# **Review**

# Macrophage Responses to Hypoxia

# Implications for Tumor Progression and Anti-Cancer Therapies

#### Claire Lewis and Craig Murdoch

From the Tumor Targeting Group, Academic Unit of Pathology, Division of Genomic Medicine, Sir Henry Wellcome Laboratories for Medical Research, University of Sheffield Medical School, Sheffield, United Kingdom

The presence of multiple areas of hypoxia (low oxygen tension) is a hallmark feature of human and experimental tumors. Monocytes are continually recruited into tumors, differentiate into tumor-associated macrophages (TAMs), and then accumulate in these hypoxic areas. A number of recent studies have shown that macrophages respond to the levels of hypoxia found in tumors by up-regulating such transcription factors as hypoxia-inducible factors 1 and 2, which in turn activate a broad array of mitogenic, proinvasive, proangiogenic, and prometastatic genes. This could explain why high numbers of TAMs correlate with poor prognosis in various forms of cancer. In this review, we assess the evidence for hypoxia activating a distinct, protumor phenotype in macrophages and the possible effect of this on the growth, invasion, angiogenesis, and immune evasion of tumors. We also discuss current attempts to selectively target TAMs for destruction or to use them to deliver gene therapy specifically to hypoxic tumor sites. (Am J Pathol 2005, 167:627-635)

Macrophages are highly versatile immune effector cells that are derived from bone marrow progenitors, which continually proliferate and release promonocytes into the bloodstream. The promonocytes circulate briefly, differentiate into monocytes, and then migrate from the blood into tissues, where they differentiate further into resident macrophages. Here they protect the body from infection by bacteria, viruses, and other pathogens. Extensive monocyte extravasation is also an early event in the onset of inflammation, wound healing, and various diseases, in which they exhibit a tissue-specific range of functions that include phagocytosis, antigen presentation to T cells, and the release of a wide array of cytokines, chemokines, growth factors and enzymes, reactive oxygen and nitrogen species, complement components, coagulation factors, and prostaglandins.<sup>1</sup>

Macrophages are often prominent in tumor tissues, comprising up to 80% of the cell mass in breast carcinoma.<sup>2</sup> A number of tumor-derived chemoattractants have been implicated in monocyte uptake into tumors including CCL2 (formally monocyte chemoattractant protein-1), macrophage-colony stimulating factor (M-CSF or CSF-1), and vascular endothelial growth factor (VEGF). When monocytes are recruited into malignant tumors, they rapidly differentiate into tumor-associated macrophages (TAMs). Tumor levels of chemoattractant proteins often correlate positively with TAM numbers in human tumors.<sup>3</sup>

It has been suggested that TAMs retain a relatively immature macrophage phenotype that is characterized by low expression of differentiation-associated macrophage antigens such as carboxypeptidase M and CD51, high constitutive expression of interleukin (IL)-1 and IL-6, and low levels of tumor necrosis factor (TNF)- $\alpha$ .<sup>2,4</sup> Furthermore, although macrophages derived from healthy or inflamed tissues are capable of lysing tumor cells, expressing immunostimulatory cytokines, and presenting tumor-associated antigens to stimulate the proliferation and anti-tumor functions of T and NK cells in vitro,<sup>1</sup> TAMs show reduced levels of these activities. This may be due in part to their exposure to the tumor-derived anti-inflammatory molecules IL-4, IL-10, transforming growth factor- $\beta$ 1, and prostaglandin E<sub>2</sub>.<sup>2,5</sup> Indeed, this prompted Mantovani and colleagues<sup>6</sup> to suggest that exposure to IL-4 and IL-10 may induce monocytes in tumors to develop

Supported by the Biotechnology and Biological Sciences Research Council, Medical Research Council, National Cancer Research Institute, and the Yorkshire Cancer Research UK.

Accepted for publication May 19, 2005.

Address reprint requests to Claire Lewis, Tumor Targeting Group, Academic Unit of Pathology, Division of Genomic Medicine, Sir Henry Wellcome Laboratories for Medical Research, University of Sheffield Medical School, Beech Hill Rd., Sheffield S10 2RX, UK. E-mail: claire.lewis@sheffield.ac.uk.



**Figure 1.** TAM localization in hypoxic areas of murine mammary ( $\mathbf{A}$ ,  $\mathbf{B}$ ) and human breast ( $\mathbf{C}$ ,  $\mathbf{D}$ ) tumors. Tumor hypoxia was visualized by injecting mice bearing 4T1 mammary tumors or breast cancer patients with the hypoxic cell marker pimonidazole (PIMO) before surgical removal of tumors. PIMO retained by hypoxic cells in tumor sections was then detected using a rabbit anti-PIMO antibody (red staining, **arrows** in  $\mathbf{B}$  and  $\mathbf{D}$ ). Macrophages were co-localized in these sections using a monoclonal antibody to the pan macrophage markers F4/80 ( $\mathbf{B}$ ) and CD68 ( $\mathbf{D}$ ) (brown staining). Although TAMs can be seen in both normoxic ( $\mathbf{A}$ ,  $\mathbf{C}$ ) and hypoxic ( $\mathbf{B}$ ,  $\mathbf{D}$ ) areas of tumors, they accumulated at highest density in the latter. Hematoxylin staining of nuclei is shown in blue. Scale bars, 50  $\mu$ m.

