If

c1 ¼ c2 the scales of these two terms can be very
different when the effective counts in columns 1
and 2 are different (e.g. when the two alignments
have different “thickness”). In this case the score
is mostly determined by the set of target frequen-
cies in one column, with almost no contribution
from the other column. In other words, the scores
for the matches of columns from the two profiles
may turn into the scores for the columns of one of
the profiles, which reduces the quality of the align-
ment. To balance the terms in the sum (9), we
tested a number of expressions for the coefficients
c1 and c2. In addition to the ability to compensate
for the possible different scales of {ni

1}1
20 and {ni

2}1
20,

we demanded that the setting of c1 and c2 should
transform equation (9) into the PSI BLAST score
S ¼ ln(Qi/pi) in the special case of sequence-align-
ment comparison. The best alignment quality was
provided by the following setting:

c1 ¼

X
i

n2
i 2 1

X
i

n1
i þ

X
i

n2
i 2 2

;

c2 ¼

X
i

n1
i 2 1

X
i

n1
i þ

X
i

n2
i 2 2

ð10Þ

If one of the compared alignments contains only a
single sequence then equation (9) with coefficients
(10) reduces to the PSI-BLAST score. In the process
of alignment construction, the score values
rounded to the nearest integer are used. To
increase the computational precision, scores (9)
and (10) are multiplied by a factor of 32. The scores
are then rescaled as described below, rounded to
integer values and used to construct the optimal
local alignment with the Smith & Waterman
algorithm.33

Construction of optimal alignment and
estimation of its statistical significance

Calculation of E-value

After generating the substitution scores for
position matches, we rescale them to ensure corre-
spondence to some standard setting universal for
all profile pairs. This procedure simplifies the
estimation of statistical significance of optimal
alignments (i.e. their E-values). For the calculation
of E-value, we (a) rescale the optimal scores pro-
duced by our method to obey the extreme value
distribution (EVD),34,35 and (b) use the simple for-
mula proposed by Karlin & Altshul36 for the case
of EVD:

E ¼ Kmne2lS ð11Þ

where m and n are lengths of the two profiles (in
the case of a database search, the lengths of the
query and the database), S is the score of the
optimal alignment, and l and K are statistical
parameters of EVD, which depend on the scoring
system and on the profiles that are compared.
Since l enters the expression exponentially, it is
the key parameter that has the most substantial
influence on the E-value.

Expression (11) was initially proposed for the
alignments of single sequences without gaps.36 It
implies very wide assumptions about the nature
of the sequences and the substitution scores. The
theory37,38 can be applied to the alignments of two
random strings 1 and 2 composed of symbols ai

that are independently sampled from a finite
alphabet A ¼ {ai}

N
1 with probabilities {p1

i }N
1 and

{p2
i }N

1 ; respectively. Each match (ai 2 aj) has the
score sij. These assumptions are valid in the case
of the comparison of two profiles, with ai being
the profile columns. In practice, the comparisons
are made within a large but finite database of
profiles that contain a large but finite alphabet of
columns. Moreover, the distribution of profile
columns in multiple protein alignments has a dis-
tinct structure,22 with the tendency to accumulate
in a low-dimensional region of the space of fre-
quency sets. Thus, the effective size of the alphabet
of columns may be much lower than the total num-
ber of columns in the database.

The application of formula (11) requires two con-
ditions: at least one score should be positive, and
the expected score per column pair should be
negative.36 Both of these conditions are fulfilled in
the vast majority of profile–profile comparisons
by our method. (Theoretically possible exceptions
might occur, for example, when scores for all pairs
of columns from the two profiles have the same
sign. According to our observations, such excep-
tions are extremely rare.) Thus, if two profiles are
constructed from columns randomly sampled
from a finite set, the E-value for their local
ungapped alignment allows the analytical
expression (11).
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The maximal segment theory36 – 38 predicts the
form of the optimal score distribution only for an
ungapped scoring system. As has been empirically
shown for the gapped scoring systems, the distri-
bution of optimal scores for gapped alignments
can also be approximated by EVD, however with
different values l and K. This was demonstrated
for both sequence–sequence6 and sequence–
profile6,7 comparisons. A similar observation was
made by Yona & Levitt 18 when they applied their
prof_sim method to the comparison of unrelated
real profiles. Further in this section, we will show
that our method also allows the use of EVD to
describe the distribution of optimal scores for
“random profiles”.

Although the EVD parameters lu and Ku for
ungapped scoring systems can be obtained from
analytical equations,36 the problem of estimation
of these parameters for a given gapped scoring
system (lg and Kg) is not analytically solved. lg

and Kg may be precomputed by extensive simu-
lations using the average residue composition
of the database.6,39,40 However, in the case of
sequence–profile comparisons, unusual amino
acid compositions of the sequence or the profile
may imply different values of lg.6,39 The profile–
profile substitution scores (9) and (10) additionally
depend on the effective residue counts in the
columns. Therefore lg for the scores (9) and (10)
may vary with both residue composition and
effective number of sequences in the alignments.

To avoid random simulations and estimation of
lg for each profile–profile pair, we adopt the score
rescaling strategy similar to that used in PSI-
BLAST and IMPALA. The aim of this technique is
to “force” the substitution scores to a fixed scale.
The easily calculated parameter lu is used as a
measure of the score scale. For each profile–profile
pair, the substitution scores are rescaled to achieve
lu ¼ lu

0, where lu
0 is the precomputed value for the

reference sequence–sequence scoring system.
Introducing gaps into such a rescaled scoring sys-
tem will change lu

0 to the precomputed gapped
parameter lg

0, as it would happen for the reference
scoring system. Random simulations of sequence–
profile comparisons support this assumption.6,7

This rescaling technique remarkably increased the
sensitivity of PSI-BLAST.39

For the sequence–sequence comparison, lu can
be found as the unique positive solution of the
equation:36

X
i;j

p1
i p2

j elsij ¼ 1 ð12Þ

where pi
1 and pj

2 are the frequencies of the residue
types in the two sequences, sij is the matrix of the
substitution scores for the residue pairs. PSI-
BLAST and IMPALA apply expression (12) directly
to the case of the sequence–profile comparison,
considering pi

1 and pj
2 as the residue frequencies in

the sequence and the profile, and sij as the substi-
tution score for the pair of residues i and j (e.g.

BLOSUM62). lu derived from equation (12)
depends only on the residue composition of the
profiles or sequences. The additional dependence
of scores (9) and (10) on the effective residue
counts makes the direct use of expression (12)
meaningless, since lu does not correlate with the
scale of the scores anymore. To estimate the com-
position-dependent lu in the context of the
substitution scores (9) and (10), we use a more
general form of equation (12):

kelsl ¼ 1 ð13Þ

where s are the scores for all possible pairs of pos-
itions in the two sequences, and brackets denote
averaging over all such pairs. Presenting two pro-
files as two sequences of columns, we can find lu

as the unique positive equation of (13) in the form:

1

l1l2

X
a;b

elsab ¼ 1 ð14Þ

where l1, l2 are the lengths of the two profiles; a, b
are positions in the profiles; sab are the scores (9)
and (10) for each pair of the positions. Thus sum-
mation over the types of symbols in equation (12)
is changed in equation (14) to the equivalent sum-
mation over the positions, which can be performed
for a given profile pair.

After estimating lu, the scores sab are rescaled to
the values s0ab ¼ sablu=l

0
u; where lu

0 is the known
value for the reference scoring system (as the
default we use lu

0 ¼ 0.3176 for BLOSUM62). To
produce the optimal local alignment of the given
profiles, we use the scores s0ab and apply the
Smith–Waterman algorithm with affine gap penal-
ties (11 þ k), the optimized gap penalties for the
BLOSUM626 substitution matrix. As we found
empirically, these gap costs produced reasonable
quality of the local alignments by our method.

