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The presence of multiple areas of hypoxia (low oxygen
tension) is a hallmark feature of human and experimental
tumors. Monocytes are continually recruited into tumors,
differentiate into tumor-associated macrophages (TAMs),
and then accumulate in these hypoxic areas. A number of
recent studies have shown that macrophages respond to
the levels of hypoxia found in tumors by up-regulating
such transcription factors as hypoxia-inducible factors 1
and 2, which in turn activate a broad array of mitogenic,
proinvasive, proangiogenic, and prometastatic genes.
This could explain why high numbers of TAMs correlate
with poor prognosis in various forms of cancer. In this
review, we assess the evidence for hypoxia activating a
distinct, protumor phenotype in macrophages and the
possible effect of this on the growth, invasion, angiogen-
esis, and immune evasion of tumors. We also discuss cur-
rent attempts to selectively target TAMs for destruction or
to use them to deliver gene therapy specifically to hypoxic
tumor sites. (Am J Pathol 2005, 167:627–635)

Macrophages are highly versatile immune effector cells
that are derived from bone marrow progenitors, which
continually proliferate and release promonocytes into the
bloodstream. The promonocytes circulate briefly, differ-
entiate into monocytes, and then migrate from the blood
into tissues, where they differentiate further into resident
macrophages. Here they protect the body from infection
by bacteria, viruses, and other pathogens. Extensive
monocyte extravasation is also an early event in the onset
of inflammation, wound healing, and various diseases, in
which they exhibit a tissue-specific range of functions
that include phagocytosis, antigen presentation to T
cells, and the release of a wide array of cytokines, che-

mokines, growth factors and enzymes, reactive oxygen
and nitrogen species, complement components, coagu-
lation factors, and prostaglandins.1

Macrophages are often prominent in tumor tissues,
comprising up to 80% of the cell mass in breast carcino-
ma.2 A number of tumor-derived chemoattractants have
been implicated in monocyte uptake into tumors includ-
ing CCL2 (formally monocyte chemoattractant protein-1),
macrophage-colony stimulating factor (M-CSF or CSF-1),
and vascular endothelial growth factor (VEGF). When
monocytes are recruited into malignant tumors, they rap-
idly differentiate into tumor-associated macrophages
(TAMs). Tumor levels of chemoattractant proteins often
correlate positively with TAM numbers in human tumors.3

It has been suggested that TAMs retain a relatively
immature macrophage phenotype that is characterized
by low expression of differentiation-associated macro-
phage antigens such as carboxypeptidase M and CD51,
high constitutive expression of interleukin (IL)-1 and IL-6,
and low levels of tumor necrosis factor (TNF)-�.2,4 Fur-
thermore, although macrophages derived from healthy or
inflamed tissues are capable of lysing tumor cells, ex-
pressing immunostimulatory cytokines, and presenting
tumor-associated antigens to stimulate the proliferation
and anti-tumor functions of T and NK cells in vitro,1 TAMs
show reduced levels of these activities. This may be due
in part to their exposure to the tumor-derived anti-inflam-
matory molecules IL-4, IL-10, transforming growth factor-
�1, and prostaglandin E2.2,5 Indeed, this prompted Man-
tovani and colleagues6 to suggest that exposure to IL-4
and IL-10 may induce monocytes in tumors to develop
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into polarized type II (alternatively activated) or M2 mac-
rophages. These macrophages have poor antigen-pre-
senting ability and produce factors that suppress T-cell
proliferation and activity. They are better adapted to
scavenging for debris, promoting angiogenesis, and re-
pairing and remodeling wounded/damaged tissues. This
contrasts markedly with the phenotype of classically ac-
tivated type I or M1 macrophages that are efficient im-
mune effector cells able to kill microorganisms and tumor
cells, present antigen, and produce high levels of immu-
nostimulatory cytokines.6

The level of TAMs in tumors appears to be affected by
hypoxia (low oxygen tension), a trait commonly found in
these tissues. TAM numbers are generally higher in tu-
mors containing high overall levels of hypoxia, as seen in
primary human breast carcinomas7 and various animal
tumors.8 Interestingly, TAM numbers also correlate pos-
itively with overall hypoxia (as assessed using the hy-
poxic cell marker carbonic anhydrase IX) in liver metas-
tases from breast and colorectal tumors.9 These findings
suggest that hypoxic tumors secrete higher amounts of
chemoattractants and/or other factors that enhance
monocyte attachment to and migration through the tumor
vasculature.

