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Abstract

Hypersingular integrals of the type

1 _ 2ym—x5
I(T,, m,r) :7[ Tuls)1 = 57) " ds . rl<1
—1 (s—r)a
and
Ly, 1— §2)ym—3
R i e S U
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are investigated for general integers « (positive) and m (non-negative), where 7T,,(s) and
U, (s) are the Tchebyshev polynomials of the 1st and 2nd kinds, respectively. Exact formu-
las are derived for the cases a = 1,2,3,4 and m = 0, 1, 2, 3; most of them corresponding to
new solutions derived in this paper. Moreover, a systematic approach for evaluating these
integrals when o > 4 and m > 3 is provided. The integrals are also evaluated as |r| > 1
in order to calculate stress intensity factors (SIFs). Examples involving crack problems
are given and discussed with emphasis on the linkage between mathematics and mechan-
ics of fracture. The examples include classical linear elastic fracture mechanics (LEFM),
functionally graded materials (FGM), and gradient elasticity theory. An appendix, with
closed form solutions for a broad class of integrals, supplements the paper.

1 Introduction

Finite and boundary element methods are two of the most frequently used numerical approaches
for solving crack problems in fracture mechanics. An alternative approach is the integral equa-
tion method, which is more efficient (e.g. it reduces a partial differential equation (PDE) in two
dimensions to an one-dimensional integral equation) and, in general, is more accurate than the
aforementioned methods. The accuracy of the integral equation method relies on the analytical
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evaluation of singular kernels to cancel the singularity (regularization). In general, the cancel-
lation of singularity is not trivial, in particular, in the case of hypersingular integrals. This is
the main concern of this paper.

Integral equations arising in static crack problems in fracture mechanics are typically Fred-
holm integral equations of the form

/d kernel(z,t) D(t) dt = p(z), c<z<d, (1)

where kernel(x, t) is, in general, a singular function of (x,t); D(t) is the unknown, called density
function; p(x) is some known (input) function corresponding to the loading on the crack faces;
and the interval (¢, d) refers to the crack surfaces where 2a = d — ¢ denotes the crack length.
By the Fourier transform, we write

kernel(z,t) = /_ h K(&)et=2)qe . (2)

The singular part of the kernel can be separated from the regular part, by decomposing the
Fourier transform as

K(§) = Kx(§) + [K(§) = Kxo(§)] (3)
singular nonsi;gular

which can be accomplished through asymptotic analysis (discussed later in this paper). Such
an analysis is difficult for complicated K (&). This is another issue to be addressed in this paper.
Once the decomposition (3) is accomplished, the integral equation (1) can be rewritten as

4 ¢, D(t) d B
7{ mdt + / k(z,t) D(t) dt + f(x) = p(x), ec<z<d, (4)

where £ denotes an improper integral; ¢, is a constant associated to the singular kernel
1/(t—z)%; k(zx,t) is the nonsingular (regular) kernel; f(z) is a function standing for the free term;
and « is a positive integer which determines the degree of the singularity. If o = 1, the integral
equation (4) is called a Cauchy singular Fredholm integral equation, and the singular term is
evaluated as a Cauchy principal-value (CPV) integral. If a > 2, it is called a hypersingular
Fredholm integral equation and the singular term is evaluated as a Hadamard finite-part (HFP)
integral [?, ?, ?, ?]. The notation f and F refer to CPV and HFP, respectively. Most of
the works in the literature involve either o = 1 [?, 2, 7,2 7. ?] or a« = 2 [?, 7, ?]. Thus
another focus of this paper is to deal with hypersingular integral equations with a > 3 which
arise naturally in gradient elasticity theories (see Example 3 in Section ).

The singular and hypersingular integrals which involve Tchebyshev polynomials (7;,, first
kind; U,, second kind) and weight function (1 — sz)m_%, m > 0, with singularity o > 1 are
defined by

1a(Tyym, 1) :7[ Tuls)(L = s7)"72 <1, (5)

_1 (s —r)>



and

1

Gy = f G

_1 (s —r)™

The scope of this paper is as follows. First, Cauchy singular integrals, i.e. a = 1, are evaluated
and exact formulas are derived for general m. The new results here are closed form analytical
solutions for I1 (T, m,r), m > 1 and I (U,, m,r), m > 2. Once I;(T,,m,r) and I(U,, m,r) are
known, hypersingular integrals I,(T,,, m,r) and I,(U,, m,r), o > 2, can be found by successive
differentiation (with respect to r) in the sense of finite-part integrals; formulas for Ir(T,,, m,r),
m > 1 and I5(U,, m,r), m > 2 are derived in this manner. In the cases where a > 3, evaluation
of hypersingular integrals becomes tedious and the formulas are lengthy. Thus I,(7},, m,r) and
I,(U,, m,r) are provided only for a = 3,4 and general m.

ds, |r|<1. (6)

2 Related Work

Singular integral equations have played an active role in the field of solid mechanics, particularly
in the solution of fracture mechanics problems. For instance, the Journal Integral Equations
and Operator Theory has dedicated a special issue to “Integral Equations Methods in Engi-
neering and Physics” (Volume 5, No. 4, 1982). Also, in June 1984, IMACS (International
Association for Mathematics and Computers in Simulation) has held a Symposium [?] devoted
to “Numerical Solution of Singular Integral Equations”.

According to the notation introduced in equation (4), singular integral equations can be
classified by the order of singularity o. The case @ = 1 has been widely used and well devel-
oped [?, ?7]. A rich field of application of singular integral equations is fracture mechanics of
bimaterial and nonhomogeneous materials. For instance, the investigation of crack behavior
in nonhomogeneous materials has found many applications to functionally graded materials
(FGMs) [?, 7, ?]. Another use of singular integral equations involves FGMs for high tempera-
ture applications, so that thermal stress intensity factors can be numerically calculated [?, ?].
Application of hypersingular Fredholm integral equations for a« > 2 can be found in refer-
ences [?, 7, 7).

Quadrature formulas which involve hypersingular integrals have been drawing a considerable
amount of concentration [?, ?, 7,7 7 7 ? 7] after Kutt first introduced the Hadamard finite-
part (HFP) idea in his work [?]. Based on some previous work, Kaya [?] has presented a very
nice interpretation about HFP integrals. One of the key steps in the derivations involves the fact
that higher order singular integrals can be obtained from lower order ones by exchangeability
of differentiation and integration [?, 7], e.g.

where D(s) is the normalized density function. For instance, in order to find

1
D
7[ (5) ds, |r|<1,

4 (s—=1r)?




it suffices to know how to evaluate

L' D(s)

1 §—7r

ds, |r|<1.

This concept is applied later in this paper.

Another main motivation for numerical evaluations of hypersingular integrals is due to the
boundary element method, and the reader is directed to the review paper by Tanaka et al [?].
Most recent work has been focused on singularity with v = 2 in two-dimensional problems.