into polarized type II (alternatively activated) or M2 macrophages. These macrophages have poor antigen-presenting ability and produce factors that suppress T-cell proliferation and activity. They are better adapted to scavenging for debris, promoting angiogenesis, and repairing and remodeling wounded/damaged tissues. This contrasts markedly with the phenotype of classically activated type I or M1 macrophages that are efficient immune effector cells able to kill microorganisms and tumor cells, present antigen, and produce high levels of immunostimulatory cytokines.<sup>6</sup>

The level of TAMs in tumors appears to be affected by hypoxia (low oxygen tension), a trait commonly found in these tissues. TAM numbers are generally higher in tumors containing high overall levels of hypoxia, as seen in primary human breast carcinomas<sup>7</sup> and various animal tumors.<sup>8</sup> Interestingly, TAM numbers also correlate positively with overall hypoxia (as assessed using the hypoxic cell marker carbonic anhydrase IX) in liver metastases from breast and colorectal tumors.<sup>9</sup> These findings suggest that hypoxic tumors secrete higher amounts of chemoattractants and/or other factors that enhance monocyte attachment to and migration through the tumor vasculature.

Once targeted to hypoxic sites, TAM functions are greatly affected by hypoxia-related factors. Here, we review the evidence for hypoxia being an important intratumoral signal that stimulates TAMs to secrete a range of mitogenic factors, proangiogenic cytokines and enzymes, and immunosuppressive agents. Collectively, these effects may explain, in part, why the presence of large numbers of TAMs correlate with poor prognosis in carcinoma of the breast,<sup>10</sup> cervix,<sup>11</sup> stomach,<sup>12</sup> bladder,<sup>13</sup> uterus,<sup>14</sup> prostate,<sup>15</sup> and kidney.<sup>16</sup>

# Macrophage Accumulation in Hypoxic Areas of Tumors: Mechanisms and Biological Significance

New blood vessels in tumors are usually disorganized and prone to collapse, resulting in areas of inadequate perfusion and hypoxia. Additionally, rapid tumor cell proliferation in some areas may outpace the rate of new blood vessel growth, causing hypoxic areas to form.<sup>17,18</sup> Use of such hypoxic cell markers as pimonidazole has allowed identification of both transient (avascular, non-necrotic) and chronic (peri-necrotic) areas of hypoxia in both human and experimental animal tumors (Figure 1).<sup>4,17–19</sup> The correlation between overall hypoxia and TAM accumulation in tumors has prompted some to suggest that an *in vivo* assessment of TAM accumulation might have utility in the detection of metastases and/or monitoring of hypoxia levels in tumors.

Recent evidence has shown that TAMs may accumulate in high numbers in hypoxic/necrotic areas of endometrial,<sup>20</sup> breast,<sup>8,10</sup> prostate,<sup>21</sup> and ovarian<sup>22</sup> carcinoma due to the hypoxic release of such macrophage chemoattractants as EMAP-II, endothelin 2, and VEGF.<sup>3</sup> Because macrophages are phagocytes, they may also be attracted to hypoxic, perinecrotic areas along a trail of necrotic debris emanating from dead cells. Hypoxia also entraps TAMs by decreasing their mobility in a number of ways. One such approach involves the hypoxic up-regulation by macrophages of the enzyme mitogen-activated protein kinase phosphatase (MKP-1).<sup>23</sup> This is important because various chemoattractant receptors. including those for CCL2, VEGF, and endothelin 2, stimulate cell migration by phosphorylating the signaling enzymes MEK, ERK1/2, and p38 MAPK. Up-regulated MKP-1 rapidly dephosphorylates these molecules in TAMs, thus terminating the chemotactic response of TAMs to these chemokines.<sup>3,24,25</sup> Hypoxia also inhibits macrophage expression of the chemokine receptors CCR2<sup>26</sup> and CCR5,<sup>27</sup> further helping to immobilize TAMs.

Such accumulation of TAMs in hypoxic/necrotic areas has itself been linked to tumor aggressiveness, with high TAM numbers in such areas correlating with increased lymph node involvement (ie, metastasis) and/or poor prognosis in breast<sup>10</sup> and endometrial<sup>20</sup> cancers. Moreover, high TAM numbers in these areas correlate with increased overall levels of angiogenesis in breast carcinoma,<sup>5,10</sup> suggesting that TAM activity in hypoxic tumor areas may specifically promote tumor angiogenesis and metastasis.

# Hypoxic Phenotype of TAMs

Hypoxia induces a profound change in the phenotype of macrophages, promoting increased expression of a wide range of genes (outlined in detail in later sections). This is brought about by the hypoxic up-regulation of such transcription factors as hypoxia-inducible factor (HIF)-1 and HIF-2, consisting of a hypoxia-inducible  $\alpha$  subunit (HIF-1 $\alpha$  and HIF-2 $\alpha$ ) and a constitutively expressed  $\beta$  subunit that is common to both HIFs. In the presence of oxygen, HIF-1 $\alpha$  and HIF-2 $\alpha$  are rapidly degraded in the cytoplasm. In hypoxia, however, they accumulate and translocate to the nucleus where they bind first to the  $\beta$  subunit and then to hypoxic response elements in or near the promoters of oxygen-sensitive genes.<sup>28</sup>

