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Abstract

A mathematical model is developed for calculating the contact stress distribution in the hip for a known resultant hip force and
characteristic geometrical parameters. Using a relatively simple single nonlinear algebraic equation, the model can be readily applied
in clinical practice to estimate the stress distribution in the most frequent body positions of everyday activities. This is demonstrated
by analyzing the data on the resultant hip force obtained from laboratory observations where a stance period of gait is con-

sidered. © 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The distribution of contact stress in the hip is an
important factor which affects the development of the hip
and also determines the state of health or disease of the
adult hip (Pauwels, 1976; Brinckmann et al., 1981; Kum-
mer, 1991; Hadley et al., 1990; Maxian et al., 1995; Baker
et al., 1989; Krebs et al., 1991).

Direct measurements would record contact stresses in
the most realistic manner. The contact stress distribution
in the hip was measured directly by an instrumented
device, first in vitro (Rushfeldt et al., 1981; Brown and
Shaw, 1983) and later in vivo (Hodge et al., 1986,1989).
These measurements give insight also into the features of
the intact hip. It should, however, be borne in mind that
metal transducers or implant surfaces do not preserve the
natural cartilage microstructure and natural fluid film
lubrication so that predicted contact stresses may differ
from the natural ones. These approaches also measure
contact stresses at discrete locations, rather than overall.
For non-operated patients, external laboratory measure-
ments in combination with simulations or mathematical
models can make global predictions. Contact finite ele-
ment simulations (Rapperport et al., 1985; Brown et al.,
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1993; Dalstra and Huiskes, 1995) provide complete distri-
butions, but are complex and time consuming. There-
fore, simpler mathematical models (Legal et al., 1980;
Brinckmann et al., 1981; Maxian et al., 1995; Genda et al.,
1995) may be adequate for estimating global contact
stress distribution in routine surgical planning (Legal et
al., 1980; Iglic et al., 1993), provided that they include the
relevant phenomena of the particular case.

In the previously reported three-dimensional model
(Iglic et al., 1993) we assumed that articular cartilage
exhibits ideally elastic behavior and adopted a cosine
function for the stress distribution (Greenwald and
O’Connor, 1971; Brinckmann et al., 1981). We assumed
that the resultant hip force lies in the frontal plane of the
body. The present work was intended to generalize the
model (Igli¢ et al., 1993) to the cases of an arbitrary
direction of the resultant hip force. We ascertained the
sensitivity of the model predictions to the various result-
ant hip forces during level gait.

2. Materials and methods
2.1. Mathematical model

The origin of the rectangular Cartesian coordinate
system coincides with the center of the right hip. The

coordinate system is oriented so that x- and z-axis lie in
the frontal plane through the centers of both hips. The
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z-axis is vertical, the x-axis points in the lateral-medial
direction, while the y-axis points in the anterior—poste-
rior direction. The resultant hip contact force R origins in
the center of the femoral head. The articular surface is
described as a part of the spherical surface with a radius
the mean of the radii of the femoral head and acetabular
subchondral bone. The femoral head and the acetabulum
are in contact over the hemisphere defined by the acet-
abular shell. The tangential stress due to frictional forces
is assumed negligible compared to the corresponding
normal stress (Legal et al., 1980). These assumptions can
be justified for smooth, well lubricated femoral and acet-
abular surfaces which are almost spherical and congruent
and subject to extremely low coefficients of friction;
~ (0.001 (Shrive and Frank, 1995).

Using the spherical coordinate system originating in
the center of the articular sphere, the radius vector of an
arbitrary point on the articular surface is given by
r = (rcos ¢ sin 9, rsin ¢ sin 3, r cos ¥, where r is the
radius of the articular sphere, ¢ is the azimuthal
angle and 3 is the polar angle. The resultant hip force is
given by the vector R = (R sin $; cos ¢y, R sin 9 sin ¢g,
R cos %), where R is the magnitude of the resultant hip
force, 9 is the inclination of the direction of the resultant
hip force with respect to the vertical axis and ¢y is the
angle of rotation of the direction of the resultant hip force
in the horizontal plane (from the positive x-axis in the
counterclockwise direction).

The contact stress integrated over the weight bearing
area S yields the resultant hip force R,

J;;dS:R, (1)

where dS = (sin $cos ¢, sin $sin ¢, cos 9) r* sin $dIde.

