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Abstract

We present dynamic Monte Carlo simulations of a lattice-gas model for bromine electrode-
position on single-crystal silver (100). This system undergoes a continuous phase transition be-
tween a disordered phase at low electrode potentials and a commensurate c(2 x 2) phase at high
potentials. The lattice-gas parameters are determined by fitting simulated equilibrium adsorp-
tion isotherms to chronocoulometric data, and free-energy barriers for adsorption/desorption
and lateral diffusion are estimated from ab initio data in the literature. Cyclic voltammo-
grams in the quasi-static limit are obtained by equilibrium Monte Carlo simulations, while for
nonzero potential scan rates we use dynamic Monte Carlo simulation. The butterfly shapes of
the simulated voltammograms are in good agreement with experiments. Simulated potential-
step experiments give results for the time evolution of the Br coverage, as well as the c(2 x 2)
order parameter and its correlation length. During phase ordering following a positive potential
step, the system obeys dynamic scaling. The disordering following a negative potential step is
well described by random desorption with diffusion. Both ordering and disordering processes
are strongly influenced by the ratio of the time scales for desorption and diffusion. Our re-
sults should be testable by experiments, in particular cyclic voltammetry and surface X-ray
scattering.
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1 Introduction

The electrodeposition of Br on single-crystal Ag(100) from aqueous solution is a simple example
of anion adsorption which has been extensively studied, both by classical electrochemical methods
[, B, B, i, B] and by techniques such as in situ surface X-ray scattering (SXS) [B, B, ] and X-ray
absorption fine structure (XAFS) [f].

Cyclic voltammetry (CV) shows a typical butterfly structure with a broad pre-wave in the
negative-potential region and a sharp peak at more positive potentials [ﬂ, E, E, H, E] The recent
SXS experiments by Ocko, Wang, and Wandlowski [ showed that the sharp peak corresponds to
a continuous phase transition in the layer of adsorbed Br. At this transition the adlayer changes
its structure from a disordered two-dimensional “gas” on the negative-potential side, to an ordered,
commensurate ¢(2 x 2) phase with a Br coverage of 1/2 monolayer on the positive side. The pre-wave
lies wholly in the disordered-phase region, and it was previously suggested that it was caused by in-
teractions with surface water [fl]. However, equilibrium Monte Carlo (MC) simulations of water-free
lattice-gas models of the Br adlayer by Koper [E, ﬂ], as well as our own work reported here, produce
quasi-equilibrium cyclic voltammograms (CVs) of essentially the same shape as the experiments,
indicating that surface water is not needed to reproduce the pre-wave. Rather, we believe that
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the pre-wave is due to short-range correlations in the disordered adlayer [E, E] In this system, the
structures that give rise to these correlations locally resemble low-temperature ordered phases with
coverage 1/4.

The simplicity of the equilibrium properties of this system makes it a prime candidate for dynamic
studies. Here we present results from such a study by dynamic MC simulation [E] of a lattice-gas
model. This method has the advantage over mean-field rate-equation approaches that it properly
accounts for the effects of local fluctuations in the adlayer structure. Further details and additional
results will be presented elsewhere [[[(]. Animations and additional figures are available on the World
Wide Web [[L1].

The rest of this paper is organized as follows. The lattice-gas model is presented in Sec. E, followed
by equilibrium simulations which are used to estimate the lattice-gas model parameters by fitting to
adsorption isotherms from chronocoulometry experiments [ﬂ, E, E] In Sec. Bl we present simulated
CVs (Sec. m) and potential-step experiments (Sec. . From the the potential-step simulations
we provide current transients, which are easy to measure in electrochemical experiments, as well as
predictions for the time evolution of the intensity of the SXS scattering peak corresponding to the
c(2 x 2) phase. Although dynamic SXS data have yet to be obtained for this system, they were
obtained for others [[[], and we believe it is only a matter of time before such experimental results
become available.