HIF-1 $\alpha$  and HIF-2 $\alpha$  are up-regulated by human macrophages exposed to hypoxia in vitro and by TAMs in hypoxic/necrotic areas of human tumors.<sup>29,30</sup> We have shown that hypoxic macrophages accumulate more HIF-1 than HIF-2,29 suggesting that HIF-1 may be the major hypoxia-inducible transcription factor in hypoxic TAMs. This corresponds well with previous studies showing that HIF-1 $\alpha$ -deficient mouse embryonic stem cells and embryonic fibroblasts are unable to exhibit their normal pattern of gene up-regulation in hypoxia, suggesting an essential role for HIF-1, at least in these cells.<sup>31</sup> Another recent study has shown HIF-2 $\alpha$  expression by TAMs to positively correlate with angiogenesis in breast<sup>32</sup> and bladder<sup>33</sup> carcinoma (with poor prognosis in the latter condition;<sup>34</sup>) however, no such analysis for HIF-1 was included in these studies, so no direct comparisons can be made. White and co-workers<sup>35</sup> used adenoviral infection to overexpress HIF-1 and -2 in human macrophages and also found HIF-2 to be the primary inducer of genes encoding angiogenic proteins in these cells. However, the repertoire of genes activated by overexpression of each HIF may differ from that in cells responding to hypoxia, in which HIF levels may naturally be lower. Thus, studies are warranted to examine gene expression in macrophages treated with siRNA to selectively block expression of HIF-1 $\alpha$  versus HIF-2 $\alpha$ .

Interestingly, recent reports suggest that HIF-1 may play an important role in regulating macrophage recruitment into inflammatory lesions. Mice with a conditional knockout for HIF-1 $\alpha$  in myeloid cells were used to examine the role of this factor in regulating macrophage uptake into inflammatory lesions, which, like tumors, are often oxygen-depleted. Loss of HIF-1 reduced macrophage adhesion to and infiltration through an artificial matrix (growth factor-reduced Matrigel) in vitro. This was likely a contributing factor in their finding that HIF-1 knockout mice exhibit a markedly diminished inflammatory response in inflamed skin and artificially-induced arthritic joints.<sup>36</sup> Furthermore, hypoxia has been shown to stimulate macrophage adhesion to endothelial cells, in part, by HIF-1 induction of CD18, the  $\beta$  subunit of all  $\beta$ 2 integrins.<sup>37</sup> It remains to be seen whether such HIF-1driven mechanisms play any part in recruiting monocytes into tumors and/or TAM migration into hypoxic tumor areas.

Like malignant cells, macrophages can switch from aerobic to anaerobic glycolysis by increasing levels of various glycolytic enzymes,<sup>38,39</sup> including phosphoglycerate kinase-1.<sup>35</sup> They also up-regulate their expression of the glucose-transporting receptor Glut-1<sup>36,39</sup> to increase the supply of extracellular glucose for ATP generation via this route. Hypoxic up-regulation of both genes is HIF-1-dependent and is absent in macrophages derived from HIF-1 knockout mice.<sup>36</sup>

It should be noted that HIFs are not the only transcription factors up-regulated by macrophages in response to hypoxia. Others include nuclear factor- $\kappa$ B,<sup>40</sup> Ets-1,<sup>41</sup> Egr-1,<sup>42</sup> and activating transcription factor-4 (ATF-4) (Elberghati L, Murdoch C, and Lewis CE, unpublished observations). However, a role for these transcription factors in regulating gene expression and contributing to the hypoxic phenotype of TAMs has yet to be demonstrated.

# Protumor Effects of Macrophages

Recent studies have indicated that TAMs may play an important part in promoting tumor growth and progression. For example, an elegant study by Li et al <sup>43</sup> used an M-CSF knockout mouse model to demonstrate the central role of TAMs in the progression of spontaneous mammary tumors. M-CSF, a growth factor that promotes the survival and differentiation of macrophages,<sup>44</sup> is overexpressed in some human tumors, and elevated M-CSF levels correlate with high TAM numbers and poor prognosis.<sup>45</sup> Li and colleagues<sup>43</sup> showed that mammary tumors grown in M-CSF-knockout mice recruited fewer



**Figure 2.** Macrophage functions in a hypoxic tumor area: involvement in tumor growth, invasion, metastasis, and angiogenesis. Monocytes are recruited from the tumor vasculature by such chemoattractants released by tumors as M-CSF and CCL2. They then differentiate into TAMs and migrate into and become immobilized in areas of transient or chronic hypoxia (shown here in white) in response to VEGF, endothelins (ETs) 1 and 2, and EMAP-II, which are up-regulated in hypoxic areas. TAMs then respond to the hypoxia by up-regulating a broad array of genes encoding proteins that promote the proliferation, invasion, and metastasis of tumor cells as well as tumor angiogenesis. See text for abbreviations used.

TAMs, progressed more slowly from preinvasive to malignant lesions, and exhibited reduced metastasis compared to their normal, M-CSF-expressing counterparts. This finding was confirmed in a recent study using siRNA to inhibit M-CSF expression by MCF-7 xenografts, which resulted in a marked reduction in TAM numbers, tumor growth, and angiogenesis.<sup>46</sup>

Under tumor-associated hypoxia macrophages show marked changes in expression patterns of several genes. These are outlined below, where genes have been grouped into categories according to their effect on tumor growth, invasion/metastasis, angiogenesis, and immune evasion (Figure 2).