Based on the assumption that the radial stress on the
articular surface of the hip is proportional to the radial
strain of the cartilage layer, the radial stress is propor-
tional to the cosine of the angle between that point and
the position of the stress pole (y) (Greenwald and
O’Connor, 1971; Brinckmann et al., 1981),

P = Do COS Y, (2

where p, is the value of stress at the pole (the point where
the distance between the acetabular sphere and the fem-
oral head sphere would be minimal; Brinckmann et al.,
1981). Cosine of the angle y can be written as

cos ) = sin O sin 9cos @ cos ¢ + sin O sin $sin P sin @
+ cos Jcos O, (3)

where the polar angle @ determines the angular displace-
ment of the pole from the vertical axis, while the azi-
muthal angle @ describes the angular displacement of the
pole in the horizontal plane from the x-axis in the
counterclockwise direction.

The weight bearing area S is defined as a part of the
articular sphere constrained by the acetabular geometry
as well as the position of the stress pole. The lateral
border of the weight bearing area, determined by the
acetabular geometry, may be visualized as an intersection
of the articular sphere with a plane passing through the
center of the sphere and being inclined by the CE angle of
Wiberg (Icp) (Wiberg, 1939) with respect to the vertical
body axis. Since only the positive values of stress have
a physical meaning, the medial border of the weight
bearing area which is dependent on the position of the
pole of stress, is determined as the line where stress
(Eq. (2)) vanishes, so that

cos y =0. 4)

The medial border of the weight bearing area determined
by the condition (4) consists of all the points that lie ©t/2
away from the pole of stress and may likewise be visualiz-
ed as an intersection of the articular sphere with a plane
passing through the center of the sphere, the inclination
of this plane being determined by the location of the
stress pole. As both intersection planes which confine
the weight bearing area are passing through the center of
the sphere they both form circles of radii r at the intersec-
tion of the plane and the articular sphere. The weight
bearing area is therefore confined by these two intersect-
ing circles on the articular sphere.

The stress distribution in a given body position is
calculated by solving the three components of the vector
equation (1) where Eqs. (2)—(4) are taken into account,

K+0OF arctan(cos2 (Gcp — @)/<n + |:g — g + O
— % sin(2  (Jcg — @)):|>> =0, (5)
3R
Po =2_},2005('9R + @)/(n + |:g— 9 + O

— 2 sin2 - (e @))D. ©)

D =q@g or =g+t T (7

Here, the upper sign stands for the case when the pole lies
on the lateral side of the contact hemisphere or out-
side the contact hemisphere in the lateral direction and
the lower sign stands for the case when the pole lies on
the medial side of the contact hemisphere or outside the
contact hemisphere in the medial direction. The proced-
ure for obtaining the Egs. (5)-(7) and the description
of the weight bearing area are briefly described in
Appendix A.

The value of @ corresponding to the Eq. (5) was
determined by the Newton iteration method. Here the
validity of Eq. (5) was ensured up to the precision of
¢ < 107 1'% The value of p, is expressed from Eq. (6) using
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the obtained @. If @ is negative, @ should be in the
interval between —m/2 and m/2 while if it is positive,
© should be in the interval between /2 and 3m/2.

By knowing the magnitude and the direction of the
resultant hip force, the CE angle and the radius of the
articular sphere, the value of stress at the pole and the
position of the pole can be determined from the Egs.
(5)—(7). The stress distribution on the weight bearing area
is then calculated by Egs. (2) and (3).

If the pole of the stress distribution is located within
the weight bearing area, the location of the maximum
stress (Pmax) coincides with the location of the pole, and in
this case pnax €quals po (Fig. 1A,C,D). However, when the
stress pole lies outside the weight bearing area, the stress
on the weight bearing area is maximal at that point on
the weight bearing area which is the closest to the pole
(Fig. 1B).

2.2. Determination of the hip resultant force during gait

The hip resultant force R was determined in different
phases of a stance period of gait of a person with an
implanted total hip endoprosthesis as previously de-
scribed (Brand et al., 1994; Crowninshield et al., 1978).
The values of R, % and @i were determined in the
coordinate system fixed with respect to the pelvis (Brand
et al, 1994) so that the calculated stress distribu-
tion (Figs. 2 and 3) represents the loading of the acet-
abulum.