The whole approach to the E-value calculation
described in this section is valid only if the distri-
bution of the optimal alignment scores allows the
EVD approximation. In the next section, we will
show the experimental results that support this
assumption and allow estimation of l and K for a
given pair of profiles.

Estimation of the parameters of the optimal
score distribution

In order to characterize the form of the optimal
score distribution for the comparison of random
profiles, we constructed a large number of profiles
from randomly sampled columns derived from
real alignments. Their optimal local alignments
were produced as described above, and the distri-
butions of the alignment scores were analyzed.
These distributions can be reasonably well
approximated with EVD and allow estimation of
E-value for the alignment of a given pair of
profiles.

We expected the parameters of the optimal score
distribution to depend on two main properties of
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the compared alignments, the length (number of
columns, l) and the thickness (a characteristic of
the effective number of divergent sequences; we
used the average sum of effective residue counts
for all columns, N). To study these dependencies,
we constructed 16 datasets of “random align-
ments” for 4 £ 4 different combinations of the
lengths (100, 200, 330, and 500 columns) and the
number of sequences (50, 100, 300, and 500
sequences). To sample the alignment columns, we
used the alignments from the PFAM 6.6 database
and extracted the columns with the effective gap
content lower than the 50% cutoff.

For each combination of the alignment lengths
and thicknesses, we produced 10,000 optimal
alignment scores. The distribution of the scores
was fitted to EVD using the maximum likelihood
method.41 The observed distributions were reason-
ably well approximated by EVD. Figure 1 shows a
typical example of a fit for random alignments; a
chi-square goodness-of-fit test in this case
produced a value of 53.9 for 42 degrees of freedom.
This value indicates that the given fit would be
better than 10% of fits for the similar random trials,
even if the theory for the ungapped sequence–
sequence alignments were fully applicable to the
gapped profile–profile alignments described
above.

Having the estimates of the EVD parameters (l
and K), we studied their dependence on the
properties of the compared alignments (N1, l1, N2,
l2). Since the E-value exponentially depends on l
(equation (11)), a good precision in the estimation
of this parameter is far more important than that
of K; yet for completeness, we present the results
for both parameters.

For sequence–sequence42 comparisons, it has
been shown that l depends on the length of the
sequences. This dependence allows a close
approximation:40,42

l ¼ l0 þ a
1

m
þ

1

n

� �
ð15Þ

We assumed that in the case of profile–profile
comparison the general form of expression (15)
might also be applied to the length-dependence of
l. We directly introduced reasonable approxi-
mations of the observed values l and K into the
E-value formula (11). Thus for the alignments of
two fixed thicknesses, we sought estimation of l
in the form:

l ¼ l0ðN1;N2Þ þ aðN1;N2Þ
1

l1
þ

1

l2

� �
ð16Þ

where N1 and N2 are the average sums of effective
residue counts in the columns, l1 and l2are the
lengths of the profiles. To estimate l0(N1, N2) and
a(N1, N2), one can analyze the score distributions
for the alignments of equal length and consider
the dependence l ¼ l0ðN1;N2Þ þ 2aðN1;N2Þ=l:

Dependence of l and K on the effective number
of sequences in the alignment

For fixed profile lengths, we studied the depen-
dencies of l and K on the thickness of the com-
pared alignments, N1 and N2. Surprisingly, using
the settings of our method described above, no
considerable dependence was observed for any
tested alignment length. The difference between
the values was within 3% among all dataset combi-
nations of various thickness for a given length l
(data not shown).

Dependence on the length of alignments

Given no or little dependence of l and K on N1

and N2, our task to approximate them in the
form (16) was reduced to the form (15). The
corresponding coefficients derived from the
observed dependencies (Figure 2(a) and (b)) were
l0 ¼ 0.277(^0.002), al ¼ 2.25(^0.15) and K0 ¼
0.044(^0.005), aK ¼ 7.40(^0.45), which allows the
following simple approximations:

l ¼ 0:277 þ 2:25
1

m
þ

1

n

� �
ð17Þ

K ¼ 0:044 þ 7:40
1

m
þ

1

n

� �
ð18Þ

For the case of sequence–sequence compari-
son, Altschul et al. 40estimated l as l ¼ 0.2670 þ
1.90(1/m þ 1/n). According to the E-value formula
(10), the 3.6% difference in the estimates of l0 for
the sequence–sequence and profile–profile com-
parisons would lead to a fairly modest ,2.5-fold

Fig. 1. Distribution of optimal local alignment scores
produced for 10,000 pairs of alignments composed from
randomly sampled columns of PFAM alignments (see
the text for details). The score distribution produced by
COMPASS for length 500 and number of sequences 300
is shown. The extreme value distribution that best fits
the data is plotted. The chi-square goodness-of-fit test in
this case produced a value of 53.9 for 42 degrees of
freedom, which corresponds to a P-value of 0.10.
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difference in the E-values for typical marginally
significant hits with lS , 25.

Results and Discussion

Evaluation of alignment quality

To evaluate the performance of our method, we
tested two aspects of its performance, the ability
to produce accurate local alignments and the
ability to detect profiles in a database that are
related to the query. In both cases, we based our
evaluation on the comparison of the produced
alignments to the structural alignments from the
FSSP database43,44 generated by the DALI method.45

The results of the evaluation were compared to the
results for the corresponding sequence–profile
comparisons by PSI-BLAST, and to the results for
profile–profile comparisons by prof_sim18

Benchmark for the evaluation of the
alignment quality

To create a benchmark for the evaluation of
alignment quality, we generated and further pro-
cessed PSI-BLAST alignments for pairs of protein
domains that are structurally related according to
FSSP. We used these pairs of multiple alignment
as input for COMPASS, prof_sim and PSI-BLAST,
and compared the predicted local alignments with
the structural alignments in FSSP.

To assess the performance of each method for
close, intermediate and far relationships, we
generated datasets of sequence pairs for three
ranges of sequence identity (according to the FSSP
alignments), 0–15%, 15–30% and 30–98%. The
values of 15% and 30% were chosen as boundaries
based on our preliminary observations of

COMPASS performance over the whole range of
sequence identity (see below). From randomly
chosen 500 FSSP families, we extracted the parent
sequence and three random family sequences of a
significant structural similarity to the parent
(Z-score greater than 5.0), with sequence identity
to the parent within the three ranges. For each
sequence, we ran five iterations of PSI-BLAST
2.2.1 against the NCBI nr database (E-value
threshold for inclusion in the next iteration 0.005,
BLOSUM62 matrix) and thus obtained 500 pairs of
PSI-BLAST alignments for each identity range. In
order to ensure that the sequences in each PSI-
BLAST alignment were closer to the initial query
than to its “partner” in the pair, we purged all the
sequences whose similarity to the query (PSI-
BLAST score) was lower than that of the query’s
partner. The sequences common to both align-
ments were purged in the alignment where the
sequence had the lower PSI-BLAST score. Finally,
only one copy was retained of any rows that were
.97% identical to one another, and the columns
with gaps inserted into the first (query) sequence
were purged. The pairs of alignments were used
for the construction of their local alignment and
its evaluation.

