
 
 

A PARALLEL IMPLEMENTATION OF 
GENETIC PROGRAMMING THAT 

ACHIEVES SUPER-LINEAR 
PERFORMANCE 

 
David Andre 

Visiting Scholar, Computer Science 
Department 

Stanford University 
EMAIL: andre@flamingo.stanford.edu 

WWW: http://www-
leland.stanford.edu/~phred/ 

John R. Koza 
Computer Science Department 

Stanford University 
EMAIL: Koza@CS.Stanford.Edu 

WWW: http://www-cs-
faculty.stanford.edu/~koza/ 

 
Abstract:  This paper describes the successful parallel implementation of 
genetic programming on a network of processing nodes using the 
transputer architecture.  With this approach, researchers of genetic 
algorithms and genetic programming can acquire computing power that is 
intermediate between the power of currently available workstations and 
that of supercomputers at intermediate cost.  This approach is illustrated by 
a comparison of the computational effort required to solve a benchmark 
problem.  Because of the decoupled character of genetic programming, our 
approach achieved a nearly linear speed up from parallelization.  In 
addition, for the best choice of parameters tested, the use of subpopulations 
delivered a super linear speed-up in terms of the ability of the algorithm to 
solve the problem.  Several examples are also presented where the parallel 
genetic programming system evolved solutions that are competitive with 
human performance on the same problem. 

1  Introduction  

Amenability to parallelization is an appealing feature of genetic algorithms, evolutionary 
programming, evolution strategies, classifier systems, and genetic programming [1][2][3][4].  

The probability of success in applying the genetic algorithm to a particular problem often depends 
on the adequacy of the size of the population in relation to the difficulty of the problem.  Although 
many moderately sized problems can be solved by the genetic algorithm using currently available 
single-processor workstations, more substantial problems usually require larger populations.  Since 
the computational burden of the genetic algorithm is proportional to the population size, more 
computing power is required to solve more substantial problems.  Increases in computing power can 
be realized by either increasing the speed of computation or by parallelizing the application.  Fast 
serial supercomputers are, of course, expensive and may not be accessible.  Therefore, we focus our 
attention on other more flexible, scalable, and inexpensive methods of parallelization.   

Section 2 presents a brief overview of genetic programming.  Section 3 presents the factors that 
caused us to choose the transputer architecture. Section 4 then describes the successful parallel 
implementation of genetic programming. Section 5 compares the computational effort required to 



solve a problem using various migration rates.  Section 6 describes the successful implementation of 
a variant of our parallel system where a PowerPC is joined with a transputer at each node of the 
network, maintaining the transputer communication architecture but vastly increasing the 
computational power of the system.   Section 7 briefly describes four problems upon which genetic 
programming, running on this parallel architecture, has evolved solutions that are at or exceed 
human levels of performance on the same problem.  

2  Background on genetic programming and genetic algorithms 

Genetic programming is automatic programming.  The book Genetic Programming: On the 
Programming of Computers by Means of Natural Selection  [5] provides evidence that genetic 
programming can solve, or approximately solve, a variety of problems from a variety of fields, 
including many benchmark problems from machine learning, artificial intelligence, control, robotics, 
optimization, game playing, symbolic regression, and concept learning.  Genetic programming is an 
extension of Holland's genetic algorithm described in [1].   

Genetic programming starts with a primordial ooze of randomly generated computer programs 
composed of the available programmatic ingredients and then applies the principles of animal 
husbandry to breed a new (and often improved) population of programs.  The breeding is done in a 
domain-independent way using the Darwinian principle of survival of the fittest, an analog of the 
naturally-occurring genetic operation of crossover (sexual recombination), and occasional mutation.  
The crossover operation is designed to create syntactically valid offspring programs (given closure 
amongst the set of ingredients).  Genetic programming combines the expressive high-level symbolic 
representations of computer programs with the near-optimal efficiency of learning of Holland's 
genetic algorithm.  A program that solves (or approximately solves) a given problem often emerges 
from this process.  Many recent advances in genetic programming are described in [6], [7], [8], and 
[9].      