2 Model and Equilibrium Results

We use a lattice-gas model similar to the one used by Koper [@] It consists of an L x L square
array of Br adsorption sites, corresponding to the four-fold hollow sites on the Ag(100) surface. The
configurational energy of the Br adlayer is given by the grand-canonical lattice-gas Hamiltonian,
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Here i and j denote adsorption sites, ¢; is the occupation at site 4, which is either 0 (empty) or 1
(occupied), >, ; 18 a sum over all pairs of sites, ¢;; is the lateral interaction energy of the pair
(,7), and i is the electrochemical potential. The sign conventions are such that ¢;; < 0 denotes a
repulsive interaction, and 7 > 0 favors adsorption. We measure ¢;; and 7 in units of meV /pair and
meV /particle, respectively. (For brevity, both will be written simply as meV.) To reduce finite-size
effects, we use periodic boundary conditions.

In the weak-solution approximation, 7z is related to the electrode potential by
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where Ti, is an arbitrary reference level, kg is Boltzmann’s constant, T" is the absolute temperature,
e is the elementary charge unit, [C] is the concentration of Br~ in solution, [Cy] is an arbitrary
reference concentration, v is the electrosorption valency, and E is the electrode potential in mV.

Previously Koper has explored the effects of finite nearest-neighbor repulsion and screened dipole-
dipole interactions in this model [E] As his results indicate only minor effects of the finite nearest-
neighbor repulsion and screening, we here use a simplified model with nearest-neighbor exclusion
and unscreened dipole-dipole interactions. Thus, the long-range part of the interaction energy is
B(r) = 23/2¢nar=3 for r > /2, where r is the separation of an interacting Br pair, measured in
units of the Ag(100) lattice spacing (a = 2.889 A [B]), and ¢uun (which is negative) is the lateral
dipole-dipole repulsion between next-nearest neighbors. For computational convenience we cut off
the long-range interaction for » > 5. This underestimates the total interaction energy of a fully
occupied ¢(2 x 2) layer by about 13%.

The nearest-neighbor exclusions give rise to two different sublattices of possible adsorption sites
(like the black and white squares on a chessboard). Each sublattice (labeled A and B, respectively)
corresponds to one of two degenerate c(2 x 2) phases. The A sublattice coverage is the fraction of



occupied sites on sublattice A, defined as © 4 = N;l El]\é‘jﬁl ¢;, where N4 is the number of sites on

sublattice A and Zf\é‘;& runs over all sites on the sublattice. We define © g analogously.

The sublattice coverages combine to give two observables of interest: the total Br coverage
O = (04 + 06Op)/2, and the “staggered” coverage Og = © 4 — O, which is the order parameter for
the ¢(2 x 2) phase. While © can be experimentally obtained by standard electrochemical methods,
as well as from the integer-order peaks in scattering data, Og is proportional to the square root of
the intensity in the half-order diffraction peaks that correspond to the c¢(2 x 2) phase [E]

To estimate the parameters in the lattice-gas model, ¢nn, and v, we performed standard equi-
librium MC simulations [LJ| at room temperature (kT = 25 meV or T = 290 K) to obtain O ()
for different parameter values. These simulated isotherms were then compared with experimental
chronocoulometry data for three different electrolyte concentrations [E, E], and the best parameter
values were determined by a nonlinear fit [@] The resulting values are ¢pn, = —26 + 2 meV and
v = —0.73 £ 0.03. These results are consistent with those found previously [E, , ﬂ] The fitted MC
isotherm is shown together with the experimental isotherms in Fig. ﬂ Especially for the two lowest
concentrations, the agreement is excellent over the whole range of electrode potentials. The kinks in
the isotherms, observed at ©. =~ 0.37 for both the experiments and simulations, correspond to the
order—disorder phase transition. To within our statistical uncertainty, this value of ©. is consistent
with previous results for a square-lattice model with only nearest-neighbor exclusion, known as the
“hard-square model” , E, E]

The simulation data for O(f) and Og(jz) with the best-fit interaction parameter ¢nn, = —26 meV
are shown together in Fig. E As fi approaches its critical value at ji. = 180+5 meV from the positive
side, ©g o (ji — Jic)'/®. This behavior of the order parameter is consistent with the Ising universality
class, to which this system belongs, and was confirmed by SXS experiments [E] Typical equilibrium
configurations are shown as insets in Fig. E for the disordered phase at & = +100 meV and for the
ordered phase at i = +400 meV.