Alignment quality evaluation parameters

To measure the quality of the prediction of a
structural alignment by the corresponding pro-
file–profile alignment, we used the parameters
(Qmodeler, Qdeveloper and Qcombined) proposed earlier.18,46

The quality from the modeler’s point of view
(Qmodeler in the notation of Yona & Levitt18) is the
ratio of the number of correctly aligned positions
to the total number of positions in the evaluated
alignment. The quality from the developer’s point
of view (Qdeveloper

18) is the ratio of the number of

Fig. 2. Estimates of l and K derived from comparisons of the random alignments (composed from randomly
sampled PFAM columns) plotted as functions of 1/length, where length is the length of alignments. For a given length,
four sets of random alignment pairs were prepared from randomly picked columns of PFAM alignments. Each set
contained 10,000 pairs of alignments with a given number of rows (50, 100, 300 or 500). The distribution of optimal
local alignment scores produced for each set was used to derive the estimates of l and K. The plotted lines represent
the linear approximations of the dependencies. The deviation of l values from the line did not exceed ,2%.
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correctly aligned positions to the number of
positions in the structural alignment. To calculate
the “combined” quality (Qcombined

18), the number of
correct matches is divided by the total number of
positions that are aligned in either the structural
alignment or evaluated alignment.

For local alignments, it is reasonable to assess the
local prediction for only the regions of the struc-
tural alignment that are included in the evaluated
alignment as opposed to the prediction of the
whole structural alignment. Thus in addition to
Qdeveloper, we introduced two measures of “local
accuracy”. Qlocal

1 is defined as Qlocal
1 ¼ Nacc/L, the

ratio of the number of correctly aligned positions
Nacc to the length L of the region in the structural
alignment that includes the pairs of profile
positions from the alignment under evaluation.
Qlocal

2 is a modification of Qlocal
1 , which takes into

account slight shifts between the positions aligned
in the evaluated and the reference alignment. To
calculate Qlocal

2 , we consider all the matches in the
part of the structural alignment that correspond to
the alignment under evaluation. For each pair of
positions aligned by DALI, we find the shift Di

(the number of positions dividing the pair) that is
introduced by the evaluated alignment. The defi-
nition of Qlocal

2 is Q2
local ¼

P
ið0:5Þ

Di=L; where sum-
mation is made over all the position pairs from
the structural alignment that are included into the
evaluated alignment. Slight shifts of one to two
positions would make some additional contri-
bution to Qlocal

2 , whereas the contribution of the
positions shifted by D . ,5 would be $ , 102

times lower than that of the correct matches.
Both measures Qlocal are close to 1.0 for align-

ments with the correct prediction of structural
matches, even if they are very short. To assess
directly the length of the region covered by the
alignment, we introduced the additional measure
of “coverage”, which is independent of the
accuracy of the prediction. To calculate the cover-
age (Qcov), we determined the length of the region
in the structural alignment that includes all the
positions from the evaluated alignment and
divided it by the overall length of the structural
alignment.

Quality of the alignments by COMPASS compared
to those by PSI-BLAST and prof_sim

To estimate the boundaries of zones with low,
intermediate and high sequence similarity, we
split the whole identity range into small bins and
observed plots for Qlocal and Qcov (data not shown).
The growth of these measures between 0% and
30% is roughly divided into two phases: a rapid
growth phase (between 0% and 15% identity), and
a slower phase of reaching the plateau (between
15% and 30% identity). Based on this observation,
the identities of 15% and 30% were chosen as the
delimiters between the zones of low, intermediate
and high similarity.

Figure 3 shows the average quality measures for
the alignments obtained with different methods
for two zones of identity, 0–15% and 15–30%. The
profile–profile local alignments were obtained by
submitting the pairs of benchmark alignments to
prof_sim (program was generously provided by
Dr G. Yona) and COMPASS. The profile–sequence
PSI-BLAST alignments were obtained by submit-
ting the full alignment 1 and the first (query)
sequence of alignment 2 from each pair in the data-
sets. As initial reference of the alignment quality,
we used the Smith–Waterman alignments of single
query sequences from each benchmark pair.

The quality of the alignments produced by
COMPASS was higher than that of the alignments
produced by prof_sim and PSI-BLAST. Compared
to prof_sim, COMPASS produced slightly lower
coverage (Qcov), which may indicate a tendency
for slightly shorter alignments. Combined with
the increase of the local accuracy (Qlocal) and of the
integral quality parameters (Qmodeler, Qdeveloper,
Qcombined), this reduction of the coverage suggests
that the local alignments produced by COMPASS
tend to include less spurious matches. The increase
of Qlocal, Qmodeler, Qdeveloper and Qcombined for
COMPASS compared to other methods was more
pronounced in the low range of identities
(0–15%). In this range, the increase of the quality
parameters for COMPASS compared to PSI-
BLAST was approximately the same as the increase
for PSI-BLAST compared to the sequence–
sequence alignment (Figure 3).

Evaluation of the ability to detect remote
similarity between profiles

Evaluation protocol

As a criterion for assessing COMPASS as a
potential profile-based searching method, we
chose the ability to predict structural relationships
between protein domains. For the evaluation of
the profile–profile similarity detection, we used
the largest available source of accurate semi-
automatic multiple sequence alignments, the
PFAM database47 (version 6.6), and the largest
available source of automatic structural align-
ments, the FSSP database43,48 (update of December
2001). We collected all PFAM alignments contain-
ing at least one sequence that belonged to an FSSP
family. Within the resulting database of 1354
PFAM alignments, we performed exhaustive
prof_sim and COMPASS searches, with each
alignment as a query.

In order to perform PSI-BLAST searches, we
prepared the database of all 311,753 sequences
extracted from these alignments. In this database,
we ran 1354 PSI-BLAST searches, using each of the
alignments as a query (one round of the PSI-
BLAST 2.2.1 search with PSI-BLAST numerical
profile derived from the alignment; the template
sequence was set to the first sequence of the query
alignment; the maximal number of displayed hits
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and the maximal E-value were both set to 10,000).
As a result, a list of hits from the sequence data-
base was produced for each query alignment.
Then we transformed each list of the sequence hits
into the list of similarities between alignments. For
a given alignment, we compared the PSI-BLAST
E-values for all sequences from this alignment,
and assigned the best E-value to the similarity
between this alignment and the query. Using the
corresponding best sequence–profile alignment as
template, the profile–profile alignment was con-
structed and further assessed.

For each method, all found similarities between
alignment pairs were pooled together and ranked
by their E-value. The prof_sim program generated
only P-values for each pair of profiles; in order to
obtain an estimate of E-value, P-values had to be
multiplied by the number of profiles in the
database (G. Yona, personal communication). To

determine whether a hit was a true or a false
positive, we used one of the several criteria
described below. Having the ranked lists of true
and false positive hits for each criterion, we
generated and compared sensitivity plots for
different methods.

Evaluation criteria

To evaluate a hit as a true positive, we required
that it should be consistent with the structural
relationship in FSSP. In order to test for this con-
sistency, from both the “query” and the “hit” align-
ments we extracted sequences that belonged to
FSSP. (If a PFAM alignment contained more than
one sequence from FSSP, we chose a single repre-
sentative sequence closest to the top of the align-
ment.) The “relaxed” evaluation criterion for a
true positive hit demands that the FSSP entry

Fig. 3. Evaluation of alignment quality. In two ranges of sequence identity, the quality of the produced local
alignments was assessed by six parameters for four different alignment methods (pairwise sequence alignment using
BLOSUM62 matrix and Smith-Waterman algorithm, profile–sequence alignment using PSI-BLAST, profile–profile
alignments using prof_sim and COMPASS). As a reference, DALI structural alignments from the FSSP database were
used. Qcov corresponds to the portion of the length of the structural alignment that was covered by the sequence align-
ment, regardless of the actual accuracy. Qlocal

1 and Qlocal
2 correspond to the accuracy of the local prediction for only the

regions that are included in the evaluated alignment. Qmodeler, Qdeveloper and Qcombined are previously suggested measures
of integral accuracy of the alignment from the modeler’s, developer’s and combined points of view (see the text for
details). Means þ standard errors are shown.
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from the hit should belong to the same FSSP family
as the entry from the query, with the structural
similarity Z-score . 2.0. Among 1354 PFAM
alignments that contained FSSP entries, only 56
could not be linked to any other alignments in this
way; the remaining 1298 alignments included
FSSP sequences that shared a family with at least
one sequence from other alignments of the
dataset.