 3  Selection of machinery to implement parallel genetic programming 

This section describes our search for a relatively simple, practical, and scalable method for 
implementing parallel genetic programming.  

3.1  Time and memory demands of genetic algorithms 

The genetic operations (such as reproduction, crossover, and mutation) employed in the genetic 
algorithm and other methods of evolutionary computation can be rapidly performed and do not 
consume large amounts of computer time.  Thus, for most practical problems, the dominant factor 
with respect to computer time is the evaluation of the fitness of each individual in the population.  
Fortunately, these time-consuming fitness evaluations are totally decoupled from one another and 
can be performed independently for each individual in the population.   

The dominant factor with respect to memory is the storage of the population of individuals (since 
the population typically involves large numbers of individuals for non-trivial problems).  Storage of 
the population does not usually constitute a major burden on computer memory for the genetic 
algorithm operating on fixed-length character strings; however, memory usage is an important 
consideration when the individuals in the population are large program trees of varying sizes and 
shapes (as is the case in genetic programming).  

3.2  The island model of parallelization 

In a coarse-grained or medium-grained parallel computer, subpopulations are situated at the separate 
processing nodes.  This approach is called the distributed genetic algorithm [2] or the island model 
for parallelization.  The subpopulations are often called demes  (after [10]).   



When a run of the distributed genetic algorithm begins, each processing node locally 
creates its own initial random subpopulation.  Each processing node then measures the 
fitness of all individuals in its local subpopulation.  Individuals from the local subpopulation 
are then probabilistically selected based on fitness to participate in genetic operations (such 
as reproduction, crossover, and perhaps mutation).  The offspring resulting from the genetic 
operations are then measured for fitness and this iterative process continues.  Because the 
time-consuming fitness measurement is performed independently for each individual and 
independently at each processing node, this approach delivers an overall increase in 
performance that is nearly linear with the number of independent processing nodes [2].   

Upon completion of a generation (involving a designated number of genetic operations), a certain 
number of the individuals in each subpopulation are probabilistically selected for emigration to each 
adjacent node within the toroidal topology of processing nodes.  When the immigrants arrive at their 
destination, a like number of individuals are selected for deletion from the destination processor.  
The amount of migration may be small (thereby potentially creating distinct subspecies within the 
overall population) or large (thereby approximating, for all practical purposes, a panmictic 
population, which is a population where the individual to be selected to participate in a genetic 
operation can be from anywhere in the population).  The inter-processor communication 
requirements of these migrations are low because only a small number of individuals migrate from 
one subpopulation to another and because the migration occurs infrequently -- only after completion 
of the entire generation.  The distributed genetic algorithm is well suited to loosely coupled, low 
bandwidth, parallel computation. 

3.3  Design considerations for parallel genetic programming 

The largest of the programs evolved in Genetic Programming [5] and Genetic Programming II [6] 
contained only a few hundred points (i.e., the number of functions and terminals actually appearing 
in the work-performing bodies of the various branches of the overall program).   

The parallel implementation of genetic programming described herein was specifically designed 
for problems whose solutions require evolved programs that are considerably larger than those 
described in the two books and whose fitness evaluations are considerably more time-consuming 
than those described in the two books.  For design purposes, we hypothesized multi-branch programs 
that would contain up to 2,500 points, where each point can be stored in one byte of memory.  In this 
representation, each point represents either a terminal or a function (with a known arity).  Thus, a 
population of 1,000 2,500-point programs can be accommodated in 2.5 megabytes of storage with 
this one-byte representation.  We further hypothesized, for purposes of design, a measurement of 
fitness requiring one second of computer time for each 2,500-point individual in the population.  
With this assumption, the evaluation of 1,000 such individuals would require about 15 minutes and 
50 such generations could be run in about a half day, and 100 such generations would occupy about 
a day. Our design criteria were thus centered on a parallel system with a one-second fitness 
evaluation per program, 1,000 2,500-point programs per processing node, and one-day runs 
consisting of 100 generations.  Our selection criteria was the overall price-to-performance ratio.   