A simulated quasi-equilibrium CV, corresponding to a vanishing potential-sweep rate, can be
obtained from the MC equilibrium isotherm as
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where J is the voltammetric current density (oxidation currents positive), M is the total number
of adsorption sites per unit area (=2 = 1.198 x 105 sites/cm?), and dE/dt is the sweep rate.
This limiting CV is shown in Figure E(a) together with CVs for nonzero sweep rates, which are
obtained by dynamic MC simulations discussed in Sec. @ It exhibits the same broad pre-wave and
sharp peak seen in experiments |E, ﬂ, E, E, E] The broad prewave in the simulated CV is caused by
configurational fluctuations in the disordered phase, which locally resemble low-temperature ordered
phases [[[7, [§], in particular p(2 x 2) and c(4 x 2) with © = 1/4 [I]]. Such fluctuations of local
short-range order in the disordered phase are clearly seen in the inset in Fig. E for p = +100meV, and
they lead to visible anisotropy in simulated diffuse SXS scattering intensities [E] This anisotropy
should be experimentally observable as well.

3 Dynamic Simulations

The dynamics of the Br adsorption and desorption processes under CV and potential-step conditions
were simulated with a dynamic MC algorithm including adsorption and desorption events, as well
as nearest- and next-nearest-neighbor lateral diffusion of the adsorbed Br. Bulk diffusion in the
solution is neglected, corresponding to a well-stirred system. Each such single microscopic move,
which we label by the index A, connects an initial lattice-gas state, I, to a final state, F'. The energies
of these states, Uy and Up, are obtained by applying the lattice-gas Hamiltonian, Eq. (m), to the
corresponding configurations. An intermediate transition state of higher energy, T}, is associated
with the move . This intermediate state cannot be represented by a lattice-gas configuration, and we
associate with it a “bare” free-energy barrier, Ay. Using a symmetric Butler-Volmer approximation



[E, E, E], we can then approximate the free energy of the transition state as

Ur+U
Ur, = ——5— + 4. (4)
Although other choices of the transition probability are also found in the literature [R0], we here
approximate the probability R(F|I) of making a transition from I to F during a single MC time

step by the one-step Arrhenius rate [g, R1], BJ]

Ur, - U A Urp—-U
R(F|I) =vexp (—%) = vexp <—kB—}) exp (—%) , (5)

where the dimensionless rate constant v relates the simulation time scale, measured in MC steps per
site (MCSS), to the experimental time scale in seconds. In our simulations we used v = 1.

We performed the simulation with a simple discrete-time dynamical algorithm, in which new
configurations are randomly chosen from a weighted list of microscopic moves. First, a particular
lattice site is chosen at random. The configuration can then be changed only through moves which
include the chosen site. If the site is empty, adsorption is attempted and accepted with probability
given by Eq. (ﬂ) If any of the nearest-neighbor sites are occupied, this acceptance probability is
zero. If the chosen site is occupied, only desorption or lateral diffusion may be attempted. A list is
kept of all the possible moves, and one of them is chosen according to the corresponding acceptance
probabilities. The probablhty to remain in the initial state is R(I|I) =1 — )., R(F|I). Further
details on the simulation algorithm and its implementation are given elsewhere rﬁ

While this algorithm is of limited accuracy for very fast processes and requires an unnecessarily
large amount of computer time for very slow processes [@, @, @, @, E, @], it has the advantages
that it is easy to program and is readily adapted to simulations in which parameters (such as )
change with time [@] It is thus well suited for dynamic CV simulations.

The free-energy barriers associated with the different simulation moves are A,, for nearest-
neighbor diffusion, Ay, for next-nearest neighbor diffusion, and A, for adsorption/desorption. The
rough estimates used here, Ay, = 100 meV and A, = 200 meV, are based on ab-initio calculations
of binding energies for a single Br ion on a Ag(100) substrate in vacuum [@] The difference in
binding energy between the bridge site and the four-fold hollow site gives Ay, and the difference
between the on-top site and the four-fold hollow site gives A,,,. Theoretical estimates of A,
are extremely sensitive to the ion-surface and ion-water interactions [R9]. Calculated potentials of
mean force for halide ions in water near a Cu(100) surface [P9) indicate that values between 200
and 500 meV are not unreasonable. To optimize the simulation speed, we chose A, = 300 meV.
This value is as low as possible while remaining consistent with our expectation that it should be
significantly larger than Apy,.