A more stringent set of criteria requires a certain
level of consistency between the predicted align-
ment and the alignment derived from FSSP. To
implement these criteria, we produced the local
alignment of the FSSP entries extracted from the
query and the hit, based on the profile–profile
alignment for the query and the hit. The resulting
local alignment of the two sequences was
compared to the alignment of these sequences in
FSSP.

To consider the hit a true positive, we demanded
that the alignment produced by the searcher
should correctly predict al least Nacc matches in
the FSSP alignment that has Z-score . 2.0. Vari-
ation of the required Nacc determines the stringency
of the criterion. We will present the results for

Nacc ¼ 2 (more than one match consistent with the
structural alignment) and Nacc ¼ 15 (at least 15 con-
sistent matches, which may correspond roughly to
a correctly predicted element of secondary struc-
ture).

This type of criteria for the true/false positive hit
evaluation demands a modest level of alignment
accuracy. In many cases, the sequence fragments
aligned by a search program were not considered
as reliably aligned by DALI (they were represented
in lowercase letters in the FSSP alignment). We
treated these regions as problematic for DALI and
excluded such “indecisive” cases from the sensi-
tivity plots. To compare the alignment produced
by a search program to the corresponding FSSP
alignment, we used the position numbering
provided for the two sequences by PFAM and
FSSP. In a number of cases, the starting positions
of the PDB sequences indicated in the PFAM
alignment were not consistent with those in the
FSSP alignment; such hits were disregarded. Since
we did not find any specific pattern of such
inconsistencies, we assumed that disregarding
these cases did not favor any particular searching
method.

Fig. 4. Sensitivity curves of PSI-BLAST, prof_sim and COMPASS for different criteria of true positive hit assignment.
(a) and (b) The curves for the relaxed criterion requiring that the sequences from the two alignments share the same
FSSP family. (a) The full-scale graph for the whole experiment (at this scale, the PSI-BLAST and COMPASS curves
are close). (b) The same curves for the first 2000 true positives. (c) and (d) The curves for the stringent criteria requiring
accurate prediction of Nacc ¼ 2 and Nacc ¼ 15 matches. (c) The full-scale graph. (d) The same curves for the first 1000
true positives.
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Performance of COMPASS as a search program
compared to prof_sim and PSI-BLAST

Sensitivity curves (plots of the number of true
positives versus the number of false positives)
were constructed for the searches by COMPASS,
prof_sim and PSI-BLAST using the hit evaluation

criteria described above. The results for the relaxed
criterion (requiring the correct prediction for
sharing the same FSSP family) are shown in
Figure 4(a) and (b). The number of false positives
produced by COMPASS was considerably lower
than those produced by other methods. For the
top 1000 true positive hits, COMPASS generated

Table 1. Similarities that were accurately predicted with low E-value by PSI-BLAST and received high E-value by
COMPASS

PFAM name1 PDB ID1 PFAM name2 PDB ID2
CMPSS
E-value Nacc

Minimal PSI-BLAST
E-value: 1 versus 2 Nacc

Minimal PSI-BLAST
E-value: 2 versus 1 Nacc

DIM1 1qgvA thiored 1mek 2.53 £ 10 39 9.00 £ 1024 33 1.90 £ 1021 44
B12-binding 2reqA TMP-TENI 2tpsA 1.77 18 9.00 £ 1023 17 1.76 £ 102 0

Similarities between PFAM families that were accurately predicted (Nacc $ 15) by PSI-BLAST with minimal E-value , 0.01, and
were assigned E-value . 1.0 by COMPASS. PFAM names for the alignments and PDB Ids for their representatives with solved struc-
ture are indicated, along with E-value estimates by COMPASS (CMPSS E-value), and minimal E-values produced by PSI-BLAST for
the first (1 versus 2) and the second (2 versus 1) alignments used as query. Numbers of accurate matches in the local alignments
(N_acc) are shown after corresponding E-values.

Fig. 5. Examples of predicted similarities between Rossmann-type folds. The structures of the representatives of
three PFAM families are shown, along with the sequence alignments produced from two COMPASS hits (invariant
residues are boxed with black). Names of the PFAM alignments, corresponding protein folds and PDB Ids of the repre-
sentative structures are indicated. Below the sequence alignments, conserved secondary structure elements are shown.
The a-helices and b-strands are displayed as arrows and cylinders, respectively. The ribbon diagrams of the three
domains (PDB Id 1iov, residues 1–87, 292–306; PDB Id 1amoA, residues A66–232; PDB Id 1ybvA, residues A20–199)
were drawn by MOLSCRIPT.63 The regions of predicted similarity in the protein structures are highlighted in red, the
labels of secondary structure elements corresponding to those shown below the alignments. Other secondary structure
elements are colored in blue (a-helices) and yellow (b-strands).
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Table 2. Similarities that were accurately predicted with low E-value by COMPASS and received high E-value by PSI-
BLAST

PFAM name1
PDB
ID1 PFAM name2

PDB
ID2

CMPSS
E-value

N_acc/
L_algn

Minimal
PSI-BLAST
E-value: 1

versus 2 N_acc

Minimal
PSI-BLAST
E-value: 2

versus 1 N_acc

Helix-turn-helix motifs
HTH_5 1smtB HTH_7 1hcrA 6.59 £ 1028 22/31 1.30 £ 10 2 2.65 £ 102 14
HTH_3 1adr HTH_7 1hcrA 2.38 £ 1026 23/33 6.30 26 5.20 £ 10 15
HTH_7 1hcrA lacI 1pru 3.75 £ 1026 21/22 1.17 £ 103 0 5.90 19
HTH_7 1hcrA HTH_8 1ntcA 4.56 £ 1026 20/21 3.58 £ 102 14 1.30 20
RB_B 1guxB transcript_fac2 1volA 9.95 £ 1025 54/62 1.30 6 1.10 25
HTH_8 1ntcA ModE 1b9nB 2.51 £ 1024 31/33 4.20 9 3.30 £ 10 14
Arg_repressor 1b4aA HTH_5 1smtB 2.80 £ 1024 25/62 1.70 0 4.19 £ 102 11
HTH_8 1ntcA HTH_AraC 1d5yA 3.42 £ 1024 31/42 1.40 £ 10 0 6.40 15
HTH_7 1hcrA Trp_repressor 1troG 1.16 £ 1023 20/32 1.87 £ 102 12 3.20 £ 10 12
E2F_TDP 1cf7B HTH_5 1smtB 1.70 £ 1023 17/25 1.68 £ 103 0 3.35 £ 102 0
HTH_7 1hcrA gntR 1e2xA 8.21 £ 1023 26/35 5.34 £ 102 10 1.70 £ 10 20
Crp 1berB gntR 1e2xA 4.66 £ 1025 29/29 1.30 28 2.40 28
Fe_dep_repress 1ddnA GerE 1a04A 3.06 £ 1024 16/27 4.30 22 1.30 £ 10 26
GerE 1a04A lacI 1pru 2.33 £ 1023 22/22 2.90 £ 10 21 2.00 £ 10 13
Arg_repressor 1b4aA Fe_dep_repress 1ddnA 2.75 £ 1023 20/41 2.20 £ 10 8 1.01 £ 103 2