"Performance" was measured (or estimated) for the system executing our application involving 
genetic programming, not generic benchmarks (although the results were usually similar).  "Price" 
includes not only the obvious costs of the computing machinery and vendor-supplied software, but 
also includes our estimate of the likely cost, in both time and money, required for the initial 
implementation of the approach, the ongoing management and maintenance of the system, and the 
programming effort needed to implement the expected succession of new problems that we would 
approach with genetic programming.    



3.4  Qualitative evaluation of several parallel systems 

Using the above design and selection criteria and our price-to-performance ratio as a guide, we 
examined serial supercomputers, parallel supercomputers, networks of single-board computers, 
workstation clusters, special-purpose microprocessors, and transputers.   

Since we had previously been using a serial computer, an extremely fast, well priced serial 
supercomputer would optimally satisfy our criteria as to the cost of initial implementation, ongoing 
management and maintenance, and programming of new problems.  Current extremely fast serial 
supercomputers (e.g., Cray machines) attain their very high speeds by vectorization or pipelining.  
We believed (and [11] verified) that these machines would not prove to deliver particularly good 
performance on genetic programming applications because of the disorderly sequence of 
conditionals and other operations in the program trees of the individuals in the population.  The Intel 
i860 microprocessor was also avoided for the same reason.   Although a serial solution would have 
been ideal as far as the simplicity of implementation, we believe that greater gains in computing 
speed for doing experimental work on large problems in the field of genetic programming will come, 
in the next decade or two, from parallelization.    

The fine-grained SIMD ("Single Instruction, Multiple Data") supercomputers (such as Thinking 
Machine's CM-2 and MasPar's machines) are largely inappropriate for genetic programming because 
the individual programs in the population are generally of different sizes and shapes and contain 
numerous conditional branches.  Although it may, in fact, be possible to efficiently use a fine-
grained SIMD machine for an application that seemingly requires a MIMD machine [12][13], doing 
so would require substantial expertise outside our existing capabilities, as well as extensive 
customizing of the parallel code for each new problem. 

The traditional coarse-grained and medium-grained MIMD ("Multiple Instruction, Multiple Data") 
supercomputers (such as Thinking Machine's CM-5, Intel's Paragon, the NCUBE machines, and the 
Kendall Research machines) do not appear to be a cost-effective way to do genetic programming 
because they are designed to deliver a larger ratio of inter-processor communication bandwidth 
relative to processor speed than is optimal for genetic programming.  The price of each processing 
node of a typical supercomputer was in the low to middle five-figure range while the microprocessor 
at each node was usually equivalent to that of a single ordinary workstation.  In some cases (e.g., 
Thinking Machine's CM-5), processing could be accelerated by additional SIMD capability at each 
node, but most genetic programming applications cannot take advantage of this capability.  When 
one buys any of these coarse-grained and medium-grained MIMD machines, one is primarily buying 
high bandwidth inter-processor communication, rather than raw computational speed.   

Given the high expense and inappropriate features of many of the existing parallel supercomputers 
and serial supercomputers, we looked into the possibility of simpler parallel systems built out of a 
network of processor boards or workstations.   

Printer controller boards are inexpensive, have substantial on-board memory, have on-board 
Ethernet connectivity, and have very high processing capabilities (often being more powerful than 
the computer they serve).  However, these devices are typically programmed once (at considerable 
effort) for an unchanging application and there is insufficient high-level software for writing and 
debugging new software for the constant stream of new problems to which we apply genetic 
programming. 

We also considered the idea of networks of workstations or networks of single-board computers 
(each containing an Ethernet adapter); however, these approaches present difficulties involving the 
ongoing management and maintenance of the independent processes on many autonomous machines.  
Even for a network of single-board computers, the tools and operating systems used in these systems 
were not as sophisticated as those in the system we finally selected.  Although it is possible to use 
independent computers in this manner [14], these computers (and most of the supporting software) 
were designed for independent operation, and there are no simple tools for the design, configuration, 
routing, or bootloading of the many interconnected processes that must run on such a network of 
processors.   