3 Theoretical Aspects

First, relevant concepts involving integration and approximation are given. These concepts po-
sition the contribution of the work with respect to the available literature. Next, a discussion
on the influence of the density function on the corresponding singular integral equation formu-
lation is presented. Afterwards, basic properties of the Tchebyshev polynomials are provided.
These properties are heavily used in the analytical derivations that follow.

3.1 Integration and Approximation

As far as the integration and numerical procedures are concerned, the integral equation (4) may
be normalized through the following change of variables

2 c+d 2 c+d
s—d_c(t— 5 ) and r—d_c(x— 5 ) , (8)

which leads to the normalized version of the integral equation (4) written asf

7[1 D(%a ds—l—/l K(r,s)D(s) ds+ F(r) = P(r), —1<r<1. (9)

1 (s —
The density function D(s) is further assumed to have the representation
D(s) = R(s)W(s) . (10)

The weight function W (s) determines the singular behavior of the solution D(s) and has the
form

Wi(s) = (1—-95)™"(1+4s)™ . (11)

In general, m; # mso, and the corresponding integrals, which involve Jacobi polynomials
P,gml’m)(s), are of the type

][1 (L= )™ (14 )P (s) 12

1 S—T

!The notations in this paper have been chosen as following: = and ¢ refer to the physical quantities and have
dimension of “Length”; r and s are normalized (dimensionless) variables, corresponding to x and ¢, respectively.
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and can be expressed in terms of gamma and hypergeometric functions [?, 7, 7, ?]. In this
paper, only the case m; = my is considered and my, my are set to be
1

m=my=m— . (13)

Thus W (s) can be expressed as

Wis) = (1-s)""2 m=0,1,2-- . (14)

According to function-theoretic method [?, 7, ?, 7, ?] | the value of m is determined by the
order of singularity . For example, if & = 1, then m = 0 and the fundamental solution D(s)
to the Cauchy singular integral equation (P takes the form

R(s
= (5) ) (15)

V1—s2
In this case, which consists of the majority of the work involving applications of integral equa-
tions to fracture mechanics [?, 7, 7, ?, 7, 7] , R(s) is chosen to be

D=

D(s) = R(s)(1—s%)"

R(s) = > a,Tu(s) ; (16)

and because of that, the CPV integral [,(7,,,0,7) can be evaluated exactly [?, 7] :

1
Tn(s)
L(T,,0,r) =
1 ) ][_1 (s —r)vV1—s?
Another reason for choosing the approximation (15) is that with respect to the weight function

W(s) =1/+/1 — s2, the class of the Tchebyshev polynomials of first kind 7},(s) is an orthogonal
family [?, ?]:

ds = nU,_1(r), n>1. (17)

LT ()T, m m=n=>0

/ L(;)ds: /2 m=n; mmn=1223"-- (18)
-1 V1= 0 m#mn; m,n=20,1,2,---

With this orthogonal property a Galerkin-type method [?] may be applied to find the coefficients

a, in equation (16).

If @« =2, then m = 1, and the solution D(s) to the hypersingular integral equation (9) is
characterized by

N

D(s) = R(s)(1—5%2 = R(s)V1—s2. (19)

Correspondingly, R(s) is chosen to be

R(s) = Y buUn(s) (20)



because of the same reasons for the case o = 1, namely, analytical evaluation and orthogonal
property. With respect to the first reason, the HFP integral I5(U,,1,7) can be evaluated
analytically [?] :

LU, 1,1) = 7[1 Un(s)V1 = % Mds:—(n—i—l)ﬂUn(r), n>0. (21)

_1 (s —1)?

According to the second reason, by orthogonality,

1 3 7T/2 m =n; m’n:0’172’...
Un(8)Un(s)V1 — s2ds = 0192 ... (22)

1 O m % n; m,n =
and one may apply Galerkin-type methods [?] to find the coefficients b, in equation (2U).

When m = 3, then W (s) = (1 — s2)%2, and neither T},(s) nor U,(s) is an orthogonal family.
However, if collocation method is applied, one does not need the orthogonal property, as long as
the expansion function R(s) is chosen such that

%lRmu—fﬁﬁ

1 (s —r)~

can be evaluated analytically. For example, if R(s) is expandeded as a Tchebyshev polynomial
of the 1st kind T},(s) or the 2nd kind U,(s), i.e.

R(s) = Y a,Tu(s) or R(s) = Y buUu(s) (23)

then the evaluation of

ds

L[ Tu(s)(1—s)"E . ) — L Uu(s) (12"
Ia(Tn,m,T)—f;l (S—’f’)a d Ia(Una ) )_7[_1 (s_,r.)a

for general m = 0,1,2,--- and a = 1,2,3,--- is a necessary step for the numerical approach
to the integral equation (). This is the one of main tasks in this paper and is addressed in
Sections 4 and 5 .

3.2 Selection of the Density Function

Usually the unknown function D(t) in equation (1) can be chosen as the displacement pro-
file (e.g. wu(t) — a displacement function), the (first) derivative of the displacement function
(du(t)/dt, denoted by ¢(t) — the slope function), or a higher derivative of u(t). The choice of
the unknown function D(t) will affect the degree of singularity in the formulation. For example,
consider the standard mode III crack problem in a free space [?] and a linear elastic fracture
mechanics (LEFM) setting. If D(¢) is chosen to be the slope function ¢(t), then the governing
integral equation is the Cauchy singular integral equation

o0

. 24
Pt = p(a), c<w<d (24

[



However, if D(t) is chosen to be the displacement function w(t), then the hypersingular integral
equation with o = 2 is obtained,

d
D(t) = w(t) | 7[ (tui(%Zdt —pla), c<z<d. (25)

The differences between the above two formulations are discussed next.

In general, the (numerical) solution of a Cauchy singular integral equation, e.g. equation
(24), is easier than the corresponding hypersingular integral equation, e.g. equation (25). A
quick observation is that if equation (2%) is used, then the actual crack surface displacements
are obtained directly; while if equation (25) is used, an extra step of integration is needed to
recover w(t). However, integration is not an unpleasant thing to do.

So, what can be gained from a more singular equation such as (253)? A formulation with
more singular integral may lead to a simpler kernel function and, thus, simplify the kernel eval-
uation and decomposition described in equation (3). Issues regarding the differences between
formulations of the type given in equations (24) and (25) will be discussed in detail in the
example section of this paper.