#### Growth Factors

Tumor cell mitogens have been shown to be up-regulated by hypoxic macrophages *in vitro*. These include fibroblast growth factor 2 (FGF2), platelet-derived growth factor, placental growth factor, and hepatocyte growth factor,<sup>35</sup> although TAM up-regulation of these factors in hypoxic tumor areas *in vivo* has yet to be demonstrated. TAMs are also an important source of epidermal growth factor (EGF) in human breast tumors.<sup>47</sup> EGF is up-regulated by hypoxia in other cell types but there is no evidence to date of this in macrophages. However, the fact that hypoxia up-regulates and activates receptors for EGF<sup>48</sup> suggests that possible EGF release by TAMs could have potent protective and mitogenic effects on neighboring tumor cells in hypoxic areas. This effect may be supported by the hypoxic macrophage up-regulation of adrenomedullin,<sup>35</sup> a peptide with effects similar to those of EGF on tumor cells *in vitro*.<sup>49</sup>

Various groups have shown that macrophages upregulate the important endothelial cell mitogen VEGF at both the mRNA and protein levels in response to hypoxia.  $^{\rm 50,51}$  Furthermore, we have shown that TAMs express VEGF almost exclusively in avascular and perinecrotic areas of breast carcinomas.<sup>52</sup> Cramer and colleagues<sup>36</sup> showed that the hypoxic induction of this cytokine is primarily dependent on HIF-1 in murine peritoneal macrophages, although low-level VEGF release occurred in the absence of HIF-1 (suggesting a minor role for HIF-2 or other transcription factors in hypoxic induction of VEGF in this cell type). Tumor cell proliferation, as well as tumor angiogenesis, is likely to be affected by the hypoxic induction of VEGF release, as various tumor cell types express type 1 and 2 receptors for VEGF, and to be responsive to VEGF with growth stimulation in vitro and in vivo.53,54

#### Invasion and Metastasis

Hypoxic macrophages are also likely to promote the invasive and/or metastatic behavior of tumor cells by releasing such proinvasive factors as macrophage inhibitory factor<sup>55</sup> and tissue factor.<sup>56</sup> Once thought to act mainly on macrophages to inhibit their migration and cause macrophage accumulation at sites of inflammation, macrophage inhibitory factor is now known to modulate the activities of a number of cell types in tumors, including stimulation of tumor cell motility.<sup>57</sup> This may involve indirect effects such as macrophage inhibitory factor-stimulated release of matrix metalloproteinase 9. which in turn degrades components of the basement membrane and extracellular matrix, thereby increasing the motility of tumor cells.<sup>58</sup> Grimshaw and colleagues<sup>59</sup> showed that when macrophages are co-cultured with tumor cells in the presence of endothelins 1 and 2 (cytokines that are themselves up-regulated in hypoxic tumor areas and known to have receptors on both macrophages and tumor cells), the secretion of MMP-2 and -9 by tumor cells was increased, stimulating the invasive behavior of tumor cells. Moreover, macrophages synthesize elevated levels of MMP-7 mRNA and protein when exposed to hypoxia in vitro and in avascular areas of human tumors.<sup>29</sup> This multifunctional MMP stimulates tumor invasion through the basement membrane into normal surrounding tissues.60

Tissue factor, a transmembrane protein primarily involved in the coagulation cascade, also plays an important role in the metastasis of solid tumors. Within tumors tissue factor is overexpressed by tumor cells, endothelial cells, fibroblasts, and macrophages,<sup>61</sup> and it promotes the generation of thrombin in tumors. This, in turn, activates the metastatic activity of tumor cells via the thrombin receptors PAR-1 and/or -2.<sup>61</sup>

#### Angiogenesis

Many of the above products of hypoxic macrophages are also likely to influence tumor angiogenesis. A recent study used restricted cDNA arrays (ie, limited number of genes analyzed) to show that the mRNA species for more than 30 proangiogenic genes were up-regulated by hypoxia in primary macrophages.<sup>35</sup> The best characterized of these, apart from VEGF, were the cytokines FGF2, CXCL8 (IL-8), and angiopoietin; the type I receptor for VEGF; and the proangiogenic enzymes cyclooxygenase-2 (COX-2) and inducible form of nitric oxide synthase (iNOS).

Other less well known proangiogenic factors produced by hypoxic macrophages include the 16-kd pleiotropic cytokine leptin. This protein is primarily expressed in adipose tissue, induces endothelial cells to express VEGF, and is highly angiogenic *in vivo*. The type I receptor for VEGF,<sup>60</sup> the receptor Magic roundabout,<sup>62</sup> and the cytokine angiopoietin-like 4 (angptl4)<sup>63</sup> are also expressed. Moreover, expression of the latter two genes by endothelial cells is known to be stimulated by hypoxia and is reported to be found mainly on newly formed blood vessels and in ischemic, perinecrotic areas in human tumors.<sup>63,64</sup> However, to date, neither the expression of these two molecules by TAMs in such tumor sites nor the significance of this to the regulation of tumor angiogenesis has been investigated.

#### Immune Evasion

Exposure of TAMs to hypoxia may also inhibit their participation in anti-tumor immune mechanisms as hypoxia stimulates secretion of such potent immunosuppressive factors as prostaglandin E265 and IL-10.66 These molecules inhibit immune effector cell (eg, T cell) function, impair the development of immune cells by acting on the early stages of immunopoiesis, and reduce the cytotoxicity of TAMs toward tumor cells.<sup>67,68</sup> Hypoxia has also been shown to inhibit the ability of macrophages to phagocytose dead or dying cells<sup>69</sup> and to present antigens to T cells.<sup>66,68</sup> It also reduces the surface expression of CD80,70 a co-stimulatory molecule on macrophages that is needed for the full activation of T-cell responses to antigenic peptides. By contrast, hypoxia enhances the direct cytotoxicity of macrophages toward some forms of tumor cells (ie, TNF-sensitive targets) by up-regulating their release of TNF- $\alpha$ .<sup>71</sup>