3.1 Simulated Cyclic Voltammograms

CV experiments were simulated on systems with L = 256 and 128 by first equilibrating at g =
—400 meV and then ramping g linearly in time up to +600 meV, and back down to —400 meV.
Simulated CV currents for sweep rates between 3x10~% and 3x10~2 meV/MCSS, divided by the
sweep rate in order to be easily compared on the same scale, are shown in Fig. E(a). The limiting
curve for vanishing sweep rate is given by the quasi-equilibrium CV, obtained from the equilibrium
simulations described in Sec. E A considerable asymmetry in the peak shape for the positive-going
and negative-going scans is notable.

While the pre-waves are relatively little affected by the sweep rate, the peak corresponding to
the phase transition is significantly lowered and shifted in the scan direction. The dependence of
the peak separation on the sweep rate, which is a form of hysteresis , is shown in Fig. B(b)

By comparing the scan-rate dependence of the separation between the positive-going and negative-
going peak positions in simulations and experiments, one can in principle obtain a rough estimate of
the relation between simulation time and physical time, provided the free-energy barriers used in the
simulations are in a reasonably realistic proportion to each other. The peak separations observed in
our simulations, Fig. E(b), are large compared to typical experimental values of a few tens of meV



for scan rates in the range 1-10 mV/s. This most likely indicates that even our slowest simulated
scan rates correspond to faster scans in the real system. Direct comparisons between simulation and
experimental dynamic effects are left for future research.

3.2 Simulated Potential Steps

Dynamic potential-step simulations were performed on systems with L = 256. They began by
equilibrating the system at room temperature and potential fi;. After equilibration, i was instanta-
neously stepped to a new value, jiz, and the simulation was continued by the dynamic MC algorithm
described above. To illustrate the dynamics of the phase ordering and disordering processes, we here
show results for two different potential steps: one from the disordered phase into the ordered phase,
and one from the ordered phase into the disordered phase. Additional potential-step simulations
and corresponding time-dependent SXS scattering intensities will be reported elsewhere [E]

3.2.1 Disorder-to-order step

For the disorder-to-order step we used fi; = —200 meV and i = 4600 meV. At 11 the coverage is
close to zero, while fis is far into the ordered phase, approximately 420 meV past the phase transition
at ji.. In Fig. E we show both © and Og vs time. With deep steps like this one, the desorption
rate is negligible. Thus, the adsorption dynamics are essentially described by the random sequential
adsorption with diffusion (RSAD) process [BI, BJ]. The coverage quickly reaches the jamming
coverage for random sequential adsorption of hard squares without diffusion, ©5 = 0.364 [@, @]
(only slightly below the critical coverage, ©. ~ 0.37). At this coverage both sublattices contain
small, uncorrelated domains of the two degenerate ordered phases, separated by domain walls. The
domain walls consist of empty sites, most of which cannot be filled, due to the nearest-neighbor
exclusion.

At later times, the coverage can increase only where domain walls move together, opening a gap
large enough to fit an additional Br. The domain-wall motion responsible for opening additional
adsorption sites proceeds almost exclusively through nearest-neighbor diffusion between adjacent
domains. The coverage approaches the equilibrium value, ©.q = 1/2, and the total length of
interfaces decreases. The order-parameter correlation length, D, is experimentally measurable as
the inverse width of the half-order diffuse SXS scattering maxima [J, [ild]. Since D is also proportional
to the inverse of the interfacial length per unit area [@], it can in the present case be estimated
from the coverage as D = (Qgq — 0)~! [@, @] The dynamic scaling theory of the kinetics of phase
transitions predicts that, for systems with nonconserved order parameter (such as the one considered
here) undergoing phase ordering, D should grow with time as ¢'/2 [] The inset in Fig. H shows
D as a function of t'/2. The agreement with the expected dynamic scaling behavior is excellent, as
has also been found in previous simulations of RSAD [B1, B3|