3.3 Properties of Tchebyshev Polynomials

The evaluation of Cauchy singular and hypersingular integrals which involve the Tchebyshev
polynomials T,,(s) and U,(s) highly depends on the special properties of these polynomials.
They are listed here for the sake of completeness and because they will be of much use later in
the development of this work. Most of them (but not all) can be found in Hochstrasser [?] and
Kaya and Erdogan [?].

e Definition of Tchebyshev polynomials of the first kind:
To(s) = cos[ncos ' (s)], n=0,1,2,--- (26)

e Definition of Tchebyshev polynomials of the second kind:
_sin[(n + 1) cos™'(s)]

Un(s) = sinfeos—1(s)] , n=0,1,2,... (27)
e Iterative (recursive) properties:
STo(8) = 5[Tuna(9) 4 Tua()] . m 21 (28)
SUn(s) = 2[Unir(s) + Un ()], m =1 (29)
Tu(s) = 5Un(s) ~ Unals)] ,  m 22 (30)



Un(5)(1 — 8%) = 8T 41(8) — Tya(s), n >0 (31)

§8), one may rewrite equation (31) above as
1
)= 50—

By means of equation (2
Un To(s) = Thya(s)], n=0 (32)

Thus an additional equality, which is useful in handling cubic hypersingular integrals can
be derived?:

212 2
1
= 77 [Upia(s) = 2U,(8) + Un—a(s)] V1 =52, n>2 (33)
e Derivatives:
dT,, (s

ds( ) = nUn_l(s) , n>1 (34)

- = >
ds 1 — s2 2 Un-1(s) Un+1(5)] , n>1 (35)

4 Cauchy Singular Integral Formulas (o« = 1)

This section mainly evaluates I1(T,, m,r) and I;(U,, m,r), which are defined in equations (%)
and (§). The new result here is that the singular integral formulas are found for general
m. In order to obtain this new result, two well known Cauchy singular integral formulas are
introduced [?, ?]: one is already stated in equation (17), and the other one is

Bt = f POV

1 S—7T

ds = —nT,1(r), n>0, (36)

which can be obtained as follows

B = ][1 DAL=,
@ 1 b Tu(s) = Thia(s) s
: 2 ][;1 m(s _ 7’) d
@ g[Un_l(r) U ()

w — a1 (r) .

2The equation number is stacked above the equal sign to show how the equations are being derived and
connected.




The integral formulas for m = 0,1,2,3,--- are derived below. The general formulas have the
restriction of minimum n. The lower n terms can not be derived by general formulas, and are
given in Appendix A.

4.1 L(T,,m,r), m=0,1,2,3

o Il(Tm Oa ’I“)I
This is equation (17).

[} Il(Tn> 1, ’l"):
][1 Tn(szx_/lr— 0, @) % ][1 [Un(s) — []:__258)]\/ 1-s
&9 () =T, n>2. (37)
o [1(T,,2,r):
][1 Tu(s)(1—5%)2 ) ][1 3(Un(5) = Una(s)](1 = 5%)%
@ g (T (r) = 2T5051 (1) + T3 (7)) = [Tos(r) — 2T0-1 (1) + T ()]}
= —g[Tn_g(T) - 3Tn—1(7") + 3Tn+1(7’) o Tn+3(r>] ) n =4 (38>
o [1(T,,3,r):
][1 Ta(s)(1 = 82)%0[8 (30) ][1 51Un(s) = Upo(s)](1 - 82)%d$
@:ﬂ) % {[Tn—5(7’) - 4Tn_3(7’) + 6Tn—1(7’) - 4Tn+1(7”) + Tn+3(r)] -
[Th—3(r) = 4T5—1(r) + 6T 41(r) — 4T 45(r) + Togs(r)]} , n>6
_ %[Tn_g,(r) — 5T_3(r) + 10T;_4(r)

—10T51(r) + 5Ts5(r) = Tuss(r)] , 12 6 (39)

4.2 L(U,,m,r), m=1,23

o [1(Upy1,r):
This is equation (38).

o [1(Uy,2,7):
[ 0= ][ =TT,
B {Ta) = D)) = Baa0) = Tos()]} , m22
= T0a(r) = 2T () + Tus()] . n22 (40)



L] Il(Un, 3,7’)2

D UL($)(1 =822 @1 1 [Tu(s) — Tpia(s)](1 — s2)
][ ds 5][_ ds

1 sS—T

N

Tos(r) = 3Tus (1) + 3Tpn (1) — 3Ts(M]} . 1> 4
- —17T—6[Tn_3(7‘) — ATy 1 (1) + 6Tpar (1) — ATpes(r) + Tpss(r)], n>4  (41)

4.3 L(T,,m,r)and [(U,,m,r)

At this point one may easily see the procedural steps above, which take advantage of recursive
properties (80}) and (82) between the T chebyshev polynomials 7,,(s) and U, (s). For instance,
evaluation of I;( Tn,4 r) JL L T — 5%)7/2/(s — r)ds can be reduced to evaluation of
LUy, 4,7) = £ L Unl )7/2/( r)ds, which, in turn, can be reduced to evaluation of

L(T,,3,7) f L Tl 1 — 52)%2 /(s — r)ds. After a suitable number of steps, this reduction
leads to either (17) or (__B_H) This procedure is summarized in Figure 1.
Thus, by induction, one obtains the following formulas for m > 1.

e [1(T,,,m,r), where m > 1, and n > 2m

R0 e (78R (T et

1

o [1(U,,m,r), where m > 2, and n > 2m — 2

][_1 Un(s)(1 =)™ m(=1)" (%)Zm_z 2§2(_1)j <2m__2) Tovsomans(r) .| (43)

5—r
1 =0 J

The usual notation

denotes the binomial coefficients.

5 Hypersingular Integral Formulas (o > 2)
Once a Cauchy singular integral formula has been reached, all other hypersingular integral

formulas may be obtained successively by taking differentiation with respect to r, and making
use of the finite-part integral formula (7).
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Equation (17) or (36)

[l

Figure 1: Evaluation of I1(T,, m,r) and I (U,, m,r) for general m. The procedure reduces

integrals with higher m to those with lower m.

5.1 L(T,,m,r)
By means of

7[1 To(s)(1 — s2)m~z d [! Tn(s)(l—sz)m_%d87

1 (s —r)? dr |4 s—r

one readily obtains:

o [,(T,,0,r) [?]:

7[1 T, (s) s dU,_1(1)

V1 —s2(s — )2 dr
(35) T n+1 n—1
= 1 |:TUn_2(7’) — TUn(T):| , n>2

(44)



o Ih(T,,1,r):

(n—1U,—o(r) — (n+ 1)Up(r)] , n>2 (45)

fl Tn(s)(l —S )%ds — —Ei[Tn_g(T’) — 3Tn_1(7’) + 3Tn+1(’l“) - Tn+3(r)]

—= [ (n=3)Un—u(r) =3(n — DUn_o(r) + 3(n + 1)Un(r) —
(n+3)Unsa(r) ], n=4 (46)

- ﬁﬂ[Tn_s(T) — 5T 3(r) + 10T, 1 (r) — 107544 (r) + 5T 13(r) — Ty (r)]

% [(n—5)Upn—g(r) —5(n — 3)Up_a(r) + 10(n — 1)U,—2(r) — 10(n + 1)U, (r)
+5(n+ 3)Ups2(r) — (n+5)Upsa(r)] , n>6 (47)

o [r(T,,m,r), where m > 1, and n > 2m + 1:

% Tn (1 82 m— 1/2
1

=) et (48)
m(=1)™* (3) " sz Y(=1) ( ‘ ) (n+1—=2m+25)Up—_2m+2i(r)
j
5.2 L(U,,m,r)
The following equality
1 _ 2ym—3 1 _ 2ym—1
f oA, d s,
. (s—r) dr J_, s—r
leads to:
L4 I2(Un717r) [?]
b Un(s)V1 — 82 AT (r) &)
= — = 1 > 4
7[_1 TESE ds 0 m(n+ 1)Un(r), n>0, (49)

which is the same as (21)).
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= 2= DU0s(r) = 20+ DULE) + (04 3)Unsa(r)] , n =2 (50)

o IQ(Un, 3, ’T’)Z
U Un(s)(1 — s2)3
7[—1 (s —1)? o
T d
= — o7 Tas(r) = ATuea(r) + 61 () = AT 5(r) + T (7))
(0= 3)Unoa(r) = 40— DUnoa(r) + 6(n + DU (1) = 40+ 3)Upsa(r)

+(n+5)Unya(r) ], n=4 (51)

o Ir(U,,m,r), where m > 2 and n > 2m — 1:

1 Up(s)1—s)™ 2
F 1 ( ds =

s—r)? - (52)
w0 O () (3 2 2V aneas )
5.3 I3(T,,m,r)
By means of
D T(s)1—sH)mE 1d [P Tu(s)(1— sH)m .
7[_1 (s — ) ds‘zdril_l TR
one obtains:
) Ig(Tn,O,T)I
7[_1 Tn((ss)_x/g; 32d8_8(1 7y [(n+1)(n + 2)Up—s(r)
—2(n® = 3,1 (r) + (n = 1)2Upa(r)] , n>3 (53)
[} Ig(Tn,l,’l")I
U T (s)V/1 — 82 T 9
7[_1 ((s)_ 5 ds — S [(n2 = n)U,_s(r)
— @2+ 2Un 1 (r) + (P )Una(r)], n >3 (54)



o I5(T,,,2,r):

L T(s)1—5%)2 o7 )
7[—1 (s—r)? s = 32(1—r2){ (n+3)(n + 2)Un+5(r)

+ [(n+3)(n+4)+3n(n+ 1)U (r) = Bn+1)(n+2)+3(n—1)(n — 2)|U,_1(r)

+ [Br(n—=1)+ (n—3)(n—4)|U,—_3(r) — (n —3)(n — 2)Un_5(r)} , n>5 (55)
o I3(T,,3,r):
7[_1 TN(Z(E ;)j Fas - 128(17T— r?) (0" 9 4 20)U5(0)
— 6(n® 461+ 10)U,43(r) + 15(n* 4+ 3n + 4) U1 (1)
— 20(n* + 2)U,_1(r) + 15(n* — 3n + 4)U,,_3(r) — 6(n* — 61 + 10)U,,_5(r)
+ (= +2U, (r)], n>7 (56)
o [3(T,,m,r), where m > 1, and n > 2m + 2:
1
R EI S
-1 (s—r)3 5=
1\2m+1 2m—1 (2l , (57)
(—1)™+1(3) D e (—1) ( ) (n+1—2m+2j)x
[(n + 2—2m + Qj)Un_1_2m+2j(T) — (n —2m —+ 2j)Un+1—2m+2j (7")]

54 I3(U,,m,r)

By means of

1 (8 — 7‘)3 2dr . (S — 7’)2 ds ,
one gets:
o I3(U,, 1,7):
U Un(s)V1 —s2
———————ds
-1 (S — ’f’)?’
- R )+ ()} nz L (6
L4 Ig(Un,Q,T’)Z

7[_1 Un(s)(1 = 5)2 m

e - m[—(n + 51+ 6)Upy3(r)
+ Bn?+9In+12) Ui (r) — (3n® 4+ 3n + 6)U,_1(r)

+ 2 =n)U,s(r)], n>3 (59)
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L] Ig(Un, 3, 7’):

L ULs)(1 =803 o s )
7[_1 (s—r)3 ds = 64(1 —r?) [(n +9n + 20)Un5(r)

(502 + 31n 4 54)U,,3(r) + (10n* + 34n + 48)U,, 41 (r) — (10n* + 61 + 20)U,,_1(r)
+ (5% = 1n+12)U, 5(r) — (n® =50+ 6)U, 5(r)] , n>5 (60)

e I3(U,, m,r), where m > 2, and n > 2m:

I Un(s)(1=2)""2
3@—1 (s—r)3 ds = (61)
o (7 e ey (7)) ka2
[(n+4=2m + 2))Upt1-2m+2;(1) — (0 + 2 = 2m + 2) Upi 32425 ()]

5.5 1,(T,,m,r)

By means of

L T(s) (1 —s)™ 2 1d [' To(s)(1— )2
A v T

one reaches the following results:

o [,(T,,0,r):

7[1 Tus) g — T _[(n®+ 60+ 11n + 6)U,_4(r)
21 (s=r)1—¢s? 48(1 —r2)3 "
—(3n® 4 6n% — 251 — 44)U,,_5(r) + (3n® — 50 — 19n + 37)U,(r)

—(n® —5n® +Tn — 3)Un+2(7’)] : n>4 (62)
o [,(T,,1,r):
T (s)V1 —s2d B T [
_1 (s—r)* o7 48(1 — r2)?
(n* — n)Up_y(r) — (30 + 9n + 12)U,_5(r) + (3n* + 9n — 12)U,(r)
—(n® — n)Un+2(7‘)] : n>4 (63)
[} I4(Tn, 2, ’l"):
7[_1 T"((sz(i ;)f S 4 = m[(n?’ +6n2 + 11n + 6)Uya(7)

—  (5n® +18n* + 43n + 30)U,,12(r) + (101> + 12n* + 134n — 36)U,, ()
(10n* — 12n* + 134n + 36)U,,_o(r) + (5n* — 18n* + 43n — 30)U,,_4(r)
— (P —6n> 4+ 1n—6)U, 4(r)], n>6 (64)
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o [,(T,,3,r):

LT (s)(1 - 52)3 - L, 4T
7[—1 (s=r)! ds = 384(1 — r2)? [ a (§n +6n"+ ot 30)Up+6(r)

7 197 21 327
+ (§n3 + 30n% + - n+ 120)Upia(r) — (5n® + 54n? + =—n + 180) U, 12(r)

2 2
35 325 35 325

+ (?n?’ +30n2 + -+ 90)U,,(r) — (?n?’ —30n® + N 90)U,_a(7)
21 327 7 197

+ (=03 = 54n? + Zn — 180)U,,_4(r) — (zn® — 30n? + ——n — 120)U,,_¢(r)
2" 2 2" 2

+ (Gn—6n’+ - 30)U, s(r)], n>8 (65)

o [,(T,,m,r), where m > 1, and n > 2m + 3:

m-l
s%)

fﬁ 1 L (s— r)4 ds -
(=)™ ()" b Y (1) < j ) (n+1—2m+2j)x
{l(n+2—=2m+25)(n+3 = 2m + 2))]U 2o 12;(r)—
[2(71 —2m + 2])2 + 4(71, —2m + 2]) — 6]Un_2m+2j(7”)+
[(n—2m+2§)(n — 1= 2m + 2))]Uns29m12;(r) }