Rossmann-like folds (beta-alpha-beta units)
AAA 1g3iV CbiA 1a82 5.91 £ 10 2 13 17/27 3.20 0 2.30 16
Amino_oxidase 1b37A GMC_oxred 1gpeA 7.11 £ 1028 16/29 3.90 £ 10 23 4.60 £ 10 22
ArsA_ATPase 1f48A SKI 1shkB 7.43 £ 1028 19/36 6.90 £ 10 21 5.20 £ 10 23
AAA 1g3iV fer4_NifH 1n2cE 9.70 £ 1028 15/22 1.30 £ 10 16 2.97 £ 102 0
GMC_oxred 1gpeA adh_short 1ybvA 1.16 £ 1027 22/29 4.90 14 7.90 6
GMC_oxred 1gpeA transketolase_C 1qs0B 8.01 £ 1027 15/34 4.76 £ 102 0 5.49 £ 102 0
GMC_oxred 1gpeA UDPG_MGDP_dh 1dliA 9.76 £ 1027 15/29 4.10 £ 102 8 2.46 £ 102 0
DAO 1daoA Octopine_DH_N 1bg6 1.16 £ 1026 23/24 3.60 £ 10 21 2.40 23
FAD_binding_3 1d7lA Octopine_DH_N 1bg6 1.66 £ 1026 26/26 6.90 19 1.10 32
DAO 1daoA Epimerase 1bxkA 3.41 £ 1026 18/21 5.90 16 1.50 14
Beta_elim_lyase 2tplA Cys_Met_Meta_PP 1cs1A 6.64 £ 1026 106/226 3.90 34 2.80 12
AdoHcyase 1a7aB UDPG_MGDP_dh 1dliA 7.03 £ 1026 37/85 7.50 £ 10 7 2.54 £ 102 1
FGGY 1glaG HSP70 1hjoA 8.55 £ 1026 16/16 1.50 20 1.20 £ 10 19
CheR 1bc5A adh_zinc 1dehA 1.12 £ 1025 36/148 3.30 £ 10 15 9.10 £ 10 0
Ras 1ek0A recA 2reb 1.31 £ 1025 15/51 1.15 £ 102 18 9.20 6
SIS 1moq adh_short 1ybvA 1.52 £ 1025 16/22 3.10 £ 10 0 4.30 4
Asparaginase 1djoA ECH 1dciA 1.99 £ 1025 35/97 8.50 £ 10 21 5.56 £ 102 27
AlaDh_PNT 1pjbA PALP 2wsyB 2.29 £ 1025 34/152 6.20 £ 10 0 2.65 £ 103 0
Dala_Dala_ligas 1iov flavodoxin 1b1cA 2.29 £ 1025 20/44 7.13 £ 102 0 8.65 £ 102 0
AlaDh_PNT 1pjbA Semialdhyde_dh 1brmA 2.66 £ 1025 28/131 1.90 £ 10 8 9.80 0
adh_short 1ybvA tRNA-synt_1d 1bs2A 4.40 £ 1025 24/55 1.06 £ 102 17 1.10 0
GLFV_dehydrog 1aup Octopine_DH_N 1bg6 5.00 £ 1025 16/16 7.80 £ 10 27 6.00 34
AlaDh_PNT 1pjbA GMC_oxred 1gpeA 5.86 £ 1025 18/32 1.70 £ 102 19 1.50 £ 10 21
Lipase_3 1lgyA abhydrolase_2 1auoA 6.15 £ 1025 15/15 1.54 £ 103 0 1.30 £ 10 0
GLFV_dehydrog 1aup UDPG_MGDP_dh 1dliA 6.34 £ 1025 24/36 1.70 0 1.60 £ 10 0
DLH 1din Peptidase_S9 1e5tA 7.41 £ 1025 24/30 2.90 11 2.50 21
Acyl_transf 1mla abhydrolase_2 1auoA 8.83 £ 1025 16/16 3.03 £ 103 16 8.40 £ 10 1
GMC_oxred 1gpeA Octopine_DH_N 1bg6 8.91 £ 1025 16/16 2.96 £ 102 12 9.80 £ 10 16
Flavodoxin 1b1cA tRNA-synt_1d 1bs2A 1.31 £ 1024 16/49 3.85 £ 102 0 8.20 £ 10 0
Epimerase 1bxkA GMC_oxred 1gpeA 1.79 £ 1024 27/34 3.87 £ 102 0 1.42 £ 102 0
GARS_N 1gsoA adh_short 1ybvA 1.84 £ 1024 19/33 2.30 £ 10 10 5.60 £ 10 4
AlaDh_PNT 1pjbA Methyltransf_3 1vid 1.94 £ 1024 18/37 2.27 £ 102 0 2.30 £ 10 0
Semialdhyde_dh 1brmA adh_zinc 1dehA 2.05 £ 1024 18/19 1.50 15 5.66 £ 102 6
DHDPS 1f5zA Peripla_BP_like 1efaC 2.27 £ 1024 29/50 2.70 0 1.20 0
B12-binding 2reqA tRNA-synt_1d 1bs2A 2.49 £ 1024 19/51 6.20 0 3.29 £ 102 0
ATP-synt_ab 1bmfA PRK 1esmB 2.60 £ 1024 18/18 1.30 £ 10 20 4.00 20
adh_short 1ybvA flavodoxin 1b1cA 3.14 £ 1024 16/31 5.60 0 2.30 0
PFK 3pfk adh_short 1ybvA 3.22 £ 1024 17/36 1.44 £ 103 0 4.37 £ 102 0
Octopine_DH_N 1bg6 Semialdhyde_dh 1brmA 3.68 £ 1024 16/17 8.80 £ 10 6 2.23 £ 102 0
CbiA 1a82 fer4_NifH 1n2cE 4.03 £ 1024 31/43 1.20 £ 10 0 4.80 £ 10 0
FAD_binding_3 1d7lA ldh 5ldh 4.34 £ 1024 15/18 1.20 19 1.48 £ 102 21
Asparaginase 1djoA aminotran_3 1d7rA 4.50 £ 1024 24/36 2.79 £ 102 0 1.24 £ 103 0
CheR 1bc5A adh_short 1ybvA 4.61 £ 1024 18/42 6.80 £ 10 0 1.60 £ 10 0
PRK 1esmB recA 2reb 4.61 £ 1024 19/34 1.10 £ 10 18 6.00 9
AdoHcyase 1a7aB FAD_binding_3 1d7lA 5.81 £ 1024 28/28 1.50 £ 10 33 2.00 0
B12-binding 2reqA Peripla_BP_like 1efaC 6.04 £ 1024 22/71 5.20 £ 10 10 2.92 £ 102 24
CheR 1bc5A Methyltransf_3 1vid 6.14 £ 1024 55/158 1.02 £ 102 0 3.30 £ 10 0
MethyltransfD12 2dpmA adh_short 1ybvA 6.59 £ 1024 15/33 1.05 £ 102 0 2.76 £ 102 0
AlaDh_PNT 1pjbA transketolase_C 1qs0B 6.96 £ 1024 28/35 2.26 £ 102 0 2.32 £ 102 0
GTP_EFTU 1tuiA adenylatekinase 3adk 6.96 £ 1024 17/17 2.64 £ 102 0 1.27 £ 102 15

(continued)
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40 false positives, whereas PSI-BLAST and
prof_sim generated 100 and 244 false positives,
respectively.