# Beyond Tumor-Associated Hypoxia

Taken together, the responses of macrophages to hypoxia suggest that TAM accumulation in hypoxic/necrotic areas is highly likely to promote the growth and spread of malignant tumors via a diverse array of hypoxia-driven mechanisms. However, when assessing the importance of these effects on tumor progression, it should be remembered that virtually all of the above effects have been demonstrated using macrophages or monocyte/ macrophage cell lines in vitro, rather than macrophages isolated from tumors. This is primarily because macrophages are difficult to isolate from tissues like tumors without altering the way they have been conditioned by the tumor environment. TAMs may show different responses after such conditioning, so ideally these studies should be repeated using macrophages isolated from tumors. However, important hypoxia-regulated molecules like HIF-1 and -2, VEGF, and MMP-7 are up-regulated by both macrophages exposed to hypoxia in vitro and TAMs in hypoxic areas of human tumors,<sup>29,30,50-52</sup> suggesting that close correlations may exist between the in vitro and in vivo responses of macrophages. Further studies should be performed to determine whether such correlations exist for the other hypoxia-induced genes/proteins reviewed here. Furthermore, because many of these genes are up-regulated by both TAMs and tumor cells under hypoxia, conditional knockout experiments (eg, to ablate HIF expression in macrophages versus tumor cells) are now warranted to distinguish the relative contribution to tumor progression of hypoxia-induced (or at least HIFdriven) gene expression by TAMs versus tumor cells.

It is also important to note that TAMs in avascular and necrotic tumor areas are not exposed to hypoxia alone

but to a range of ischemic stresses resulting from the poor local vascular supply. These include low glucose and pH, high lactate, the presence of dead or dying cells (and their necrotic debris), and possibly exposure to various ischemia-induced cytokines and growth factors released by TAMs and other cell types. Their effects on TAMs may contribute to their function in these areas. For example, exposure to low pH has been shown to activate expression of such genes as iNOS by increasing nuclear factor- $\kappa$ B activity in the nucleus of cultured rat peritoneal macrophages.<sup>72</sup> Low pH also has multiple effects on the production of TNF- $\alpha$  by alveolar macrophages by increasing TNF- $\alpha$  mRNA expression as well as TNF- $\alpha$  protein retention, so less protein is actually secreted.<sup>73</sup> The latter effect contrasts with the ability of hypoxia to stimulate TNF- $\alpha$  release by macrophages as mentioned earlier,<sup>71</sup> so it would be interesting to see what effect combined exposure has on such macrophage functions. Interestingly, hypoxia fails to elicit this effect in the presence of low extracellular glucose; a combination that results in TNF- $\alpha$  inhibition.<sup>74</sup> Exposure to high lactate levels increases VEGF mRNA and protein production by macrophages in vitro.75 The fact that VEGF mRNA and protein are up-regulated by TAMs in ischemic areas of breast carcinomas<sup>52</sup> suggests that hypoxia up-regulates this factor even when TAMs are exposed to the other complement of ischemic stresses present in hypoxic/ necrotic sites.

Interestingly, hypoxia is found not only in malignant tumors but also in such inflamed tissues as the synovia of arthritic (rheumatoid) joints and in physiological wound healing. As in tumors, macrophages are recruited to these sites<sup>3</sup> and express various hypoxia-induced factors central to such disease-associated processes as angiogenesis.<sup>75,76</sup> However, the resolution of wounds, for example, results in restoration of tissue integrity and perfusion, and macrophage presence is then reduced to preinjury levels. This contrasts with the situation in malignant tumors, in which high numbers of macrophages persist, prompting some to suggest that tumors are wounds that do not heal. The reasons for this have been reviewed by us previously.<sup>76</sup>

# Therapeutic Implications

The hypoxia-driven, protumor functions of macrophages described in this review may impinge on the recovery of tumors after treatment with agents known to induce hypoxia. These include radiotherapy,<sup>77</sup> photodynamic therapy,<sup>78</sup> anti-angiogenic agents such as endostatin<sup>79</sup> or vascular damaging agents such as combretastatin-A-4,<sup>80</sup> ZD6126<sup>81</sup> or alphastatin.<sup>82</sup> Macrophages infiltrate large areas of hypoxia and cell destruction that result from such therapies;<sup>77,78</sup> however, on exposure to hypoxia macrophages are likely to switch to the protumor phenotype described previously. In this way, TAMs may promote the revascularization, reoxygenation, and regrowth of the tumor once the therapy concludes. It would be interesting to see if blocking this post-therapy infiltration slowed or halted tumor recovery.

Attempts have been made to reduce the overall numbers of TAMs in tumors using such pharmacological agents as linomide, pentoxifylline, and genistein. In a rat model of prostate cancer, these drugs markedly reduced TAM numbers (<50% of controls), along with tumor growth and angiogenesis.<sup>83</sup> However, it may prove more effective to specifically target TAMs in hypoxic areas because a number of studies have inferred that TAMs in well-vascularized areas of tumors may perform beneficial functions for the host—TAM numbers in these areas are linked to a favorable prognosis.<sup>84</sup> This could be accomplished by targeting macrophage-specific cytotoxins or cytotoxic gene therapies to proteins induced by hypoxia on the surface of macrophages (eg, GLUT-1, Magic roundabout, or neuromedin B receptor<sup>29,35,36</sup>).