2m—1

(66)

5.6 I4(U,,m,r):

By means of

one obtains

o [,(Uy,1,7):

e a el
—(2n® +9n* + 11n + 6)U, _o(r) + (3n* + 3n* — 2n — 6)U,,(r)
—(n® = n)Up1a(r)] , n>2 (67)

o [,(Uy,,2,7):

L Un(s)(1—s )% B T , ,
7[_1 (s —r)4 ds = 96(1 — r2)? [(n + 60" + 11n + 6) Uy, 44(7)

—(4n® + 18n” + 44n + 30)U,42(7) + (61° + 18n* + 5dn + 42)U, (1)
—(4n® + 60 + 200 + 18)U, 5(r) + (n* —n)Up ()], n>4 (68)
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L] I4(Un, 3, 7’):

U Un(s)(1 = s%)3 ™ 1 A7
n ds = — (=n® 4 6n% + —n + 320)U,
7[_1 G- s 192(1—7"2)2[ (2n + 6n +2n+3 0)Ups6(r)
) ) 15 , 285
+ (3n°+27Tn +93n+117)Un+4(r)—(7n + 45n +7n+165)Un+2(r)
, , 15 , 105
+ (10n° + 30n +110n+90)Un(7’)—(?n —I—Tn)Un_g(r)
+ (3n® —9n® + 21n — 15)U,,_4(r)
1 11
- (§n3+3n2+7n—3)Un_6(r)], n>6 (69)

o [,(U,,m,r), where m > 2 and n > 2m + 1:

L Un(s) (=522
32—1 (s—r)% ds =

m 2m—+1 T m— j
(=" ()™ S L (1) < j
{l(n+4—2m+2)(n+ 5 — 2m + 25)|Up sy s2,(r) —

2(n — 2m 4 25)* + 10(n — 2m + 27) + 10]Upy0-2m+2, (1) +
(n+2—-2m+2j)(n—1—-2m+ Qj)]Un+4—2m+2j(7’)}

)(n—|—3—2m+2j)><

6 Evaluation of Stress Intensity Factors (SIF's)

An important task is to evaluate the stress intensity factors (SIFs) at both crack tips, since
the propagation of a crack starts around its tips. In mode III crack problems, SIFs can be
calculated from

Ki(d) = lircl?+ 2n(z — d)oy,(2,0) , (z>d) (71)
and
Ki(e) = lim /27(c—x)o,.(z,0) , (z<c). (72)

Tr—cCc—

Note that the limit is taken from outside of the crack surfaces and towards both tips. Usually
the left hand side of integral equation (4) is the expression for o, (z,0) which is valid for x is
inside the crack surfaces (c, d) as well as outside of (¢, d). Thus to calculate SIFs, the key is to
evaluate the following integrals which are obtained after proper normalization and the change
of variables described in equation (8),

LT () (1 - 57)m 0

Su(Thym,r) = /_1 s rg (L) (73)
and
U7 (s)(1 — 2)m—(1/2)
Sa(Un, ) = /_1 Unl )((i - T;a ds, ré(=1,1). (74)
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Note that the above integrals are not singular as x # t for t € (¢,d) and x ¢ (¢, d).

The strategy to evaluate S, (T,,, m,r) and S,(U,, m,r) for general integers o (positive) and
m (non-negative) is similar to the process for evaluating I, (7, m,r) and I,(U,, m,r). It consists
of evaluating the integrals Si(7,,, m,r) and S;(U,, m,r) by means of the reduction procedure
described in Section 4.3, and taking differentiation (with respect to r) to obtain S, (T, m,r)
and S, (U, m,r) for a > 2. The relevant derivations are provided below where the range of r
is restricted to |r| > 1. These formulas are used in calculating SIF's for the examples presented
in Section 7

6.1 Si(T,,m,r) and S1(U,,m,r)
e 51(7,,0,7) (This is a well known integral [?]):

S 1O BN Glek et 1 10
/_1 (s — T)md B V2 = 1|r|/r ) > 0. (75)

o S\(Tp,1,7):
Rt
1 s—r °
(20 E/IL Vi-s, _1/1 Una(s)VL =%,
92 -1 S—r § 2) §—T ’
& My (r-Uvemt) s ez (76)
r T
[ Sl(T0,2,T):
1 _ 2\
/ T =sE ey (r_mm_l) | (77)
1 s—r r
[ ] Sl(Tl,Q,T):
T (1—s2)E  ow 7] ’
/ ds = 5(r? = 1) (r——vr2—1) : (78)
. s—r 2 r
o S\(Tp,2,7):
! _\E BT !
/ Tn(s)s(l ), er\( 2yl (r‘t_"/r_l) a2, (79
-1 -
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® Sﬁ(Uﬁ,l,Ty

e 1[0 T Lt Ta(s)
- /—1(3_7’)V1—52d 2/—1(s—r)md

\ - n+1
@ (T_m\/m) . n>0. (80)
T

o S1(Uy,,2,71):
1 _ 23
/ Un(s)(1 = 5%)7
1 S—7T
(32) 1/1 Tn(s)\/1—32d$_1/1 Thia(s)V1 — 2 s
2 1 s—r 2/, s—r

n+1
@ m(r? —1) <7“ — mm) , n=>2. (81)

r

The formulas for Sy(7},, m,r) and S;(U,, m,r) with general m can be deduced by the same
procedure described in Figure 1}, and are listed below.

1 _ 2ym—1/2
Sl(Tn,m,r):/ L)1 =5 ds

-1 S—7T

- ﬁ(—1)m+1m(r2 —1)m-l/2 <r — m\/ﬂ — 1) , m>0and n>2m. (82)
r r

ds

1 $)(1 — g2)ym—1/2
S\ = [ 0=

1 S—7T
|

= 7(=D)™(r*-1)"! (7’ — 2 — 1) ,m>1and n>2m—2. (83)

r

6.2 Sy(T,,m,r) and Sy(U,, m,r)

Differentiating (with respect to r) the formulas for Sy (7, m,r) and Sy (U,, m, ), we obtain the
formulas for Sy(7},, m,r) and Sa(U,, m, 7).

/_1 Un(s)(1 =572

1 (s —1)?

n+1 n+1
= —7T(7”L—|—1)|:—|\/7“2—1<7“—|:—|\/7“2—1> + 27r <r—m\/r2—1) , n>0(84)

r

and

/_l OVt LI PR (_Hm) n>2 (85)

1 S—T r



6.3 S3(T,,m,r) and S3(U,,m,r)

The following formulas are obtained by differentiating twice (with respect to r) the correspond-
ing formulas obtained in Subsection 6.1.