3.5  Transputers 

One important reason for considering the transputer (designed by INMOS, a division of SGS-
Thomson Microelectronics) was that it was designed to support parallel computation involving 
multiple inter-communicating processes on each processor and inter-processor communication.  The 
transputer was engineered so that processes could be easily loaded onto all the processing nodes of a 
network, so that the processes on each node can be easily started up, so that messages can be easily 
sent and received between two processes on the same or different processing nodes, so that messages 
can be easily sent and received between one processing node and a central supervisory program, so 
that messages can be easily sent and received by host computer from the central supervisory 
program, and so that the processes on each node could be easily stopped.  Moreover, debugging tools 
exist.   

As it happens, there are a considerable number of successful applications of networks of 
transputers in the parallel implementation of genetic algorithms operating on fixed length character 
strings [15][16][17][18][19][20][21]. 

  

3.6  Suitability of transputers for parallel genetic programming 

The communication capabilities of the transputer are more than sufficient for implementing the 
island model of genetic programming.  The bi-directional communication capacity of the INMOS T-
805 transputer is 20 megabits per second simultaneously in all four directions.  If 8% of the 
individuals at each processing node are selected as emigrants in each of four directions, each of these 
four boatloads of emigrants would contain 80 2,500-byte individuals (or 400 500-byte individuals). 
The communication capability of 20 megabits per second is obviously more than sufficient to handle 
25,000 or 200,000 bytes every 15 minutes.   

Our tests indicate that a single INMOS T-805 30-MHz microprocessor is approximately equivalent 
to an Intel 486/33 microprocessor for a run of genetic programming written in the C programming 
language.  Although a single 486/33 is obviously currently not the fastest microprocessor, this 
microprocessor is capable of doing a considerable amount of computation in one second.  One 
second of 486/33 computation per fitness evaluation seems to be a good match for the general 
category of problems that we were envisioning.   

As previously mentioned, 1,000 2,500-point programs (or 5,000 500-point programs) can be stored 
in 2.5 megabytes of memory.  On a 4-megabyte TRAM, there is, therefore, about 1.5 megabytes of 
memory remaining after accommodating the population.  This remaining amount of memory is 
sufficient for storing the program for genetic programming, the communication buffers, and the 
stack, while leaving some space remaining for possible problem-specific uses (e.g., special databases 
of fitness cases).  Thus, a TRAM with the INMOS T-805 30-MHz processor with 4 megabytes of 
RAM memory satisfies our requirements for storage.  Note that we did not select TRAMs with 8 or 
16 megabytes because the one processor would then have to service a much larger subpopulation 
(thereby increasing the time required for the fitness evaluation of the entire population).   

TRAMs cost considerably less than $1,000 each in quantity.  Thus, the cost of a parallel system 
capable of handling a population of 64,000 2,500-point programs (or 320,000 500-point programs) 
with the computational power of 64 486/33 processors can be acquired for a total cost that is 
intermediate between the cost of a single fast workstation and the cost of a mini-supercomputer or a 
supercomputer.  Moreover, a system with slightly greater or lesser capability could be acquired for a 
slightly greater or less cost. Finally, the likely amount of time and money required for initial 
implementation, ongoing management and maintenance, and programming of new problems seemed 
to be (and has proved to be) low. 



4  
Implementatio
n of parallel 
genetic 
programming 
using a 
network of 
transputers 

A network of 66 
TRAMs and one 
Pentium type 
computer are 
arranged in the 
overall system as 
follows:  the host 
computer 
consisting of a 
keyboard, a video 
display monitor, 
and a large disk 
memory, a 
transputer 
running the 
debugger, a 
transputer 
containing the 

central supervisory process (the Boss process), and the 64 transputers of the network, each running a 
Monitor process, a Breeder process, an Exporter process, and an Importer process. 