Once targeted to hypoxic sites, TAM functions are
greatly affected by hypoxia-related factors. Here, we re-
view the evidence for hypoxia being an important intra-
tumoral signal that stimulates TAMs to secrete a range of
mitogenic factors, proangiogenic cytokines and en-

zymes, and immunosuppressive agents. Collectively,
these effects may explain, in part, why the presence of
large numbers of TAMs correlate with poor prognosis in
carcinoma of the breast,10 cervix,11 stomach,12 blad-
der,13 uterus,14 prostate,15 and kidney.16

Macrophage Accumulation in Hypoxic Areas of
Tumors: Mechanisms and Biological
Significance

New blood vessels in tumors are usually disorganized
and prone to collapse, resulting in areas of inadequate
perfusion and hypoxia. Additionally, rapid tumor cell pro-
liferation in some areas may outpace the rate of new
blood vessel growth, causing hypoxic areas to form.17,18

Use of such hypoxic cell markers as pimonidazole has
allowed identification of both transient (avascular,
non-necrotic) and chronic (peri-necrotic) areas of hyp-
oxia in both human and experimental animal tumors
(Figure 1).4,17–19 The correlation between overall hypoxia
and TAM accumulation in tumors has prompted some to
suggest that an in vivo assessment of TAM accumulation
might have utility in the detection of metastases and/or
monitoring of hypoxia levels in tumors.

Recent evidence has shown that TAMs may accumu-
late in high numbers in hypoxic/necrotic areas of endo-
metrial,20 breast,8,10 prostate,21 and ovarian22 carcinoma
due to the hypoxic release of such macrophage che-

Figure 1. TAM localization in hypoxic areas of murine mammary (A, B) and human breast (C, D) tumors. Tumor hypoxia was visualized by injecting mice bearing
4T1 mammary tumors or breast cancer patients with the hypoxic cell marker pimonidazole (PIMO) before surgical removal of tumors. PIMO retained by hypoxic
cells in tumor sections was then detected using a rabbit anti-PIMO antibody (red staining, arrows in B and D). Macrophages were co-localized in these sections
using a monoclonal antibody to the pan macrophage markers F4/80 (B) and CD68 (D) (brown staining). Although TAMs can be seen in both normoxic (A, C)
and hypoxic (B, D) areas of tumors, they accumulated at highest density in the latter. Hematoxylin staining of nuclei is shown in blue. Scale bars, 50 �m.
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moattractants as EMAP-II, endothelin 2, and VEGF.3 Be-
cause macrophages are phagocytes, they may also be
attracted to hypoxic, perinecrotic areas along a trail of
necrotic debris emanating from dead cells. Hypoxia also
entraps TAMs by decreasing their mobility in a number of
ways. One such approach involves the hypoxic up-reg-
ulation by macrophages of the enzyme mitogen-acti-
vated protein kinase phosphatase (MKP-1).23 This is im-
portant because various chemoattractant receptors,
including those for CCL2, VEGF, and endothelin 2, stim-
ulate cell migration by phosphorylating the signaling en-
zymes MEK, ERK1/2, and p38 MAPK. Up-regulated
MKP-1 rapidly dephosphorylates these molecules in
TAMs, thus terminating the chemotactic response of
TAMs to these chemokines.3,24,25 Hypoxia also inhibits
macrophage expression of the chemokine receptors
CCR226 and CCR5,27 further helping to immobilize TAMs.

Such accumulation of TAMs in hypoxic/necrotic areas
has itself been linked to tumor aggressiveness, with high
TAM numbers in such areas correlating with increased
lymph node involvement (ie, metastasis) and/or poor
prognosis in breast10 and endometrial20 cancers. More-
over, high TAM numbers in these areas correlate with
increased overall levels of angiogenesis in breast carci-
noma,5,10 suggesting that TAM activity in hypoxic tumor
areas may specifically promote tumor angiogenesis and
metastasis.