/_ <s><1—s>%ds_

(s —
[n +2n+3) —3(n+1) I 1] (r_ﬂm)m, n>0. (86)

ol

= %{( |T|¢7> 1[(n2+2n+3)—3(n+1) I }

_<T_M¢7> _1l(n2—2n—|—3)—3(n—1) | }},nZQ. (89)

7 Examples

Three examples are presented here, which emphasize various aspects of Fredholm singular
integral equation formulations and their linkage to fracture mechanics. These examples are:

1. Internal mode I crack in an infinite strip.

2. Mode III crack problem in nonhomogeneous materials.

3. Gradient elasticity theory applied to a mode III crack.

The first and last examples consider homogeneous materials, and the second example con-
siders nonhomogeneous materials, which has relevant applications to the field of functionally
graded materials [?, ?]. The first two examples are from classical elasticity, and the last one
is from gradient elasticity theory. The first example involves mode I cracks and the last two
examples involve mode III cracks. All the examples are formulated by using hypersingular
integral equations. For the first two examples the order of singularity « is 2, and for the last
example « is 3. A detailed comparison between U,, and T, representations is given in the first
example. A discussion on the influence of the density function on the order of singularity of
the integral equation is presented in the second and third examples. The description of the
examples is summarized in Table
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Table 1: Description of the examples.

Description

Example 1

Example 2

‘ Example 3 H

Homogeneous material

A

v

Nonomogeneous material

V

Classical elasticity

V

V

Gradient elasticity

V

Crack mode I IIT I11
Density function displacement (v) | displacement (w) | slope (¢)
Degree of singularity 2 2 3
Weight function exponent, m — (1/2) 1/2 1/2 3/2
Representation U,, T, U, T, T,

7.1

Internal Mode I Crack in an Infinite Strip [7]

Consider a crack in an infinite strip of homogeneous material, as illustrated by Figure 2. The
governing partial differential equations (PDEs) and boundary conditions are:

Viul(z,y) + 25 823&2’@’) - 625;%”) =0, —00 < T, Y <00,

V20, y) + 2 (Lasl + Lea) —o, —o0 <@, y < o0,

U$$(O7y) = O-lby(07y) = Urr<h7 y) = O-:By(hvy) = 0 ) —00 < y < 00 ) (90)
Ouy(2,0) =0, O<x<h,

oyy(2,0) = —p(2) , x € (c,d),

v(z,0) =0, r ¢ le,d],

where u and v are the  and y components of the displacement vector; o;; is the stress tensor;
K is an elastic constant (k = 3 — 4v for plane strain, K = (3 — v)/(1 + v) for plane stress, and
v is the Poisson’s ratio.) This problem has been studied by Kaya and Erdogan [?] by means
of a U, representation, and it has also been used as a benchmark problem by Kabir et. al. [?].
Here both U, and T,, are employed and compared.

The governing integral equation can be written in the form given by equation (4) as [?]
1+k

{l Av(t) -

d
= x)2dt + /c k(xz,t)Av(t)dt = —m (
where the primary variable is the crack opening displacement Av given by

)p(m), c<x<d, (91)

Av(z) =v(z,0") —v(x,07), c<z<d,

and the kernel k(z,t) is given in Kaya and Erdogan [?], equations (51) — (54c), page 112. It is
worth noting that as h — oo (see Figure 2), the integral equation for the half plane is recovered
and the kernel k(z,t) is reduced to a much simpler form

— n 122 1222
(t+2)2  (t4+2)3 (t+x)t

3To be consistent with the notation adopted in this paper, we have used symbols different from reference [?].
For instance, in [?] upper case K (t,x) is used for k(t, ).

k(x,t) =
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Figure 2: A mode I crack in an infinite strip.

After normalization, the corresponding integral equation can be written in a fashion similar to
equation (9), i.e.’

1 1
7[ Dis) 5ds +/ K(r,s)D(s)ds = P(r), —l<r<1, (92)
1 (s—=1) -1
where D(s) is the unknown displacement function, the regular kernel is
— 12 [s 4 (e 12 [s + (4<)1?
oL, mle]  epeE)
[((r+s)+2(29)]" [r+s)+2(29)]  [(r+s)+2(%9)]

and the loading function is

- (5)r((5) 45

The case ¢ > 0 represents an internal crack, which is the case of interest in this work. Based
on the dominant behavior of the singular kernels of the integral equation (92), the solution
takes the form

D(s) = R(s)V1—s?.

4Again, the notation is different from [?].
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d=20.1

O ) | | | |

0 5 10 15 20 25
X

Figure 3: Displacement profiles for a mode I crack in an infinite strip obtained by means of U,
and T, representations (N +1 = 15). Here ¢ = 0.1, d = 20.1, 2a = 20, and (c+d)/(d—c) = 1.01.
The crack is tilted to the left because of the “edge effect”.

Here the representation function R(s) is approximated in terms of Tchebyshev polynomials of
1st and 2nd kinds, 7.e.

R(s) =) ayUu(s) and R(s)=> b,Tp(s) .

The unknown coefficients a,, and b,, are determined by selecting an appropriate set of collocation
points

2n — 1
rj = COS (%) ,7=12,--- N+1; for U, representation .

n
rj = COS <N12) ,7=12,--- N+1; for T, representation .
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Once the solution is obtained, the SIFs can be calculated from?

Kie) = lim 2r(c— 2oy (w,0) , (2 <0)
_ <12+_“K) JL%%’ (> )
- (12+Mn) d2_7rCR(_1) (98)
and
Kid) = lim /2= dioy,(2,0) . (x> d)
(1?Jﬂ?%’ (z<d)
_ <12+“K) dQ;CR(Jrl) (94)

which are obtained from equation (91) by observing that its left-hand-side gives the stress
component oy, (z,0) outside the crack interval (¢, d).

Table 2: Normalized stress intensity factors (SIFs) for an internal crack in a half-plane. N +1
terms are used in approximating the primary variable.

U,, Representation T, Representation Kaya and Erdogan [?]
die | N4 Ki(c) Ki(d) Ki(c) K;(d) Ki(c) K;(d)
d—c poy/7(d=c)/2 | poy/m(d—c)/2 || por/m(d—c)/2 | poy/m(d—c)/2 || poy/m(d—c)/2 | poy/m(d—c)/2
1.01 15 3.6437 1.3292 3.8037 1.3313 3.6387 1.3298
1.05 10 2.1541 1.2535 2.1920 1.2543 2.1547 1.2536
1.1 10 1.7583 1.2108 1.7655 1.2111 1.7587 1.2108
1.2 6 1.4637 1.1625 1.4728 1.1632 1.4637 1.1626
1.3 6 1.3316 1.1331 1.3346 1.1335 1.3316 1.1331
1.4 6 1.2544 1.1123 1.2556 1.1125 1.2544 1.1123
1.5 4 1.2036 1.0966 1.2066 1.0969 1.2035 1.0967
2.0 4 1.0913 1.0539 1.0916 1.0540 1.0913 1.0539
3.0 4 1.0345 1.0246 1.0346 1.0246 1.0345 1.0246
4.0 4 1.0182 1.0141 1.0182 1.0141 1.0182 1.0141
5.0 4 1.0112 1.0092 1.0112 1.0092 1.0112 1.0092
10.0 4 1.0026 1.0024 1.0026 1.0024 1.0026 1.0024
20.0 4 1.0006 1.0006 1.0006 1.0006 1.0006 1.0006

Table 2 presents the SIFs at both tips of an internal crack in a half-plane (b — oo0) under
uniform load (p(x) = pg) obtained with both U,, and T,, representations. First, it is worth noting
that the present SIF results for the U, representation compare well with those reported in Table

5Kaya and Erdogan [?] do not consider the factor /7 in the definition of SIFs, equations (93) and (D4). Note
that this does not affect the normalized SIFs (e.g. see Table &).
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X

Figure 4: Displacement profiles for a mode I crack in an infinite strip obtained by means of U,
and T,, representations (N +1=8). Herec=1,d=3,2a =2, and (c+d)/(d —¢) = 2.