In order to assess whether the E-values pro-
duced by COMPASS were within a reasonable
range, we compared the E-values of the 100th
false positive hit with the estimate of E-value for
the first 100 hits in the random database of the
same size. Since we pooled together all searches
for each alignment as query, the estimated E-value
should be much lower than the E-value for the
first 100 random hits in a single search. For the set-
ting with no additional conditions of alignment
accuracy, we considered totally ,1.8 £ 106 hits;
thus the E-value for the 100th hit in the random
database should be of the order ,100/
1.8 £ 106 ¼ 5.6 £ 1025. In our experiment, the
E-value of the 100th false positive hit for
COMPASS was 4.02 £ 1024, which is ,seven times
higher than the value expected for the random
database. The prof_sim P-value assigned to the
100th false positive was 8.07 £ 1024; the estimate
of E-value obtained from the P-value after the
recommended multiplication by the database size

(G. Yona, personal communication) was 1.09,
which is , four orders of magnitude higher than
the theoretical E-value for the 100th hit in the
random database. The protocol that we used to
process the results of PSI-BLAST searches included
choosing the single best sequence hit from the
whole set of the sequences representing a given
alignment. Therefore the E-values for such hits
were biased; they were used only for ranking the
hits. Thus the use of PSI-BLAST E-values in their
full sense was irrelevant for our setting. In fact,
E-values for the 100th false positive hit produced
in such a way were ,seven orders higher than
the theoretical expectations for the results of 1354
searches performed in the database of ,3.1 £ 105

sequences.
When additional restrictions of the alignment

accuracy were imposed, the sensitivity plots for all
methods changed dramatically (Figure 4(c) and
(d)). Each method produced a much higher num-
ber of false positives, even if we demanded only
Nacc ¼ 2 positions to be aligned exactly as in the
FSSP alignments. However, the performance of
COMPASS was better compared to other methods

Table 2 Continued

PFAM name1
PDB
ID1 PFAM name2

PDB
ID2

CMPSS
E-value

N_acc/
L_algn

Minimal
PSI-BLAST
E-value: 1

versus 2 N_acc

Minimal
PSI-BLAST
E-value: 2

versus 1 N_acc

GMC_oxred 1gpeA adh_zinc 1dehA 8.36 £ 1024 18/32 1.07 £ 102 0 1.39 £ 102 0
Peptidase_S9 1e5tA abhydrolase_2 1auoA 8.51 £ 1024 17/17 1.60 26 4.00 £ 10 0
Fibrillarin 1fbnA RrnaAD 1yub 9.31 £ 1024 42/71 4.00 £ 10 25 6.30 0
ArsA_ATPase 1f48A Glycos_transf_3 1azyA 1.06 £ 1023 16/27 1.76 £ 102 5 2.92 £ 102 0
GTP_EFTU 1tuiA recA 2reb 1.06 £ 1023 22/186 1.10 £ 10 27 4.00 15
GMC_oxred 1gpeA malic 1qr6A 1.11 £ 1023 17/17 3.38 £ 102 18 1.30 £ 10 0
Malic 1qr6A pyr_redox 1d7yA 1.44 £ 1023 20/20 4.60 £ 10 0 2.40 £ 10 21
GTP_EFTU 1tuiA fer4_NifH 1n2cE 2.09 £ 1023 21/32 4.50 £ 10 28 4.30 £ 10 0
APS_kinase 1d6jA GTP_EFTU 1tuiA 2.32 £ 1023 20/20 1.80 £ 10 30 6.30 £ 10 22
CbiA 1a82 recA 2reb 2.25 £ 1023 21/35 1.17 £ 102 19 2.90 5
GDI 1gnd UDPG_MGDP_dh 1dliA 2.63 £ 1023 21/31 3.30 £ 10 0 3.49 £ 103 0
Asn_synthase 1ct9A PAPS_reduct 1sur 2.64 £ 1023 15/15 4.80 £ 10 17 4.10 20
ECH 1dciA THF_DHG_CYH 1a4iA 2.68 £ 1023 20/20 1.97 £ 102 20 4.40 £ 10 22
GFO_IDH_MocA 1evjA aminotran_1_2 1bs0A 2.84 £ 1023 23/40 1.20 £ 10 0 5.40 0
SIS 1moq ldh 5ldh 2.89 £ 1023 15/21 2.51 £ 102 10 3.23 £ 102 0
APS_kinase 1d6jA recA 2reb 3.10 £ 1023 30/39 1.30 30 4.20 30
AdoHcyase 1a7aB RrnaAD 1yub 3.24 £ 1023 18/52 9.10 £ 10 0 2.23 £ 102 0
Dala_Dala_ligas 1iov Flavoprotein 1e20A 3.86 £ 1023 25/42 1.70 £ 102 0 1.63 £ 102 9
Thymidylate_kin 4tmkA fer4_NifH 1n2cE 3.97 £ 1023 20/28 3.80 21 1.43 £ 103 0
DapB 1arzB adh_zinc 1dehA 4.11 £ 1023 19/19 3.50 21 3.50 £ 10 11
DHDPS 1f5zA aminotran_1_2 1bs0A 5.21 £ 1023 22/72 4.50 0 4.70 0
FAD_binding_3 1d7lA THF_DHG_CYH_C 1b0aA 6.06 £ 1023 29/33 6.20 £ 10 7 5.13 £ 102 8
FAD_binding_3 1d7lA SIS 1moq 6.06 £ 1023 15/20 3.20 £ 102 0 1.33 £ 103 5
Octopine_DH_N 1bg6 adh_short 1ybvA 6.82 £ 1023 34/37 2.20 £ 10 8 4.40 £ 10 8
Asp_Glu_race 1b73A flavodoxin 1b1cA 7.69 £ 1023 16/33 9.20 £ 102 6 2.34 £ 103 0
adh_zinc 1dehA malic 1qr6A 8.00 £ 1023 15/42 2.30 13 1.60 £ 10 0
6PGD 1pgn UDPG_MGDP_dh 1dliA 8.14 £ 1023 48/116 2.60 £ 10 24 1.23 £ 103 0
DLH 1din Lipase_3 1lgyA 8.18 £ 1023 18/18 7.40 £ 10 1 4.16 £ 102 0
CobU 1c9kA adenylatekinase 3adk 8.70 £ 1023 20/30 1.50 18 3.00 20
ATP-synt_ab 1bmfA adenylatekinase 3adk 9.37 £ 1023 17/17 9.80 £ 10 0 2.20 £ 10 0
AlaDh_PNT 1pjbA GDI 1gnd 9.52 £ 1023 19/36 6.30 £ 102 0 3.38 £ 102 0

Similarities between PFAM families that were accurately predicted (Nacc $ 15) by COMPASS with E-value , 0.01, and were
assigned minimal E-value . 1.0 by PSI-BLAST. PFAM names for the alignments and PDB IDs for their representatives with solved
structure are indicated, along with E-value estimates by COMPASS (CMPSS E-value), and minimal E-values produced by PSI-
BLAST for the first (1 versus 2) and the second (2 versus 1) alignments used as query. Lengths of COMPASS local alignments (Lalgn)
and numbers of accurate matches in the local alignments (Nacc) are shown after corresponding E-values.
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for all tested values of Nacc. The total number of
true positive hits detected by COMPASS was con-
siderably larger than those detected by prof_sim
or PSI-BLAST, and the rate of false positives was
lower. For the top 1000 true positive hits, based on
the threshold Nacc ¼ 2, PSI-BLAST and prof_sim
produced 8901 and 4246 false positives,
respectively, whereas COMPASS produced 1266
false positives. For the threshold setting Nacc ¼ 15,
the sensitivity curves were much steeper, and the
proportion of false positives was much higher.
However, the curve for COMPASS showed con-
siderably better performance than the curves for
PSI-BLAST and prof_sim (Figure 4(c) and (d)).