3. Results

The stress distribution and its maximal value pp.y
change as the weight bearing area changes due to the
variation of the inclination of the resultant force Y.
The lowest value of p,.x = 3R/2nr? is obtained when the
direction of the resultant force R is inclined for an angle
n/2 in the medial direction from the lateral acetabular
border (% + 9cg = m/2) since in this case the weight
bearing area is the maximal possible, i.e. it covers the
whole contact (acetabular) hemisphere.

When the resultant force R is inclined away from this
central direction (where 9y + 9o = m/2), the size of the
weight bearing area decreases, while the pole is shifted
towards the respective border of the weight bearing area.
For large inclinations of R from the central position, the
pole is located outside of the weight bearing area while
the stress attains its maximal value on the acetabular rim.
The coordinate of the pole ® monotonically decreases
with increasing 9. The value of p., is considerably
increased when the pole lies outside the weight bearing
area. At the limits where % + 9cg approach 0 or T, the
weight bearing area vanishes, the peak stress increases
beyond a limit while the pole lies for ©t/2 away from the
edge of the articular hemisphere rim.

1MPa

—_—

Fig. 1. The calculated distribution of stress in the hip joint for different
values of the CE angles and $g: Ig = 10°, Icg = 35° (A), I = 10°,
Gce =57 (B), 9 =40°, Y =357 (C), $r =40°, Jcg =5° (D). The
values of the other model parameters are: R = 2000 N, ¢ =0 and
r=2.6cm.

When CE angle and 9 are both small, the pole lies
outside the weight bearing area which is substantially
diminished (Fig. 1B). This latter situation is analogous to
that with dysplastic hips. Cases A and D (Fig. 1) have
equal (J9cg + %), 1.e. they have the same angle between
the lateral rim of the acetabulum and the direction of the
force R, and therefore equal shape of the stress distribu-
tion. The two distributions, however, differ in their posi-
tion with respect to the coordinate system of the body.

In the case of larger CE angle (9cg = 35°) the pole of
the stress distribution lies within the weight bearing area
in all phases of the stance period of gait so that the
location of the maximal stress coincides with the location
of the stress pole (Pmax = Po) (Fig. 2). In the case of smaller
CE angle (9cg = 5°) the values of p,,., are considerably
increased with respect to the corresponding values per-
taining to 9o = 35° (Fig. 2). In one phase of gait the
stress pole lies outside the weight bearing area. This point
corresponds to the highest p,.. attained in the whole
stance period of gait for 9o = 5° (Figs. 2 and 3).

Our analysis shows that for various values of the CE
angle in nearly all phases during gait the contact stress is
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Fig. 2. The calculated maximal stress on the weight bearing area
Pmax (A), the coordinate of the stress pole |@| (B) and the coordinate of
the stress pole @ (C) in successive phases of the stance period of gait for
two values of CE angle: 3cg =5° (+) and J¢g = 35° (). The time
interval between the respective phases is 0.04 s, BW is the body weight
force. The value of p,., is determined from Egs. (5) and (6), © is
calculated by solving the nonlinear Eq. (5), while @ is according to Eq.
(7) identical to $g. The values of the input data R, 3z and ¢y are
determined as it is described in the second section of the Materials and
Methods.

the highest in the superior posterior region of the acet-
abulum, mostly on the medial side of the femoral head
(—65°< O <5% 15° < d < 80° Figs. 2 and 3). The
calculated regions of the highest stresses (Fig. 3) corres-
pond well to the sites of degenerative changes in the
acetabulum that have been observed in studies on ca-
davera (Byers et al., 1974; Das De et al., 1985).

4. Discussion
An analysis of AP radiographs of healthy and dysplas-

tic human hips by using a simple two-dimensional math-
ematical model of the hip articular stress (Legal and

16

23

Fig. 3. The contact stress distribution projected onto horizontal plane
in the pelvic coordinate system for two values of CE angle: 3¢ = 5°(A)
and 9cg = 35° (B). Selected phases of the stance period of gait (marked
by the corresponding numbers) are shown. The stress is measured in the
units BW/r?, where BW is the body weight force. The location of the
stress pole is marked by the white dot.