Efforts are also being made to use macrophages to carry genes into poorly vascularized tumor areas.<sup>85</sup> Recently, the success of this approach was demonstrated *in vitro* using macrophages infected with an adenovirus expressing a HIF-activated gene encoding a prodrug that activates cytochrome P450. When breast tumor spheroids (small, three-dimensional tumor masses) were infiltrated by such macrophages and then exposed to cyclophosphamide, the cytotoxic metabolite released by macrophages caused gross morphological damage to tumor cells in spheroids.<sup>86</sup> *In vivo* studies are being conducted to test the efficacy of this new cell-based gene therapy in tumor-bearing mice.

# Concluding Remarks

Inflammation and cancer have been causally linked with a central inflammatory cell type, the macrophage, which is present in malignant tumors in large numbers linked to enhanced tumor progression. As described here, hypoxia has a profound effect on macrophage functions in tumors, eliciting a distinct protumor phenotype in which they produce a wide array of growth factors, cytokines, and enzymes to stimulate the growth, invasion, metastasis, angiogenesis, and immune evasion of tumors. Current studies to unearth the molecular mechanisms that attract macrophages to these hypoxic tumor sites and/or the signaling pathways that mediate the effects of hypoxia on macrophages should highlight new targets for new anti-cancer strategies.

# Acknowledgments

We thank Dr. S.-C. Chou, Dr. M. A. Varia, and Dr. J. Raleigh, University of North Carolina School of Medicine, Chapel Hill, North Carolina, for the polyclonal antibody for pimononidazole and for tumor sections from breast cancer patients used in Figure 1.

# References

 Ross JA, Auger MJ: The biology of the macrophage. The Macrophage, ed 2. Edited by Burke B, Lewis CE. Oxford, Oxford University Press, 2002

- Murdoch C, Giannoudis A, Lewis CE: Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 2004, 104:2224–2234
- Konur A, Kreutz M, Knuchel R, Krause SW, Andressen R: Three dimensional co-culture of human monocytes and macrophages with tumor cells: analysis of macrophage differentiation and activation. Int J Cancer 1996, 66:645–652
- 5. Leek RD, Harris AL: Tumor associated macrophages in breast cancer. J Mamm Gland Biol Neoplasia 2002, 7:177–189
- Mantovani A, Sozzani S, Locati M, Allavena P, Sica A: Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 2002, 23:549–555
- Leek RD, Landers RJ, Harrism AL, Lewis CE: Necrosis correlates with high vascular density and focal macrophage infiltration in invasive carcinoma of the breast. Br J Cancer 1999, 79:991–995
- Collingridge DR, Hill SA, Chaplin DJ: Proportion of infiltrating IgGbinding immune cells predict for tumor hypoxia. Br J Cancer 2001, 84:626–630
- Stessels F, Van den Eynden G, Van der Auwera I, Salgado R, Van den Heuvel E, Harris AL, Jackson, DG, Colpaert CG, van Marck EA, Dirix LY, Vermeulen PB: Breast adenocarcinoma liver metastases, in contrast to colorectal cancer liver metastases, display a non-angiogenic growth pattern that preserves the stroma and lacks hypoxia. Br J Cancer 2004, 90:1429–1236
- Leek RD, Lewis CE, Whitehouse R, Greenall M, Clarke J, Harris AL: Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res 1996, 56:4625–4629
- Fujimoto J, Sakaguchi H, Aoki I, Tamaya T: Clinical implications of expression of interleukin 8 related to angiogenesis in uterine cervical cancers. Cancer Res 2000, 60:2632–2635
- Heidl G, Davaris P, Zwadlo G, Jagoda MS, Duchting S, Bierhoff E, Gruter T, Krieg V, Sorg C: Association of macrophages detected with monoclonal antibody 25 F 9 with progression and pathobiological classification of gastric carcinoma. J Cancer Res Clin Oncol 1987, 113:567–572
- Hanada T, Nakagawa M, Emoto A, Nomura T, Nasu N, Nomura Y: Prognostic value of tumor-associated macrophage count in human bladder cancer. Int J Urol 2000, 7:263–269
- Salvesen HB, Akslen LA: Significance of tumor-associated macrophages, vascular endothelial growth factor and thrombospondin-1 expression for tumor angiogenesis and prognosis in endometrial carcinomas. Int J Cancer 1999, 84:538–543
- Lissbrant IF, Stattin P, Wikstrom P, Damber JE, Egevad L, Bergh A: Tumor associated macrophages in human prostate cancer: relation to clinicopathological variables and survival. Int J Oncol 2000, 17:445–451
- Hamada I, Kato M, Yamasaki T, Iwabuchi K, Watanabe T, Yamada T, Itoyama S, Ito H, Okada K: Clinical effects of tumor-associated macrophages and dendritic cells on renal cell carcinoma. Anticancer Res 2000, 22:4281–4284
- Vaupel P, Kelleher DK, Hockel M: Oxygen status of malignant tumors: pathogenesis of hypoxia and significance for tumor therapy. Semin Oncol 2001, 28:29–35
- Shannon AM, Bouchier-Hayes DJ, Condron CM, Toomey D: Tumor hypoxia, chemotherapeutic resistance and hypoxia-related therapies. Cancer Treat Rev 2003, 29:297–307
- Vordermark D, Brown JM: Endogenous markers of tumor hypoxia predictors of clinical radiation resistance? Strahlenther Onkol 2003, 179:801–811
- Ohno S, Ohno Y, Suzuki N, Kamei T, Koike K, Inagawa H, Kohchi C, Soma G-I, Inoue M: Correlation of histological localization of tumorassociated macrophages with clinicopathological features in endometrial cancer. Anticancer Res 2004, 24:3335–3342
- Burton JL, Wells JM, Corke KP, Maitland N, Hamdy FC, Lewis CE: Macrophages accumulate in avascular, hypoxic areas of prostate tumors: implications for the targeted therapeutic gene delivery to such sites. J Pathol 2000, 192:8A
- 22. Negus RP, Stamp GW, Hadley J, Balkwill FR: Quantitative assessment of the leukocyte infiltrate in ovarian cancer and its relationship to