Hypoxic Phenotype of TAMs

Hypoxia induces a profound change in the phenotype of
macrophages, promoting increased expression of a wide
range of genes (outlined in detail in later sections). This is
brought about by the hypoxic up-regulation of such tran-
scription factors as hypoxia-inducible factor (HIF)-1 and
HIF-2, consisting of a hypoxia-inducible � subunit
(HIF-1� and HIF-2�) and a constitutively expressed �
subunit that is common to both HIFs. In the presence of
oxygen, HIF-1� and HIF-2� are rapidly degraded in the
cytoplasm. In hypoxia, however, they accumulate and
translocate to the nucleus where they bind first to the �
subunit and then to hypoxic response elements in or near
the promoters of oxygen-sensitive genes.28

HIF-1� and HIF-2� are up-regulated by human mac-
rophages exposed to hypoxia in vitro and by TAMs in
hypoxic/necrotic areas of human tumors.29,30 We have
shown that hypoxic macrophages accumulate more
HIF-1 than HIF-2,29 suggesting that HIF-1 may be the
major hypoxia-inducible transcription factor in hypoxic
TAMs. This corresponds well with previous studies show-
ing that HIF-1�-deficient mouse embryonic stem cells
and embryonic fibroblasts are unable to exhibit their nor-
mal pattern of gene up-regulation in hypoxia, suggesting
an essential role for HIF-1, at least in these cells.31 An-
other recent study has shown HIF-2� expression by
TAMs to positively correlate with angiogenesis in breast32

and bladder33 carcinoma (with poor prognosis in the
latter condition;34) however, no such analysis for HIF-1
was included in these studies, so no direct comparisons
can be made. White and co-workers35 used adenoviral

infection to overexpress HIF-1 and -2 in human macro-
phages and also found HIF-2 to be the primary inducer of
genes encoding angiogenic proteins in these cells. How-
ever, the repertoire of genes activated by overexpression
of each HIF may differ from that in cells responding to
hypoxia, in which HIF levels may naturally be lower. Thus,
studies are warranted to examine gene expression in
macrophages treated with siRNA to selectively block ex-
pression of HIF-1� versus HIF-2�.

Interestingly, recent reports suggest that HIF-1 may
play an important role in regulating macrophage recruit-
ment into inflammatory lesions. Mice with a conditional
knockout for HIF-1� in myeloid cells were used to exam-
ine the role of this factor in regulating macrophage up-
take into inflammatory lesions, which, like tumors, are
often oxygen-depleted. Loss of HIF-1 reduced macro-
phage adhesion to and infiltration through an artificial
matrix (growth factor-reduced Matrigel) in vitro. This was
likely a contributing factor in their finding that HIF-1
knockout mice exhibit a markedly diminished inflamma-
tory response in inflamed skin and artificially-induced
arthritic joints.36 Furthermore, hypoxia has been shown to
stimulate macrophage adhesion to endothelial cells, in
part, by HIF-1 induction of CD18, the � subunit of all �2
integrins.37 It remains to be seen whether such HIF-1-
driven mechanisms play any part in recruiting monocytes
into tumors and/or TAM migration into hypoxic tumor
areas.

Like malignant cells, macrophages can switch from
aerobic to anaerobic glycolysis by increasing levels of
various glycolytic enzymes,38,39 including phosphoglyc-
erate kinase-1.35 They also up-regulate their expression
of the glucose-transporting receptor Glut-136,39 to in-
crease the supply of extracellular glucose for ATP gen-
eration via this route. Hypoxic up-regulation of both
genes is HIF-1-dependent and is absent in macrophages
derived from HIF-1 knockout mice.36

It should be noted that HIFs are not the only transcrip-
tion factors up-regulated by macrophages in response to
hypoxia. Others include nuclear factor-�B,40 Ets-1,41 Egr-
1,42 and activating transcription factor-4 (ATF-4) (El-
berghati L, Murdoch C, and Lewis CE, unpublished ob-
servations). However, a role for these transcription
factors in regulating gene expression and contributing to
the hypoxic phenotype of TAMs has yet to be
demonstrated.

Protumor Effects of Macrophages

Recent studies have indicated that TAMs may play an
important part in promoting tumor growth and progres-
sion. For example, an elegant study by Li et al 43 used an
M-CSF knockout mouse model to demonstrate the central
role of TAMs in the progression of spontaneous mam-
mary tumors. M-CSF, a growth factor that promotes the
survival and differentiation of macrophages,44 is overex-
pressed in some human tumors, and elevated M-CSF
levels correlate with high TAM numbers and poor prog-
nosis.45 Li and colleagues43 showed that mammary tu-
mors grown in M-CSF-knockout mice recruited fewer
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TAMs, progressed more slowly from preinvasive to ma-
lignant lesions, and exhibited reduced metastasis com-
pared to their normal, M-CSF-expressing counterparts.
This finding was confirmed in a recent study using siRNA
to inhibit M-CSF expression by MCF-7 xenografts, which
resulted in a marked reduction in TAM numbers, tumor
growth, and angiogenesis.46

Under tumor-associated hypoxia macrophages show
marked changes in expression patterns of several genes.
These are outlined below, where genes have been
grouped into categories according to their effect on tu-
mor growth, invasion/metastasis, angiogenesis, and im-
mune evasion (Figure 2).