Ruder, 1977) showed that for a healthy human hip (corre-
sponding to large enough CE angle) the calculated peak
stress varied slowly in a large interval of directions of the
resultant force exerted by the hip muscles, while in a dys-
plastic hip (corresponding to small CE angle) the peak
stress may have varied considerably more with the direc-
tion of the resultant force exerted by the hip muscles.
Similarly, the present study shows that in healthy hips
having larger CE angle p,., changes slowly upon the
change of the direction of the resultant hip force (%),
while in the dysplastic hips its value changes consider-
ably upon the change of .

The calculated stress distribution in the hip can be
considered as a rough estimate. Several simplifications
were introduced in the model. First, the cartilage was
described macroscopically as a homogenous continuum
and a linear elastic solid of a uniform thickness. We did
not take into account the specific molecular structure of
the glycoprotein bilayer where the two layers are
adsorbed on the cartilage of both contact surfaces, nor
the role of the intermediate thin fluid film and molecular
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structure of the cartilage giving rise to the electrostatic
forces (Buschmann and Grodzinsky, 1995). These mecha-
nisms could be realistically described only by using the
methods on the molecular level, e.g. the methods of
polymer physics and statistical physics. Second, the
weight bearing area will be overestimated as a result of
not accounting for the cotyloid notch. However, this
region would not be expected to actually distribute much
load (Figs. 1 and 3). Therefore, the actual underestima-
tion of stress distribution as a result of overestimating
contact area is not linearly related and would be anticip-
ated to be negligible.

Due to these simplifications we cannot accurately pre-
dict local contact stresses in detail or an absolute stress
distribution. However the model predicts global averages
which are in accordance with the relevant experimental
in vivo data in the literature (Hodge et al., 1986,1989;
Krebs et al, 1991). These measurements demonstrate
that the contact stress in the hip is nonuniform as pre-
dicted by our model (Fig. 3). Moreover, the shape of the
weight bearing area of the metal-cartilage surface in-
dicated by the values of stress obtained from the trans-
ducers of the built-in device in the stance period of gait
may be in a rough fashion considered to correspond to
the apple-slice surface shape obtained by our model.
When gait had normalized (about two years after the
implantation of the partial endoprosthesis) the highest
measured value of stress during gait reached 4 MPa
(Hodge et al., 1989; Krebs et al., 1991). We found a value
of peak stress in the stance period of gait around 3 MPa
for the normal values of r, 9 and body weight BW
which correponds well to the above experimental values.
It can be concluded that the general features of our model
correspond to these measurements.

The cosine radial stress distribution function (Green-
wald and O’Connor, 1971; Brinckmann et al., 1981) ad-
opted in this work is based on the assumption that the
radial stress in the hip articular surface can be calculated
according to Hooke’s law (Legal et al., 1980), i.e. the
radial stress in the articular surface of the hip is assumed
to be proportional to the radial strain of the cartilage
layer. In addition, the femoral head and the acetabular
shell are taken to be spherical, while the thickness of the
cartilage layer before the deformation is assumed to be
constant. In normal hips the femoral head and the acet-
abulum are out-of-round by 1-3 mm. This deviation
from the sphericity is even larger in some abnormalities
of the hip, where an accurate computation of the contact
stress distribution would also be of interest. Since the
validity of the cosine stress distribution function used in
this work is based on the assumption that the femoral
head and the acetabulum have spherical geometry, the
deviation from this situation would in general lead to the
stress distribution function different from a cosine
function (Greenwald and O’Connor, 1971). When the devi-
ation from sphericity is small the contact stress distribu-

tion could be described as a perturbation to the cosine
function. It can be shown that in the case of the articular
surface having the shape of a rotational ellipsoid with the
semiaxes r and (r + Ar), respectively, the perturbation of
the first order in Ar/r yields the expression for the stress
distribution p = po cos (1 + 3(Ar/r)sin® y), where the
value of the ratio Ar/r is assumed to be small and the
meaning of the symbols p, and y is the same as in Eq. (1)
(Ipavec et al., 1997).

A recent analysis of the AP radiographs (Genda et al.,
1995) by a computer simulation of the hip contact stress
using a three-dimensional rigid body spring model
showed that in dysplastic hips stress is concentrated at
the anterolateral edge of the acetabulum and is increased
with the reduction of the lateral coverage of the femoral
head with the acetabulum which is in accordance with
the above findings (Figs. 1-3) and the results of radio-
graphic bone density studies (Pauwels, 1976). The su-
periorly located region corresponding to the maximal
stress during stance period of gait determined in this
work (Figs. 2 and 3) agrees well also with the theoretical
predictions of Dalstra and Huiskes (1995).