4.1 The physical system  

The physical system was purchased from Transtech of Ithaca, NY.  A PC computer (running 
Windows 3.1) is the host and acts as the file server for the overall system.  Two TRAMs are 
physically housed on a B008 expansion board within the host computer and serve as the central 
supervisory process for running genetic programming (the Boss Node) and a node to run the INMOS 
debugger (the Debugger node).  The remaining 64 TRAMs (the processing nodes) are physically 
housed on 8 boards in a VME box.  The 64 processing nodes are arranged in a toroidal network in 
which 62 of the 64 processing nodes are physically connected to four neighbors (in the N, E, W, and 
S directions) in the network.  Two of the 64 nodes of the network are exceptional in that they are 
physically connected to the Boss Node and only three other processing nodes.  The Boss node is 
physically linked to only two transputers of the network.  

 The communication between processes on different transputers is by means of one-way, point-to-
point, unbuffered, channels.  The channels are laid out along the physical links using a virtual router 
provided in the INMOS Toolkit.  Figure 1 shows the system's various elements.   

4.2 Intercommunicating processes 

Transputers are programmed using inter-communicating processes connected by channels.  The Host 
computer runs two processes.  The Host process on the Host computer receives input from the 
keyboard, reads an input file containing the parameters for controlling the run, writes the two output 
files, and communicates with the boss.  The second process on the Host computer is the monitoring 
process.   
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Figure 1.  The boxes denote the various computers, including the host Pentium computer, the 
Debugger Node, the Boss Node, and the network of processing nodes.  For simplicity, only nine of 
the 64 processing nodes are shown.  The ovals denote the various major files on the host computer, 
including the input parameter file for each run and two output files (one containing the results of 
the run and one containing information needed by a monitoring process).   The rounded boxes 
denote the input-output devices of the host computer.  The diamond denotes the Visual Basic (VB) 
monitoring process that displays information about the run on the video display monitor of the 
host computer.  Heavy unbroken lines are used to show the physical linkage between the various 
elements of the system.  Heavy broken lines show the lines of virtual communication between the 
Boss node and the processing nodes.  Light unbroken lines show the virtual channels connecting 
each of the processing nodes with their neighbors.  



The TRAM with the Debugger runs only one process, the INMOS-supplied Debugger process.  
The TRAM with the Boss runs only one process, the Boss.  Each of the 64 TRAMs in the toroidal 
network concurrently runs the following four processes:  the Importer, the Exporter, the Breeder, and 
the Monitor (Figure 2).  The primary process on each of the processing nodes is the Breeder process, 
which runs the main operations of genetic programming.  The other three processes permit 
asynchronous communication and serve to avoid deadlocks.     

4.3  The Boss process 

The Boss process is responsible for communicating with the Host process, for sending initial start 
messages to each of the processors in the network, for tabulating information sent up from each 
processor at the end of each generation, for sending information to the monitoring process on the 
host, and for handling error conditions.   

At the beginning of a run of genetic programming, the Boss process initializes various data 
structures, creates the set of fitness cases either functionally or by obtaining information from a file 
on the Host, creates a different random seed for each processor, pings each processor to be sure it is 
ready, and reads in a set of parameters from a file on the host that controls genetic programming.  
Then, the Boss sends a Start-Up message to each Monitor process (which will in turn send it along to 
the Breeder process).  This message contains:  the control parameters for creating the initial random 
subpopulation, including the size of the subpopulation, the method of generation and the maximum 
size for the initial random individuals, the common, network-wide table of random constants for the 
problem (if any), the control parameters specifying the number of each genetic operation to be 
performed for each generation, and a node-specific seed for the randomizer. 

After sending the Start-up message, the Boss enters a loop where it handles the various messages 
that each Monitor sends until an error condition occurs, a solution is found, or all processors have 
either crashed or completed a specified number of generations. 