1 (page 114) of the paper by Kaya and Erdogan [?] for the entire range of values describing
the relative position of the crack, i.e. 1.01 < (d+ ¢)/(d — ¢) < 20. Next, comparing the SIFs
obtained with the U,, and T,, representations in Table 2, we note that the results compare quite
well, except when (d+c)/(d—c) = 1.0, and the discrepancy is bigger at the left-hand-side (LHS)
than at the right-hand-side (RHS) crack tip. This occurs because of the “edge effect” [?]. If 42
terms (i.e. N+1 = 42) and T, representation are considered for the case (d+c¢)/(d—c) = 1.01,
then the normalized SIFs at the LHS and RHS crack tips are 3.6437 and 1.3302, respectively.
Thus, when there is an “edge effect”, the results are sensitive to the discretization adopted.
Moreover, for the same number of collocation points, the level of accuracy attained with the
U, representation is slightly different from that with the T,, representation.

Figures 3 and % compare the crack profiles for U,, and T, representations. One may observe
that the displacement profiles obtained from both representations practically agree within plot-
ting accuracy, especially in Figure 4. Note that the displacement profile in Figure 3 is tilted to
the left because of the “edge effect”. Such effect is negligible in Figure 4.
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G(x) = GoePX

S J

C d X

Figure 5: The half plane of the antiplane shear problem for nonhomogeneous material with
shear modulus G(z) = Gye"?.

7.2 Mode III Crack Problem in Nonhomogeneous Materials [?]

Consider the antiplane shear problem for the nonhomogeneous material shown in Figure 8 with
shear modulus variation given by

G(z) = Ge™ | (95)

where Gy and [ are material constants. Erdogan [?] has studied this problem in order to
investigate the singular nature of the crack-tip stress field in bonded nonhomogeneous materials
under antiplane shear loading. He uses a slope formulation$, while here we use a displacement
formulation. To understand what can be gained through the displacement formulation, we first
state the governing PDE and the boundary conditions for the crack problem:

V2w(x,)+ﬁ%:0, —o<r<oo, y>0,
w(z,0) =0, x ¢ [cd], (96)
oy (z,0%) = p(x) , z € (¢, d),

6The governing integral equations are described by relationships (20), (21), and (22) of Reference [?].
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where p(z) is the traction function along the crack surfaces (c,d); and because of symmetry,
only the upper half plane y > 0 is considered. By the Fourier transform we write w(x,y) as

1 o .
w(z,y) = — A(6)eMOY] et g | 97
@) == [ A0 ] eie (o7
where A() is to be determined by the boundary conditions, and

A©))? =& +ipg . (98)

Because of the far field boundary condition, lim, .., w(z,y) = 0, A(£) is found to have a non-
negative real part which can be expressed as

A(E) = ;—W VETpE e %sww Ny (99)

where the sign function S(-) is defined as

1, n >0
Sm=q 0, n=0 (100)
-1, n<0.

By applying the inverse Fourier transform to equation (97), one finds

A(€) = \/%_W/dw(t,o)e“fdt | (101)

which leads to the following integral equation;:

d
7(0.0) = o) = G2 [ ke yue.0jar (102)
where
k(x,t) = lim h [M(€)eM] eilt=mqg (103)
y—0t J_

The trade-off between a displacement-based and a slope-based formulation can be seen here
if one recalls the issue regarding decomposition of the K (§) described in (3). In summary,

= lim &ek(ﬁ)y _ &

K(¢§) ,  if slope formulation is used, (104)
y—0t &
and
K(¢) = liI(I]l+ NE)eMW = \(€) , if displacement formulation is adopted. (105)
y—>

"Note that equations (103) and (103) correspond to equations (20) and (21) in reference [?], respectively.
However, the present notation is different from [?], in which the dummy variable used for the Fourier transform
is a, (a,b) stands for the crack surfaces, and m(«) corresponds to our A(€).
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The decomposition of K (&) in (104) is difficult because of the term ¢ in the denominator. On the
other hand, the decomposition of K(£) in (105) can be achieved through a simple asymptotic
analysis:

Real part of A(¢) = \_/—%\/ it e e T e (106)
. . i T g Koo B¢
i X Imaginary part of \(§) = ES(ﬂ&) VE+BEE -2 — o (107)
Thus the governing hypersingular integral equation is found to be
Glx) [*[ 2 s
N(z,t)| D(t)dt = d 1
5 /C [(t—x)2+t—x+ (x,t)| D(t) plz), c<zx<d, (108)
where we have let
D(t) = w(t,0), (109)

and the nonsingular kernel is

- — 3P VE cos(t - )]
’ <\/§+%\/\/£2+762+5) (¢+vE+P)

— 3 sinf(t — 2)¢]
(5 Va1 VETT € - ) (2604 57 4 26T E0)

N(l’,t +

d¢ . (110)

Recall that the function S(-) is defined by equation (100). As a consistency check, note that if
B =0, then both the Cauchy singular kernel 5/(x — t) and the nonsingular kernel N(z,t) will
be dropped from equation (LU§) so that equation (25) is recovered.

Figure § shows numerical results for displacement profiles considering a crack with uniformly
applied shear tractions o,,(z,0) = —py (|z] < a), and various values of the material parameter
(. Note that the cracks are tilted to the right because of material nonhomogeneity. Further
numerical results, including SIFs at both tips of the crack and corresponding displacement
profiles, are given by Chan et. al. [?]. From a numerical point of view, they have shown that
essentially the same results are obtained either by U, or T, representations for this specific
problem [?].

7.3 Gradient Elasticity Applied to Mode III Cracks [?]

One of the most relevant aspects of the formulas derived in Sections 4 and 5 is the evaluation
of hypersingular integrals such as I,(T,,, m,r) for m > 2 in the weight function W (s) given by
equations (10}) and (14). This example illustrates this point for the case m = 2.
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Figure 6: The half plane of the antiplane shear problem for nonhomogeneous material with shear
modulus G(z) = GoeP*. The cracks are tilted to the right because of material nonhomogeneity.