the expression of C-C chemokines. Am J Pathol 1997, 150:1723-1734

- Grimshaw MJ, Balkwill FR: Inhibition of monocyte and macrophage chemotaxis by hypoxia and inflammation—a potential mechanism. Eur J Immunol 2001, 31:480–489
- Ashida N, Arai H, Yamasaki M, Kita T: Differential signaling for MCP-1-dependent integrin activation and chemotaxis. Ann NY Acad Sci 2001, 947:387–389
- Wain JH, Kirby JA, Ali S: Leucocyte chemotaxis: examination of mitogen-activated protein kinase and phosphoinositide 3-kinase activation by monocyte chemoattractant proteins-1, -2, -3 and -4. Clin Exp Immunol 2002, 127:436–444
- Sica A, Saccani A, Bottazzi B, Bernasconi S, Allavena P, Gaetano B, Fei F, LaRosa G, Scotton C, Balkwill F, Mantovani A: Defective expression of the monocyte chemotactic protein-1 receptor CCR2 in macrophages associated with human ovarian carcinoma. J Immunol 2000, 164:733–738
- Bosco MC, Reffo G, Puppo M, Varesio L: Hypoxia inhibits the expression of the CCR5 chemokine receptor in macrophages. Cell Immunol 2004, 228:1–7
- Semenza G: Signal transduction to hypoxia-inducible factor 1. Biochem Pharmacol 2002, 64:993–998
- Burke B, Tang N, Corke KP, Tazzyman D, Ameri K, Wells M, Lewis CE: Expression of HIF-1alpha by human macrophages: implications for the use of macrophages in hypoxia-regulated cancer gene therapy. J Pathol 2002, 196:204–212
- Talks KL, Turley H, Gatter KC, Maxwell PH, Pugh CW, Ratcliffe PJ, Harris AL: The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol 2000, 157:411–421
- Park SK, Dadak AM, Haase VH, Fontana L, Giaccia AJ, Johnson RS: Hypoxia-induced gene expression occurs solely through the action of hypoxia-inducible factor 1alpha (HIF-1alpha): role of cytoplasmic trapping of HIF-2alpha. Mol Cell Biol 2003, 23:4959–4971
- Leek RD, Talks KL, Pezzella F, Turley H, Campo L, Brown NS, Bicknell R, Taylor M, Gatter KC, Harris AL: Relation of hypoxia-inducible factor-2 alpha (HIF-2 alpha) expression in tumor-infiltrative macrophages to tumor angiogenesis and the oxidative thymidine phosphorylase pathway in human breast cancer. Cancer Res 2002, 62:1326–1329
- 33. Onita T, Ji PG, Xuan JW, Sakai H, Kanetake H, Maxwell PH, Fong GH, Gabril MY, Moussa M, Chin JL: Hypoxia-induced, perinecrotic expression of endothelial Per-ARNT-Sim domain protein-1/hypoxia-inducible factor-2alpha correlates with tumor progression, vascularization, and focal macrophage infiltration in bladder cancer. Clin Cancer Res 2002, 8:471–480
- 34. Koga F, Kageyama Y, Kawakami S, Fujii Y, Hyochi N, Ando N, Takizawa T, Saito K, Iwai A, Masuda H, Kihara K: Prognostic significance of endothelial Per-Arnt-sim domain protein 1/hypoxia-inducible factor-2alpha expression in a subset of tumor associated macrophages in invasive bladder cancer. J Urol 2004, 171:1080–1084
- 35. White JR, Harris RA, Lee SR, Craigon MH, Binley K, Price T, Beard GL, Mundy CR, Naylor S: Genetic amplification of the transcriptional response to hypoxia as a novel means of identifying regulators of angiogenesis. Genomics 2004, 83:1–8
- Cramer T, Yamanishi Y, Clausen BE, Forster I, Pawlinski R, Mackman N, Haase VH, Jaenisch R, Corr M, Nizet V, Firestein GS, Gerber HP, Ferrara N, Johnson RS: HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 2003, 112:645–657
- Kong T, Eltzschig HK, Karhausen J, Colgan SP, Shelley CS: Leukocyte adhesion during hypoxia is mediated by HIF-1-dependent induction of beta2 integrin gene expression. Proc Natl Acad Sci USA 2004, 101:10440–10445
- Kawaguchi T, Veech RL, Uyeda K: Regulation of energy metabolism in macrophages during hypoxia. Roles of fructose 2,6-bisphosphate and ribose 1,5-bisphosphate. J Biol Chem 2001, 276:28554–28561
- Burke B, Giannoudis A, Corke KP, Gill D, Wells M, Ziegler-Heitbrock L, Lewis CE: Hypoxia-induced gene expression in human macrophages: implications for ischemic tissues and hypoxia-regulated gene therapy. Am J Pathol 2003, 163:1233–1243
- Zampetaki A, Mitsialis SA, Pfeilschifter J, Kourembanas S: Hypoxia induces macrophage inflammatory protein-2 (MIP-2) gene expres-

sion in murine macrophages via NF-kappaB: the prominent role of p42/ p44 and PI3 kinase pathways. FASEB J 2004, 18:1090–1092