For an infinite system, D would continue to grow without bound; however, when D reaches the
same order of magnitude as L, the system enters the phase-selection regime in which one of the
two degenerate ordered phases grows to fill the whole system. Our step simulations were too short
to study the phase-selection regime in detail. Results for shallower positive-going potential steps,
which are somewhat less clear-cut than for the deep step shown here, will be reported elsewhere [E]

3.2.2 Order-to-disorder step

For deep order-to-disorder steps, the disordering process is rather simple. Particles desorb at a
roughly constant rate, leading to an essentially exponential relaxation to equilibrium [E]

After a shallow order-to-disorder step, i1 = +600 meV and iz = +100 meV, the behavior is
more interesting. The system starts with all particles on sublattice A and relaxes to a disordered
phase with © ~ 1/4, as shown in Fig. ﬂ There are four different dynamical regimes. In the first
regime, particles simply desorb from sublattice A so that dOg/dt ~ 2dO/dt. As more sites become
vacant, small domains are formed on sublattice B both by lateral diffusion from sublattice A and
by adsorption from the solution. In this second regime, both desorption and diffusion contribute
significantly to the disordering process. In the third regime, the adsorption and desorption rates are



almost equal and relatively slow, and diffusion is the dominant contribution to the disordering. Here
dOg/dt becomes significantly larger than dO©/dt, until the two sublattices become approximately
equally populated in the fourth regime, yielding ©g ~ 0.

4 Conclusion

In this brief paper we have presented results from dynamic MC simulations of CV and potential-step
experiments for Br electrosorption on Ag(100) single-crystal electrodes. The simulations show the
complicated interplay between adsorption, desorption, and lateral diffusion even in this relatively
simple electrochemical system.

The dynamic MC algorithm requires estimates of free-energy barriers for adsorption/desorption
and lateral diffusion. While such barrier estimates constitute the most uncertain part of a dy-
namic MC simulation, we were able to obtain reasonable numbers from ab initio calculations in the
literature |8, B9|.

As the order parameter Og and its correlation length are measurable in SXS experiments [E,
E, E, E], the dynamical phenomena predicted by our simulations should be observable in future
experiments. Further details and simulations of time-dependent diffuse SXS scattering intensities
will be reported elsewhere [[L]].-
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Figure 1: A single equilibrium Monte Carlo (MC) simulation isotherm (L = 32, T' = 290 K),
fit simultaneously to coverage isotherms at three different Br~ concentrations, obtained by chrono-
coulometry , . The parameters, ¢nnn = —26 £ 2 meV and v = —0.73 £ 0.03, were obtained by a
nonlinear fit to the experimental data.
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Figure 2: Equilibrium Monte Carlo isotherms for L = 32, T =~ 290 K, and ¢nun = —26 meV.
A continuous phase transition between a low-coverage disordered phase and a c(2 x 2) phase with
O = 1/2 occurs at fi. ~ 180 meV. The order parameter for the c¢(2 x 2) phase is |Og|. These
isotherms are obtained from 10,000 independent samples for each value of zi. The insets show typical
equilibrium configurations in the disordered phase at i = +100 meV (left) and in the ordered phase

at +400 meV (right).
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Figure 3: (a) Simulated CVs for L = 128 and 256 at various potential-sweep rates p. The curves
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ulated equilibrium coverage isotherm in Fig. . (b) Peak separations for various sweep rates. For
experimental comparison, the units are given as mV and are obtained with v = —0.73.
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Figure 4: Coverage, ©, and order parameter, |Og|, shown vs time for sudden disorder-to-order
potential step at room temperature with L=256. Step from f; = —200 meV to fi; = 4600 meV,
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parameter vs /2,
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potential step at room temperature with L=256. The four dynamic regimes discussed in the text
are labeled and separated by vertical bars. Step from fi; = 4600 meV to ji; = —200 meV, averaged
over 3 independent runs.
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