4.4  The Monitor process 

The Monitor process of each processing node is continually awaiting messages from both the Boss 
process of the Boss node as well as from the Breeder process of its processing node.  Upon receipt of 
a Start-Up message from the Boss, the Monitor process passes this message along to the Breeder 
process on its node.  The Monitor process also passes the following messages from the Breeder 
process of its node along to the Boss: 

End-of-Generation:  The end-of-generation message contains the best-of-generation individual for 
the current subpopulation, statistics about that individual, and some general statistics. 
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Figure 2  The four processes on each of the 64 processing nodes.  The Breeder process performs the bulk of the 
computation in genetic programming, and the three other processes facilitate communication with the Boss and the four 
neighboring nodes. 



Eureka:  The eureka message announces that the processing node has just created an individual in 
its subpopulation that satisfies the success criterion of the problem and contains the just-created 
best-of-run individual and various statistics about it.   
Trace:  The trace message announces that the Breeder process has reached certain milestones in 
its code (e.g., received its start-up message, completed creation of the initial random 
subpopulation for the node).   
Error:  The error message announces that the Breeder process has encountered certain 
anticipatable error conditions.  

4.5  The Breeder process 

After the Breeder process of a processing node receives the Start-up message, it creates the initial 
random subpopulation of individuals for the node.  Then, in the main generational loop, the Breeder 
process of a processing node iteratively performs the following steps: 

1. Evaluates the fitness of every individual in the subpopulation.   
2. Selects, probabilistically, based on fitness, a small number of individuals to be emigrants 
(except on generation 0) and sends them to a buffer in the Exporter process.   
3. Assimilates the immigrants currently waiting in the buffers of the Importer process (except 
on generation 0).  
4. Creates an end-of-generation report for the subpopulation. 
5. Performs the genetic operations on the subpopulation.  

The breeder process runs until one individual is created that satisfies the success predicate of the 
problem or until it is stopped by the Boss process.     

4.6  Asynchronous operation 

For most problems the amount of computer time required to evaluate individuals in genetic 
programming usually varies considerably among subpopulations.  The presence of just one or a few 
time-consuming programs in a particular subpopulation can dramatically affect the amount of 
computer time required to run one generation.  Any attempt to synchronize the activities of the 
algorithm at the various processing nodes would require slowing every processing node to the speed 
of the slowest.  Therefore, each processing node operates asynchronously with respect to all other 
processing nodes.  After a few generations, the various processing nodes of the system will typically 
be working on different generations.  This variation arises from numerous factors, including the 
different sizes of the individual programs, the mix of faster and slower primitive functions within the 
programs, and the number, nature, and content of the function-defining branches of the overall 
program.   

The asynchrony of the generations on nearby processors requires that the exporting and importing 
of migrating programs take place in a manner that does not require that the breeder  ever wait for a 
neighboring process to finish a generation.  To allow the breeder nearly uninterrupted computing 
time, the Exporter process and the Importer process were created to handle the communication.  The 
Monitor process acts in a similar fashion for communication with the Boss process.  The use of 
multiple processes is also important in preventing dead-locks.   

4.7  The Exporter process 

The Exporter process periodically interacts with the Breeder process of its processing node as part of 
the Breeder's main generational loop for each generation (except generation 0).  At that time, the 
Breeder sends four boatloads of emigrants to a buffer of the Exporter process.  The Exporter process 
then sends one boatload of emigrants to the Importer process of each of the four neighboring 
processing nodes of the network.   



4.8  The Importer process 

The purpose of the Importer is to store incoming boatloads of emigrants until the Breeder is ready to 
incorporate them into the subpopulation.  When a boatload of immigrants arrives via any one of the 
four channels connecting the Importer process to its four neighboring Exporter processes, the 
Importer consumes the immigrants from that channel and places these immigrants into the buffer 
associated with that channel (occasionally overwriting previously arrived, but not yet assimilated, 
immigrants in that buffer).  When the Breeder process is ready to assimilate immigrants, it calls for 
the contents of the Importer's buffers.  If all four buffers are full, the four boatloads of immigrants 
replace the emigrants that were just dispatched by the Breeder process to the Exporter process of the 
node.  If fewer than four buffers are full, the new immigrants replace as many of the just-dispatched 
emigrants as possible.  