Growth Factors

Tumor cell mitogens have been shown to be up-regu-
lated by hypoxic macrophages in vitro. These include
fibroblast growth factor 2 (FGF2), platelet-derived growth
factor, placental growth factor, and hepatocyte growth
factor,35 although TAM up-regulation of these factors in
hypoxic tumor areas in vivo has yet to be demonstrated.
TAMs are also an important source of epidermal growth
factor (EGF) in human breast tumors.47 EGF is up-regu-
lated by hypoxia in other cell types but there is no evi-

dence to date of this in macrophages. However, the fact
that hypoxia up-regulates and activates receptors for
EGF48 suggests that possible EGF release by TAMs
could have potent protective and mitogenic effects on
neighboring tumor cells in hypoxic areas. This effect may
be supported by the hypoxic macrophage up-regulation
of adrenomedullin,35 a peptide with effects similar to
those of EGF on tumor cells in vitro.49

Various groups have shown that macrophages up-
regulate the important endothelial cell mitogen VEGF at
both the mRNA and protein levels in response to hypox-
ia.50,51 Furthermore, we have shown that TAMs express
VEGF almost exclusively in avascular and perinecrotic
areas of breast carcinomas.52 Cramer and colleagues36

showed that the hypoxic induction of this cytokine is
primarily dependent on HIF-1 in murine peritoneal mac-
rophages, although low-level VEGF release occurred in
the absence of HIF-1 (suggesting a minor role for HIF-2 or
other transcription factors in hypoxic induction of VEGF in
this cell type). Tumor cell proliferation, as well as tumor
angiogenesis, is likely to be affected by the hypoxic
induction of VEGF release, as various tumor cell types
express type 1 and 2 receptors for VEGF, and to be
responsive to VEGF with growth stimulation in vitro and in
vivo.53,54

Figure 2. Macrophage functions in a hypoxic tumor area: involvement in tumor growth, invasion, metastasis, and angiogenesis. Monocytes are recruited from the
tumor vasculature by such chemoattractants released by tumors as M-CSF and CCL2. They then differentiate into TAMs and migrate into and become immobilized
in areas of transient or chronic hypoxia (shown here in white) in response to VEGF, endothelins (ETs) 1 and 2, and EMAP-II, which are up-regulated in hypoxic
areas. TAMs then respond to the hypoxia by up-regulating a broad array of genes encoding proteins that promote the proliferation, invasion, and metastasis of
tumor cells as well as tumor angiogenesis. See text for abbreviations used.
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Invasion and Metastasis

Hypoxic macrophages are also likely to promote the in-
vasive and/or metastatic behavior of tumor cells by re-
leasing such proinvasive factors as macrophage inhibi-
tory factor55 and tissue factor.56 Once thought to act
mainly on macrophages to inhibit their migration and
cause macrophage accumulation at sites of inflamma-
tion, macrophage inhibitory factor is now known to mod-
ulate the activities of a number of cell types in tumors,
including stimulation of tumor cell motility.57 This may
involve indirect effects such as macrophage inhibitory
factor-stimulated release of matrix metalloproteinase 9,
which in turn degrades components of the basement
membrane and extracellular matrix, thereby increasing
the motility of tumor cells.58 Grimshaw and colleagues59

showed that when macrophages are co-cultured with
tumor cells in the presence of endothelins 1 and 2 (cyto-
kines that are themselves up-regulated in hypoxic tumor
areas and known to have receptors on both macro-
phages and tumor cells), the secretion of MMP-2 and -9
by tumor cells was increased, stimulating the invasive
behavior of tumor cells. Moreover, macrophages synthe-
size elevated levels of MMP-7 mRNA and protein when
exposed to hypoxia in vitro and in avascular areas of
human tumors.29 This multifunctional MMP stimulates tu-
mor invasion through the basement membrane into nor-
mal surrounding tissues.60

Tissue factor, a transmembrane protein primarily in-
volved in the coagulation cascade, also plays an impor-
tant role in the metastasis of solid tumors. Within tumors
tissue factor is overexpressed by tumor cells, endothelial
cells, fibroblasts, and macrophages,61 and it promotes
the generation of thrombin in tumors. This, in turn, acti-
vates the metastatic activity of tumor cells via the throm-
bin receptors PAR-1 and/or -2.61

Angiogenesis

Many of the above products of hypoxic macrophages are
also likely to influence tumor angiogenesis. A recent
study used restricted cDNA arrays (ie, limited number of
genes analyzed) to show that the mRNA species for more
than 30 proangiogenic genes were up-regulated by hyp-
oxia in primary macrophages.35 The best characterized
of these, apart from VEGF, were the cytokines FGF2,
CXCL8 (IL-8), and angiopoietin; the type I receptor for
VEGF; and the proangiogenic enzymes cyclooxygen-
ase-2 (COX-2) and inducible form of nitric oxide synthase
(iNOS).