Analysis of the top false positive hits revealed
some drawbacks of using FSSP as a reference to
assess alignments produced by search programs.
Sometimes, the alignments assessed as false
positives were obviously correct but different from
the FSSP alignments. We noticed several main
categories of such “correct false positives”. One of
these categories includes the cases of domain
duplication. For example, the beta subunit of
DNA polymerase III contains three similar
domains, which are represented by different
PFAM alignments. When the similarity between
these alignments DNA_pol3_beta and DNA_pol3_
beta_2 was detected by COMPASS (with
E-value ¼ 1.26 £ 10214), it was considered a false
positive, since the reference did not include such
interdomain alignment. Another category of
correct false positives includes functionally
relevant and well-conserved regions that may be

misaligned in the FSSP structural alignments. For
example, in the alignment of shikimate kinase
chain A (PDB ID 1shkA) and D2 domain of
N-ethylmaleimide-sensitive fusion protein chain A
(PDB ID 1d2nA) derived from the multiple align-
ment for the 1shkA FSSP family, the obvious align-
ment of Walker A motifs in the two sequences is
not made correctly. However, Walker A motifs
were aligned by COMPASS, which assigned an
E-value of 2.78 £ 10214 to the detected similarity
between the corresponding AAA and SKI align-
ments from PFAM. Although these discrepancies
exist, the portion of such inconsistencies should be
approximately the same for each searching method
we tested. Therefore, they should not affect the
comparison of the sensitivity curves obtained by
different methods.

Thus, our conclusion that COMPASS performed
better searches than other methods is valid for all
types of criteria that were used for hit evaluation.
This suggests not only a better prediction of the
structural relationships between protein domains
but also a better quality of the produced
alignments.

Relationships between profiles that were reliably
detected by COMPASS and were not detected
by PSI-BLAST

In order to compare the sets of relationships
between PFAM profiles predicted by two different
methods 1 and 2, we analyzed the hits that (i)
were correctly detected and assigned conservative

Fig. 6. Detection of common
helix-turn-helix motifs. The regions
of structural similarity predicted by
a COMPASS hit are shown for the
representatives of two PFAM
families, which are classified within
different SCOP families. Names of
the PFAM alignments, correspond-
ing SCOP families and PDB Ids of
the representative structures are
indicated. In the sequence align-
ment, invariant residues are boxed
with black. Conserved secondary
structure elements are shown
below the alignment. The a-helices
and b-strands are displayed as
arrows and cylinders, respectively.
The ribbon diagrams of the repre-
sentative domains (PDB Id 1lea,
residues 1–72, and PDB Id 1e2xA,
residues 6–74) were drawn by
MOLSCRIPT.63 The regions of pre-
dicted similarity in the protein
structures are highlighted in red,
the labels of secondary structure
elements corresponding to those
shown below the alignment. Other
secondary structure elements are
colored in blue (a-helices) and
yellow (b-strands).
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E-value ,0.01 by method 1, and (ii) were assigned
high E-value .1.0 by method 2, which corre-
sponds to the expectation of at least one random
hit with the same score. We requested relatively
high accuracy of the predictions made by method
1: the cutoff for the number of matches consistent
with the FSSP alignment was set to Nacc ¼ 15. We
considered two sets of hits that satisfied conditions
(i) and (ii) for the pairs COMPASS versus PSI-
BLAST and PSI-BLAST versus COMPASS. PSI-
BLAST searches with PFAM alignments against
the database of sequences were performed as
described above, the minimal E-value for a pro-
file–sequence hit being chosen among all the
sequences that belonged to the “subject”
alignment.

Two pairs of alignments existed for which PSI-
BLAST predictions had minimal E-value lower
than 0.01 and Nacc $ 15, whereas COMPASS
E-values were higher than 1.0. These pairs were
PFAM families DIM1 (contains thioredoxins and
related proteins) versus thiored (contains thio-
redoxins), and B12-binding (contains B12-binding
domains of several enzymes) versus TMP-TENI

(contains thiamine monophosphate synthase and
the regulatory protein TENI). The PFAM family
names, representative PDB Ids, E-values and Nacc

for the two methods are shown in Table 1.
On the other hand, COMPASS produced predic-

tions with E-value , 0.01 and Nacc $ 15 for 114
pairs of alignments that had PSI-BLAST E-values
greater than 1.0. Analyzing the common structural
features detected by these hits, we noticed that the
majority of the predictions fell into two main
groups (shown in Table 2). The most populated
group (,80 hits) includes relationships detected
between the protein domains of Rossmann-type
folds (beta–alpha–beta units). Examples of such
similarities are shown in Figure 5. In order to
illustrate the sequence alignments and the corre-
sponding structural fragments revealed by these
hits, a single representative with known structure
was chosen from each of three PFAM alignments:
flavodoxin (contains various flavodoxins), Dala_
Dala_ligas (contains D-alanine–D-alanine ligase),
and adh_short (contains short-chain dehydrogen-
ases). According to SCOP49 classification, the three
domains (PDB Ids 1amoA, 1iov and 1ybvA) belong

Fig. 7. Similarity between families possessing a Rossmann-type and TIM-barrel folds. The structures of the repre-
sentatives of two PFAM families are shown, along with the sequence alignment produced from the COMPASS hits
(invariant residues are boxed with black). Names of the PFAM alignments, corresponding protein folds and PDB Ids
of the representative structures are indicated. Conserved secondary structure elements are shown below the sequence
alignments. The a-helix and b-strand are displayed as arrow and cylinder, respectively. The ribbon diagrams of the
domains (PDB Id 1auz, residues 1–111, and PDB Id 1bag, residues 9–43, 74–100, 150–307) were drawn by
MOLSCRIPT.63 The regions of predicted similarity in the protein structures are highlighted in red, the labels of
secondary structure elements corresponding to those shown below the alignment. Other secondary structure elements
are colored in blue (a-helices) and yellow (b-strands).
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Figure 8 (legend opposite)



to different folds (flavodoxin-like, biotin carboxyl-
ase N-terminal domain-like and NAD(P)-binding
Rossmann fold, respectively). COMPASS detected
the similarity between the N-terminal fragments
of the pair Dala_Dala_ligas—flavodoxin (b/a/b
motif) and the pair adh_short—flavodoxin(b/a
motif). In the Rossmann and Rossmann-type folds,
these regions generally contain the conserved
phosphate-binding motif: (N0) b-strand, loop,
a-helix.

Similarities between the helix-turn-helix (HTH)
motif-containing proteins comprise another group
of structural relationships that are predicted with
high accuracy and low E-value by COMPASS but
are assigned high E-values by PSI-BLAST. This
group includes 15 hits (see Table 2). An example
of such a hit is shown in Figure 6. COMPASS
assigned an E-value of 2.88 £ 1027 to the local
alignment of two PFAM families, LexA_DNA_bind
(contains LexA SOS regulon repressor) and gntR
(contains a number of bacterial transcription regu-
lation proteins). The alignment of two representa-
tive sequences (PDB Ids 1lea and 1e2xA)
corresponds to the similarity between major parts
of the domain structures. According to SCOP,
these structures belong to different families of the
same “winged helix” superfamily of the DNA/
RNA-binding three-helical bundle fold.

These two major groups of relationships pre-
dicted by COMPASS and not predicted by PSI-
BLAST are consistent with the overall composition
of the fold similarities revealed by the block-based
methods of profile–profile comparison, LAMA13

and CYRCA.16 Using ungapped alignments of the
blocks, it was possible to predict a number of
relationships between the folds, the largest sets of
the related blocks representing HTH-motifs13 (14
blocks) and phosphate-binding sites of Rossmann-
type folds16 (47 blocks, including several blocks
from TIM-barrel folds). It is difficult to compare
these results obtained on the BLOCKS database to
our results obtained on the PFAM database. How-
ever, the more extended COMPASS alignments
allowing gaps may not only detect the similarity
between the short motifs but give more specific

and diverse predictions of structural and func-
tional similarities between the protein families
(see an example below).