5  Comparison of computational effort for different migration rates 

The problem of symbolic regression of the Boolean even-5-parity function will be used to illustrate 
the operation of the parallel system and to compare the computational effort associated with different 
migration rates between the processing nodes.   

The Boolean even-5-parity function takes five Boolean arguments and returns T if an even number 
of its arguments are T, but otherwise returns NIL.  The terminal set, Tadf, for this problem is {D0, 
D1, D2, D3, D4}.  The function set, Fadf, is {AND, OR, NAND, NOR}.  The standardized fitness of a 
program measures the sum, over the 32 fitness cases consisting of all combinations of the five 
Boolean inputs, of the Hamming-distance errors between the result produced by the program and the 
correct Boolean value of the even-5-parity function.  For a full description of this problem, see [6].  

Numerous runs of this problem with a total population size of 32,000 were made using ten 
different approaches.  This particular population size (which is much smaller than the population size 
that can be supported on the parallel system) was chosen because it was possible for us to run this 
size of population on a single serial computer (a Pentium) with panmictic selection and thereby 
compare serial versus parallel processing using a common population size of 32,000.  The first 
approach tested runs on a single processor with a panmictic population of size M = 32,000; the 
second approach tested runs on the parallel system with D = 64 demes, a population size of Q = 500 
per deme, and a migration rate of B = 12% (in each of four directions on each generation of each 
deme); the third through tenth approaches tested runs on the parallel system with D = 64 demes, a 
population size of Q = 500 per deme, and a migration rate of B = 8%, 6%, 5%, 4%, 3%, 2%, 1%, and 
0%, respectively.   

A probabilistic algorithm may or may not produce a successful result on a given run.  One way to 
measure the performance of a probabilistic algorithm is to compute the computational effort required 
to solve the problem with a certain specified probability (say, 99%) (see [6]).  Table 1 shows the 
computational effort for the ten approaches to solving this problem.   



As can be seen, the computational effort, E, is smallest for a migration rate of B = 5%.  The 
computational effort for all of the parallel runs except for those runs with an extreme (0% or 12%) 
migration rate is less than the computational effort required with the panmictic population.  In other 
words, creating semi-isolated demes produced the bonus of also improving the performance of 
genetic programming for these migration rates for this problem.  The parallel system has two speed-
ups:  the nearly linear speed-up in executing a fixed amount of code inherent in the island model of 
genetic programming and the more than linear speed-up in terms of the speed of the genetic 
programming algorithm in solving the problem.  In other words, not only does the problem solve 
more quickly because we are distributing the computing effort over many processors, but there is 
less computational effort needed because of the use of multiple semi-isolated subpopulations.  This 
result is consistent with the analysis of Sewell Wright [10] regarding demes of biological 
populations.  Subpopulations can, of course, also be created and used on a serial machine.  

6  Increasing performance:  the PowerPC in the transputer architecture 

The transputer, although a moderately fast processor, is not particularly powerful by today's 
standards.  Several companies have capitalized on the success of the transputer architecture for 
communication and multiprocessing in a parallel environment by creating hybrid systems that 
combine a more powerful microprocessor (such as the DEC Alpha or the Motorola PowerPC) with 
the transputer architecture and the INMOS toolkit.  These companies use the transputer 
microprocessor solely for communication.   

One such company, Parsytec of Aachen, West Germany, has produced several commercial parallel 
processing systems that integrate the PowerPC chip with the transputer architecture.  The basis of 
their systems are TRAM-like components that combine a PowerPC chip with a transputer, some 
memory, and some communication hardware.  Their system utilizes the INMOS toolkit in its entirety 
along with several special add-on libraries and tools to handle the additional processor.  Their system 
delivers a increase in performance over the transputer-only system, but requires little change in the 
architecture, because the INMOS toolkit eliminates most of the vexatious details.   