Other less well known proangiogenic factors produced
by hypoxic macrophages include the 16-kd pleiotropic
cytokine leptin. This protein is primarily expressed in
adipose tissue, induces endothelial cells to express
VEGF, and is highly angiogenic in vivo. The type I recep-
tor for VEGF,60 the receptor Magic roundabout,62 and the
cytokine angiopoietin-like 4 (angptl4)63 are also ex-
pressed. Moreover, expression of the latter two genes by
endothelial cells is known to be stimulated by hypoxia
and is reported to be found mainly on newly formed blood

vessels and in ischemic, perinecrotic areas in human
tumors.63,64 However, to date, neither the expression of
these two molecules by TAMs in such tumor sites nor the
significance of this to the regulation of tumor angiogen-
esis has been investigated.

Immune Evasion

Exposure of TAMs to hypoxia may also inhibit their par-
ticipation in anti-tumor immune mechanisms as hypoxia
stimulates secretion of such potent immunosuppressive
factors as prostaglandin E2

65 and IL-10.66 These mole-
cules inhibit immune effector cell (eg, T cell) function,
impair the development of immune cells by acting on the
early stages of immunopoiesis, and reduce the cytotox-
icity of TAMs toward tumor cells.67,68 Hypoxia has also
been shown to inhibit the ability of macrophages to
phagocytose dead or dying cells69 and to present anti-
gens to T cells.66,68 It also reduces the surface expres-
sion of CD80,70 a co-stimulatory molecule on macro-
phages that is needed for the full activation of T-cell
responses to antigenic peptides. By contrast, hypoxia
enhances the direct cytotoxicity of macrophages toward
some forms of tumor cells (ie, TNF-sensitive targets) by
up-regulating their release of TNF-�.71

Beyond Tumor-Associated Hypoxia

Taken together, the responses of macrophages to hyp-
oxia suggest that TAM accumulation in hypoxic/necrotic
areas is highly likely to promote the growth and spread of
malignant tumors via a diverse array of hypoxia-driven
mechanisms. However, when assessing the importance
of these effects on tumor progression, it should be re-
membered that virtually all of the above effects have
been demonstrated using macrophages or monocyte/
macrophage cell lines in vitro, rather than macrophages
isolated from tumors. This is primarily because macro-
phages are difficult to isolate from tissues like tumors
without altering the way they have been conditioned by
the tumor environment. TAMs may show different re-
sponses after such conditioning, so ideally these studies
should be repeated using macrophages isolated from
tumors. However, important hypoxia-regulated molecules
like HIF-1 and -2, VEGF, and MMP-7 are up-regulated by
both macrophages exposed to hypoxia in vitro and TAMs
in hypoxic areas of human tumors,29,30,50–52 suggesting
that close correlations may exist between the in vitro and
in vivo responses of macrophages. Further studies should
be performed to determine whether such correlations
exist for the other hypoxia-induced genes/proteins re-
viewed here. Furthermore, because many of these genes
are up-regulated by both TAMs and tumor cells under
hypoxia, conditional knockout experiments (eg, to ablate
HIF expression in macrophages versus tumor cells) are
now warranted to distinguish the relative contribution to
tumor progression of hypoxia-induced (or at least HIF-
driven) gene expression by TAMs versus tumor cells.