Our analysis shows that in the cases where the pole lies
outside the weight bearing area (Fig. 1B), the stress distri-
bution on the weight bearing area steeply descends away
from the border closest to the pole. It should be borne in
mind that not only the value of p,,.. is important for the
loading of the hip but also the shape of the stress distribu-
tion (Brand, 1997). The value of p,,,, may be relatively
low if the body weight is low and if the articular sphere
radius is large. The stress distribution may in spite of this
be unfavorable if the pole lies outside the weight bearing
area due to the steeply descending stress distribution
(Fig. 1B).

Appendix A. Towards the solution of Eq. (1)

To calculate the stress distribution in a given body
position, the coordinate system is rotated with respect to
the angle 3for — @ so that the pole is at the top of the
sphere. Further, the coordinate system is rotated with
respect to the angle ¢ for — @. The coordinates in the
rotated system are denoted by the prime. The position of
the pole in the rotated system is given by

cos®@ =1, sin® =0. (A.1)

The force lies in the )" =0 plane while the weight
bearing area lies in the rotated system above the z’ =0
plane and is symmetric with respect to the y’ = 0 plane
(Fig. 4).

Due to the symmetry of the weight bearing area with
respect to y' = 0 plane, the three-dimensional problem
may be mapped onto two dimensions so that the coordi-
nate of the pole ® can be ascribed also negative values.
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Fig. 4. The weight bearing area of the articular sphere (shaded) in the
rotated system in the case when the pole lies on the lateral side outside
the weight bearing area (A) or within the weight bearing area, but not
further than for an angle ©/2 away from the lateral border of the weight
bearing area (B). The front and the top views are shown. The expres-
sions determining the lateral border of the weight bearing area are given
in the top view. The location of the pole is indicated.

The angle © is taken to be positive in the lateral direc-
tion, the angle 9 is taken to be positive in the medial
direction, while the CE angle 9.5 is taken to be positive in
the lateral direction.

The lateral and the medial border are in the rotated
system determined by the intersection of the sphere with
the corresponding plane, this plane being inclined with
respect to x’ = 0 plane by the respective angle 93. For the
points on the borders, the ratio of the z’' and x’ coordi-
nates is constant,

’

2~ g9y (A2)
X

Using the relations between the spherical and the Car-
tesian coordinates z' =rcos 3’ and x' =r cos ¢’ sin §’
and Eq. (A.2), the interdependence between the angle ¢
and the angle 3’ on the respective border is obtained
(Fig. 4)

cos ¢’ = ctgd'/ctg 5. (A.3)

The unknown spherical coordinates of the stress pole
©® and @ and the value of stress at the pole p, can be
determined by solving a system of the three components
of the vector equation (1). As in the rotated system the
coordinate of the pole O is zero (Eq. (A.1)), it follows from
Eq. (A.3) that

cosy =cos &' (A.4)

Knowing the values of all three components of the result-
ant hip joint force in the rotated system and considering
the expression for dS, the vector equation (1) in the
component form in the rotated system is

por? [ ncos 9’ sin* ' cos @' d9’ do’

= Rsin(3g + O) cos(pr — D), (A.S)
por? [ ﬂcos 9’ sin* 9’ sin ¢’ A9’ d¢’

= R sin(3g + O) sin(pr — D), (A.6)
POVZJ ﬂCOSZ9/ sin 9’ r2d9 de’ = Rcos(9x + @). (A7)

The integrals in Egs. (A.5)~(A.7) can be calculated ana-
Iytically due to the choice of the coordinate system in
which the weight bearing area attains a simple shape. In
performing the integrations the weight bearing area is
divided into the segments (marked in Fig. 4) within which
the integrals can be obtained analytically. The integral in
Eq. (A.6) is zero in accordance with the notion that the
component of the force in the )’ direction is zero,

R sin(3g + O) sin(pg — @) =0, (A.8)

implying the validity of Eq. (A.3). Expressions (A.5) and
(A.7) yield after a lengthy procedure which is due to space
limitations not presented Egs. (5) and (6). Due to sym-
metry of the weight bearing area in the rotated system
and the direction of the resultant hip force in the rotated
system the integrals in Egs. (A.5) and (A.7) solve out
cleanly so that the obtained Eqs. (5) and (6) are relatively
short.
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