 Although our first implementation of parallel genetic programming had served us well for two 
years and was still functioning well in spring 1995, we needed greater computational power.  Thus, 
we moved to a PowerPC based system.  Our second implementation of parallel genetic programming 
has almost the same architecture as our first implementation.  It consists of a network of 64 PowerPC 
TRAMs (containing both a PowerPC 601 processor, a transputer T805 processor, and 32 megabyte 
of RAM), one transputer-only TRAM as the Boss, and a PC 586/90 type computer acting as host.  
Each of the 64 PowerPC and transputer nodes act as the processing nodes of the network.  The single 
transputer T805 TRAM with 16 MB of RAM acts as the Boss node.  The debugger node has been 
eliminated.   

Table 1    Comparison of ten approaches. 

 Approach Migration rate B Computational effort I(M,x,z) 
1 Panmictic NA 5,929,442 
2 Parallel 12% 7,072,500 
3 Parallel 8% 3,822,500 
4 Parallel 6% 3,078,551 
5 Parallel 5% 2,716,081 
6 Parallel 4% 3,667,221 
7 Parallel 3% 3,101,285 
8 Parallel 2% 3,822,500 
9 Parallel 1% 3,426,878 
10 Parallel 0% 16,898,000 



A good example of the ease of use of INMOS' parallel toolkit is the fact that the entire port of our 
parallel implementation to the new Parsytec system took less than a week.  This week included the 
system setup, learning several tools to analyze the PowerPC nodes in the network, and the porting, 
compiling, and debugging of all the code in the parallel genetic programming kernel and our 
benchmark problems.  In less than a week, we were able to run the 5-parity problem on our PowerPC 
network and compare it to the performance of the transputer system.   

On several runs of the 5-parity problem, we found that the Parsytec PowerPC and transputer 
system outperformed the transputer system by a factor of more than 22.  However, the cost of each 
node in the PowerPC and transputer system cost only approximately five times more than a node in 
the first implementation.  Our second implementation thus provides a significantly better price-to-
performance ratio over our first system.   

7  Using parallelism to achieve near-human performance on four problems 

There have been several recent examples of problems (from the fields of cellular automata, 
molecular biology, and circuit design) in which genetic programming, running on our parallel 
PowerPC system, evolved a computer program that produced results that were slightly better than, or 
as good as, human performance for the same problem.   

For example, various human-written algorithms have appeared in the past two decades for the 
majority classification task for one-dimensional two-state cellular automata.  Parallel genetic 
programming with automatically defined functions has evolved a rule for this task with an accuracy 
of 82.326% [22].  This level of accuracy exceeds that of the original human-written Gacs-
Kurdyumov-Levin (GKL) rule, all other known subsequent human-written rules, and all other known 
rules produced by automated approaches for this problem.     

A second example involves the transmembrane segment identification problem where the goal is to 
classify a given protein segment (i.e., a subsequence of amino acid residues from a protein sequence) 
as being a transmembrane domain or non-transmembrane area of the protein (without using 
biochemical knowledge concerning hydrophobicity typically used by human-written algorithms for 
this task).  Four different versions of parallel genetic programming have been applied to this problem 
[6][23][24].  The performance of all four versions evolved using genetic programming is slightly 
superior to that of algorithms written by knowledgeable human investigators.    

A third example illustrates how automated parallel methods may prove to be useful in discovering 
biologically meaningful information hidden in the rapidly growing databases of DNA sequences and 
protein sequences.  Parallel genetic programming successfully evolved motifs for detecting the D-E-
A-D box family of proteins and for detecting the manganese superoxide dismutase family [25].  Both 
motifs were evolved without prespecifying their length, and both detect the two families either as 
well as, or slightly better than, the comparable human-written motifs found in the PROSITE database 
created by an international committee of experts on molecular biology.  

Finally, our parallel system has been used to evolve both the topology and component values of 
electrical circuits to solve a variety of engineering problems, including low and high pass filters [26], 
multiple band pass filters [27], woofer and tweeter filters [28], and simple amplifiers [?].  Parallel 
genetic programming was able to evolve a solution for an asymmetric band-pass filter problem that 
was presented as a difficult-to-solve filter problem in an analog circuit journal [28].    
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