It is also important to note that TAMs in avascular and
necrotic tumor areas are not exposed to hypoxia alone
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but to a range of ischemic stresses resulting from the
poor local vascular supply. These include low glucose
and pH, high lactate, the presence of dead or dying cells
(and their necrotic debris), and possibly exposure to
various ischemia-induced cytokines and growth factors
released by TAMs and other cell types. Their effects on
TAMs may contribute to their function in these areas. For
example, exposure to low pH has been shown to activate
expression of such genes as iNOS by increasing nuclear
factor-�B activity in the nucleus of cultured rat peritoneal
macrophages.72 Low pH also has multiple effects on the
production of TNF-� by alveolar macrophages by in-
creasing TNF-� mRNA expression as well as TNF-� pro-
tein retention, so less protein is actually secreted.73 The
latter effect contrasts with the ability of hypoxia to stimu-
late TNF-� release by macrophages as mentioned earli-
er,71 so it would be interesting to see what effect com-
bined exposure has on such macrophage functions.
Interestingly, hypoxia fails to elicit this effect in the pres-
ence of low extracellular glucose; a combination that
results in TNF-� inhibition.74 Exposure to high lactate
levels increases VEGF mRNA and protein production by
macrophages in vitro.75 The fact that VEGF mRNA and
protein are up-regulated by TAMs in ischemic areas of
breast carcinomas52 suggests that hypoxia up-regulates
this factor even when TAMs are exposed to the other
complement of ischemic stresses present in hypoxic/
necrotic sites.

Interestingly, hypoxia is found not only in malignant
tumors but also in such inflamed tissues as the synovia of
arthritic (rheumatoid) joints and in physiological wound
healing. As in tumors, macrophages are recruited to
these sites3 and express various hypoxia-induced factors
central to such disease-associated processes as angio-
genesis.75,76 However, the resolution of wounds, for ex-
ample, results in restoration of tissue integrity and perfu-
sion, and macrophage presence is then reduced to
preinjury levels. This contrasts with the situation in malig-
nant tumors, in which high numbers of macrophages
persist, prompting some to suggest that tumors are
wounds that do not heal. The reasons for this have been
reviewed by us previously.76

Therapeutic Implications

The hypoxia-driven, protumor functions of macrophages
described in this review may impinge on the recovery of
tumors after treatment with agents known to induce hyp-
oxia. These include radiotherapy,77 photodynamic thera-
py,78 anti-angiogenic agents such as endostatin79 or vas-
cular damaging agents such as combretastatin-A-4,80

ZD612681 or alphastatin.82 Macrophages infiltrate large
areas of hypoxia and cell destruction that result from
such therapies;77,78 however, on exposure to hypoxia
macrophages are likely to switch to the protumor pheno-
type described previously. In this way, TAMs may pro-
mote the revascularization, reoxygenation, and regrowth
of the tumor once the therapy concludes. It would be
interesting to see if blocking this post-therapy infiltration
slowed or halted tumor recovery.

Attempts have been made to reduce the overall num-
bers of TAMs in tumors using such pharmacological
agents as linomide, pentoxifylline, and genistein. In a rat
model of prostate cancer, these drugs markedly reduced
TAM numbers (�50% of controls), along with tumor
growth and angiogenesis.83 However, it may prove more
effective to specifically target TAMs in hypoxic areas
because a number of studies have inferred that TAMs in
well-vascularized areas of tumors may perform beneficial
functions for the host—TAM numbers in these areas are
linked to a favorable prognosis.84 This could be accom-
plished by targeting macrophage-specific cytotoxins or
cytotoxic gene therapies to proteins induced by hypoxia
on the surface of macrophages (eg, GLUT-1, Magic
roundabout, or neuromedin B receptor29,35,36).

Efforts are also being made to use macrophages to
carry genes into poorly vascularized tumor areas.85 Re-
cently, the success of this approach was demonstrated in
vitro using macrophages infected with an adenovirus ex-
pressing a HIF-activated gene encoding a prodrug that
activates cytochrome P450. When breast tumor sphe-
roids (small, three-dimensional tumor masses) were infil-
trated by such macrophages and then exposed to cyclo-
phosphamide, the cytotoxic metabolite released by
macrophages caused gross morphological damage to
tumor cells in spheroids.86 In vivo studies are being con-
ducted to test the efficacy of this new cell-based gene
therapy in tumor-bearing mice.

Concluding Remarks

Inflammation and cancer have been causally linked with
a central inflammatory cell type, the macrophage, which
is present in malignant tumors in large numbers linked to
enhanced tumor progression. As described here, hyp-
oxia has a profound effect on macrophage functions in
tumors, eliciting a distinct protumor phenotype in which
they produce a wide array of growth factors, cytokines,
and enzymes to stimulate the growth, invasion, metasta-
sis, angiogenesis, and immune evasion of tumors. Cur-
rent studies to unearth the molecular mechanisms that
attract macrophages to these hypoxic tumor sites and/or
the signaling pathways that mediate the effects of hyp-
oxia on macrophages should highlight new targets for
new anti-cancer strategies.
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