Paulino et. al. [?] have presented a hypersingular integral equation formulation for a mode
ITI crack in a material described by constitutive equations of gradient elasticity with both
volumetric and surface energy gradient dependent terms. A similar study, using a different
approach, has been conducted by Vardoulakis et. al. [?] and Exadaktylos et. al. [?]. For this
problem, the governing PDE is

—0V'w + Vw =0, (111)

where ¢ is the characteristic length of the material associated to volumetric strain-gradient
terms, and w is the antiplane shear displacement. The boundary conditions are

0ye(,0) = pla) , Ja] <a
Pyy=(2,0) =0, —oo <z <00 (112)
w(z,0) =0, x| > a,

where the notation of references [?, ?, 7] is adopted here. Enforcing the governing equation
(1717), imposing the boundary conditions (112), taking account of symmetry along the z-axis,
and using Fourier transform method, Paulino et. al. [?] have obtained the following governing
Fredholm hypersingular integral equation

a 92 7AY; )
%/_ { 2t )3 + L (23) +k(:c,t)} ¢(t> dt + %(ﬂ(m) :p(x), ‘x| <a (113>

(t—x t—x
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with singularity v = 3, where the slope function ¢ () is defined to be

_ Ow(x,0)

o(z) = —5 — (114)

which satisfies the single-valuedness condition

/a o(t)dt =0, (115)

for the solution of the fracture mechanics problem. Here, k(z,t) is the nonsingular kernel given

by
/ 7 \3
se (VI - 6) -3 (VR - ) + 1

et = [ P = snle(t— o)de ;  (116)

where (—a, a) stands for the crack surfaces; ¢ is the characteristic length responsible for
surface strain-gradient terms; G is the shear modulus of the material; p(z) is the known loading
function; t is the integration variable, and z is the collocation variable.

The behavior of the solution in terms of the density function ¢(t), can be expressed as
o(t) = R(t)(a” — )2 . (117)

where R(t) is taken to be an expansion of Tchebyshev polynomials of first kind (7),). This
example motivates the whole work of this paper because the analytical evaluation of the hyper-
singular integral I3(7,,,2,r) is needed for successfully solving the governing integral equation
(113). The expression for I3(7},,2,7) is given by (55).

Note that the unknown density function is taken to be the first derivative of the displacement
function, as described by equation (114). For this particular example, the decomposition of the
original kernel into singular and nonsingular parts, stated by equation (3), can be accomplished
by means of partial fractions [?]. In general, this step of decomposition is not an easy task,
as discussed in Example 2. An alternative is to consider the displacement function w(z,0) as
the unknown density function. In this case, a hypersingular integral equation with a = 4 is
obtained. With order of singularity o = 4, the behavior of the density function D(¢) in equation
(4) can be expressed by [?]

D(t) = R(t)(a®>—t?)3 . (118)

Thus one needs to evaluate the hypersingular integral I,(7),,3,r) in order to implement the
numerical approximation. The expression for I,(7},,3,r) is given by equation (55).

The numerical results are presented in terms of SIFs (Table 8) and displacement profiles

(Figure i) by considering the slope function ¢(z) as unknown in equation (113) and the T,
expansion to R(t) in equation (117). Table 3 shows the convergence of the SIFs by choosing
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Table 3: Stress intensity factors K;y(a) = 3v/ma(£)*G 27]:[:0 a,, where a,, are the coefficients
of the T,, expantion to R(t) in equation (117). Here ¢/ =0

N (=0.8 (=0.5 | (=0.2 | {=0.1 | {=0.05 | ¢=0.01 | ¢{=0.005
11 | 20.3131 | 15.8292 | 7.4396 | 4.5116 | 2.6342 | 0.1282 | 0.0319
21 | 11.8757 | 9.5632 | 4.4791 | 2.1538 | 0.9541 | 0.0898 | 0.1602
31 | 11.6607 | 9.3937 | 4.3878 | 2.0856 | 0.9204 | 0.1649 | 0.0404
41 | 11.6665 | 9.3983 | 4.3902 | 2.0878 | 0.9246 | 0.1378 | 0.0682
51 | 11.6667 | 9.3984 | 4.3903 | 2.0878 | 0.9247 | 0.1399 | 0.0658
61 | 11.6667 | 9.3984 | 4.3903 | 2.0878 | 0.9247 | 0.1400 | 0.0653
71 | 11.6667 | 9.3984 | 4.3903 | 2.0878 | 0.9247 | 0.1399 | 0.0654
81 | 11.6667 | 9.3984 | 4.3903 | 2.0878 | 0.9247 | 0.1399 | 0.0654
91 | 11.6667 | 9.3984 | 4.3903 | 2.0878 | 0.9247 | 0.1399 | 0.0654
101 | 11.6667 | 9.3984 | 4.3903 | 2.0878 | 0.9247 | 0.1399 | 0.0654

different values of volumetric gradient dependent term, ¢, and letting surface energy gradient
dependent term ¢ = 0. The displacement profile in Figure i, shows the “cusping” phenomenon
at the crack tips, which is also described by Barenblatt’s “cohesive zone” theory [?]. The
interesting point is that the cusping crack obtained here is a natural outcome of the higher
order gradient elasticity theory. Further numerical results and discussions are provided in
reference [7].

8 Concluding Remarks

Closed form analytical solutions are provided here for a broad class of improper integrals with
hypersingular kernels and density functions approximated by means of Tchebyshev polynomi-
als. Whenever possible, the symbolical and numerical tools of the computer algebra software
MAPLE & [?, ?, 7] have been used to verify the proposed solutions. A systematic approach for
evaluating integrals when higher order singularities is also given in the present paper.

The examples involve crack problems and aspects such as LEFM, nonhomogeneous mate-
rials, and gradient elasticity theory (see Table 1}). All these problems are solved by means of
Fredholm hypersingular integral equation formulations. When classical elasticity is used, both
T, and U, representations lead to essentially the same numerical results. For a crack problem
in nonhomogeneous material, the difficulty that arises in splitting the singular and nonsingular
parts from the original kernels can be circumvented by means of displacement-based, rather
than slope-based, formulation.

As a closing remark, we note that as material property variation in space and higher order
gradient continuum theories are considered, the formulation of the crack problem and the
associated kernels become quite involved. Thus, better analytical and numerical techniques
are needed to successfully solve the governing singular integral equations. This paper is a
combination in this sense.

8Maple can evaluate some CPV integrals. However, in general, computer algebra systems are very limited
with respect to hypersingular integrals.
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Figure 7: Full crack displacement profile at ¢/a = 0.2 and ¢'/a = 0.1 under uniform crack
surface antiplane loading o, (z,0) = —og; wo = aoy/Go.
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Appendix

A Integrals associated with lower order n

The general formula given in the text, e.g. equations (42), (43), (48), (52), (57), (61), (bG), and
(70) are only valid above certain values of n. Thus the goal of this Appendix is to provide the

expressions for integrals associated with lower order n.
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