Along with the cases of clear homology detec-
tion, COMPASS produced accurate predictions of
structural similarities that yet do not have an
obvious evolutionary meaning. The largest group
of such predictions contains nine hits revealing
similar fragments in the domain structures of
Rossmann-type and TIM-barrel folds. An example
of such a hit is shown in Figure 7. The two folds
are represented by anti-sigma factor antagonist
SpoIIaa (PDB ID 1auz) and bacterial alpha-amylase
(PDB ID 1bag), respectively. COMPASS alignment
of the corresponding PFAM alignments (STAS and
alpha-amylase) reveals the similarity between a/b
pairs in these two structures. The evolution of a
TIM-barrel from two (b/a)4 half-barrels has been
previously hypothesized.50 However, it is still
unclear whether the observed hits reflect the
evolutionary relationship between the families of
different folds or the structural constraints that are
similar for these types of a/b domains. Consistent
with our results, the analysis of the block simi-
larities by CYRCA16 revealed short regions similar
for Rossmann-type and several TIM-barrel
families, which were assigned by the authors to
the set of Rossmann-type fold ligand binding
motifs.

Several other similarities between PFAM families
that were accurately predicted by COMPASS and
were assigned large E-values by PSI-BLAST
included relationships between SH2 domains (in
Cbl_N3 and SH2 families), between phospho-
tyrosine-binding domains (in ERM and PID
families), and between the motifs typical for
cysteine proteases (in Acetyltransf2 and
Transglut_core families).

Example of COMPASS prediction for a PFAM
family with unknown structure

To produce structural and functional predictions
for PFAM families with unknown structure, we
used these alignments as queries to run COMPASS

Fig. 8. Sequence similarity between the N-terminal domain of CTF/NFI family and MH1 domain of Smads infers
structural and functional similarity. (a) Sequence alignment of the N-terminal region in representative sequences of
CTF/NFI (PFAM family CTF_NFI, top) and Smads (PFAM family Dwarfin, bottom), as constructed by COMPASS.
PFAM sequence Id and first residue number are shown for each sequence. The identifier of the sequence with known
spatial structure (PDB Id 1mhd) is highlighted in red. Long insertions are not displayed: the numbers of omitted
residues are specified in brackets. The regions of alignments with high content of gaps that were disregarded in the
process of the local alignment construction, and corresponding gap symbols inserted in the other alignment are high-
lighted in gray. The gap symbols inserted in the course of the local alignment construction are highlighted in green.
Potential zinc ligands are boxed in black, the uncharged residues (all amino acids except D, E, K, R) in mostly hydro-
phobic sites are highlighted in yellow. The secondary structure consensus is shown below the alignment, with
secondary structure elements labeled and colored according to the scheme shown in (b). a-Helices and b-strands are
displayed as arrows and cylinders, respectively. (b) The ribbon diagram of Smad3 MH1 domain (PDB Id 1mhd,
residues A29–132) in complex with DNA that was drawn by MOLSCRIPT.63 N and C termini are labeled. a-Helices
are colored in blue, b-strands that donate zinc ligands are colored in green, other b-strands are colored in yellow.
(c) The ribbon diagram of a zinc-binding site (Cys-His box) in Smad3 MH1 domain (PDB Id 1mhd, residues A63–68,
A102–130). Potential zinc ligands are labeled and shown in ball-and-stick representation.
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against the dataset of PFAM alignments containing
at least one sequence with a solved structure.
Although the complete discussion of the obtained
results is beyond the scope of this paper, we
would like to provide an interesting example of
predictions based on one of COMPASS hits.

COMPASS assigned an E-value ¼ 1.73 £ 1029 to
the local alignment of N-terminal regions of the
PFAM alignments CTF_NFI and Dwarfin (Figure
8). The CTF_NFI alignment contains proteins of
the CTF/NFI family that have no members with
known structure, whereas the Dwarfin alignment
corresponds to the family of Smad proteins (i.e.
dwarfins), which consist of two conserved
domains separated by a linker. Crystal structures
are available for both of the dwarfin domains.
Both CTF/NFI and Smads are site-specific DNA-
binding proteins. Smads are known as transcrip-
tion factors,51 – 53 whereas the CTF/NFI family is
involved in the regulation of transcription and
viral replication.54 Although each of the families
plays a significant role in signal transduction,51 – 54

the regulatory functions of Smads, namely their
place in the TGF-b cascade,53,55,56 have been lately
investigated to a greater extent. The N-terminal
domain of CTF/NFI binds DNA57,58, as well as
does the N-terminal domain MH1 of most
Smads.52,59 The alignment produced by COMPASS
suggested the similarity between these domains
(Figure 8(a)). This similarity has not been pre-
viously reported in the literature, and was
undetectable even with extensive PSI-BLAST
searches.

The solved structure of MH1 domain in Smads
consists of two subdomains60 (Figure 8(b)). The
functional segment of the first subdomain is the
b-hairpin de that binds in the major groove of
DNA.60 The second subdomain is folded into a
b–V–b unit. The significant structural similarity
of MH1 to the zinc binding I-PpoI endonuclease,
as well as the deviations from ideal chain geometry
of MH1 strongly suggest the presence of the metal-
binding site formed by three cysteine residues
(C64, C109 and C121) and one histidine H126
(Figure 8(c)), which resembles the similar site in
I-PpoI.61

The COMPASS alignment of Dwarfin and CTF/
NFI includes the sequence regions of both MH1
subdomains. In addition to a significant similarity
in the patterns of hydrophobicity and distribution
of small residues, the alignment reveals remarkable
conservation of the zinc binding Cys-His box motif
in CTF/NFI family (Figure 8(a), zinc ligands boxed
with black). The found sequence similarity
suggests that the MH1 domain of Smads and the
N-terminal domain of CTF/NFI shared a common
ancestor and should be classified within the same
superfamily. MH1 was hypothesized to be homo-
logous to His-Me endonucleases.61 Therefore, the
N-terminal domain of CTF/NFI represents another
family within this diverse superfamily, and is
likely to be a modified endonuclease that lost its
enzymatic activity but retained its ability to bind

DNA. Our prediction is additionally supported by
the recent inclusion of the CTF/NFI DNA-binding
domains into the DWA family of the SMART data-
base of manually curated alignments,64 which now
contains both Smad and CTF/NFI domains.

In addition to the overall homology and
structural similarity of the MH1 domain and the
N-terminal domain of CTF/NFI, two specific pre-
dictions can be made. The sequence region aligned
to the DNA-binding segment of MH1 (b-hairpin de,
Figure 8(a) and (b)) provides a potential DNA-
binding segment in CTF/NFI, and we suggest that
these two segments may employ a similar mode
of binding DNA. The presence of the Cys-His box
motif suggests that CTF/NFI bind metal ions
similarly to His-Me endonucleases. Interestingly,
mutations of the three Cys-His box cysteine resi-
dues abolished the DNA-binding activity of NFI,
whereas mutation of another conserved cysteine
(aligned with G73 in 1mhd) did not affect DNA
binding.62 These biochemical data further support
our prediction and suggest that metal binding is
required for the DNA-binding activity of the
N-terminal domain of CTF/NFI.

Conclusion

Here, we present COMPASS, a new method for
comparison of multiple protein alignments, which
constructs local profile–profile alignments and
analytically estimates E-values for the detected
similarities. As compared to the existing methods
of profile–sequence (PSI-BLAST) and profile–pro-
file comparison (prof_sim), this method provides
an increased ability to detect remote sequence
similarities, as well as improved quality of local
alignments. COMPASS was able to detect new
relations between protein families that are consist-
ent with similarities in their structures, although
the families often possess different SCOP folds.
The ability of COMPASS to extend the current
limitations of remote sequence similarity detection
may provide new insights into the structural and
functional features of uncharacterized protein
families. For example, COMPASS detected a novel
relationship between the N-terminal domains of
CTF/NFI and Smad. The corresponding
COMPASS alignment (i) allows the overall struc-
ture prediction of the DNA-binding domain of
CTF/NFI; (ii) suggests that this domain binds
metal and predicts the metal binding site; and (iii)
leads to a hypothesis about the mechanism of
DNA binding by CTF/NFI, the family of transcrip-
tion factors with unknown structure.
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