- 41. Peters CL, Morris CJ, Mappm PI, Blake DR, Lewis CE, Winrow VR: The transcription factors hypoxia-inducible factor 1alpha and Ets-1 colocalize in the hypoxic synovium of inflamed joints in adjuvantinduced arthritis. Arthritis Rheum 2004, 50:291–296
- Yan SF, Lu J, Zou YS, Soh-Won J, Cohen DM, Buttrick PM, Cooper DR, Steinberg SF, Mackman N, Pinsky DJ, Stern DM: Hypoxia-associated induction of early growth response-1 gene expression. J Biol Chem 1999, 274:15030–15040
- Li EY, Nguyen AV, Russell RG, Pollard JW: Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 2001, 193:727–740
- Sweet MJ, Hume DA: M-CSF as a regulator of macrophage activation and immune responses. Arch Immunol Ther Exp 2003, 51:169–177
- Scholl SM, Pallud C, Beuvon F, Hacene K, Stanley ER, Rohrschneider L, Tang R, Pouillart P, Lidereau R: Anti-colony-stimulating factor-1 antibody staining in primary breast adenocarcinomas correlates with marked inflammatory cell infiltrates and prognosis. J Natl Cancer Inst 1994, 86:120–126
- 46. Aharinejad S, Paulus P, Sioud M, Hofmann M, Zins K, Schafer R, Stanley ER, Abraham D: Colony-stimulating factor-1 blockade by antisense oligonucleotides and small interfering RNAs suppresses growth of human mammary tumor xenografts in mice. Cancer Res 2004, 64:5378–5384
- O'Sullivan C, Lewis CE, Harris AL, McGee JO: Secretion of epidermal growth factor by macrophages associated with breast carcinoma. Lancet 1993, 342:148–149
- 48. Khaliq A, Jarvis-Evans J, McLeod D, Boulton M: Oxygen modulates the response of the retinal pigment epithelium to basic fibroblast growth factor and epidermal growth factor by receptor regulation. Invest Ophthalmol Vis Sci 1996, 37:436–443
- Mazzocchi G, Malendowicz LK, Ziolkowska A, Spinazzi R, Rebuffat P, Aragona F, Ferrazzi E, Parnigotto PP, Nussdorfer GG: Adrenomedullin (AM) and AM receptor type 2 expression is up-regulated in prostate carcinomas (PC), and AM stimulates in vitro growth of a PCderived cell line by enhancing proliferation and decreasing apoptosis rates. Int J Oncol 2004, 25:1781–1787
- Harmey JH, Dimitriadis E, Kay E, Redmond HP, Bouchier-Hayes D: Regulation of macrophage production of vascular endothelial growth factor (VEGF) by hypoxia and transforming growth factor beta-1. Ann Surg Oncol 1998, 5:271–278
- Xiong M, Elson G, Legarda D, Leibovich SJ: Production of vascular endothelial growth factor by murine macrophages: regulation by hypoxia, lactate, and the inducible nitric oxide synthase pathway. Am J Pathol 1998, 153:587–598
- Lewis JS, Landers RJ, Underwood JC, Harris AL, Lewis CE: Expression of vascular endothelial growth factor by macrophages is upregulated in poorly vascularized areas of breast carcinomas. J Pathol 2000, 192:150–158
- Chen J, De S, Brainard J, Byzova TV: Metastatic properties of prostate cancer cells are controlled by VEGF. Cell Commun Adhes 2004, 11:1–11
- Huh JI, Calvo A, Stafford J, Cheung M, Kumar R, Philp D, Kleinman HK, Green JE: Inhibition of VEGF receptors significantly impairs mammary cancer growth in C3(1)/Tag transgenic mice through antiangiogenic and non-antiangiogenic mechanisms. Oncogene 2005, 24:790–800
- 55. Schmeisser A, Marquetant R, Illmer T, Graffy C, Garlichs CD, Bockler D, Menschikowski D, Braun-Dullaeus R, Daniel WG, Strasser RH: The expression of macrophage migration inhibitory factor 1alpha (MIF 1alpha) in human atherosclerotic plaques is induced by different proatherogenic stimuli and associated with plaque instability. Atherosclerosis 2005, 178:83–94
- Compeau CG, Ma J, DeCampos KN, Waddell TK, Brisseau GF, Slutsky AS, Rotstein OD: In situ ischemia and hypoxia enhance alveolar macrophage tissue factor expression. Am J Respir Cell Mol Biol 1994, 11:446–455
- Sun B, Nishihira J, Yoshiki T, Kondo M, Sato Y, Sasaki F, Todo S: Macrophage migration inhibitory factor promotes tumor invasion and metastasis via the Rho-dependent pathway. Clin Cancer Res 2005, 11:1050–1058
- Hagemann T, Robinson SC, Schulz M, Trumper L, Balkwill FR, Binder C: Enhanced invasiveness of breast cancer cell lines upon co-culti-

vation with macrophages is due to TNF-alpha dependent up-regulation of matrix metalloproteases. Carcinogenesis 2004, 25:1543–1549

- Grimshaw MJ, Wilson JL, Balkwill FR: Endothelin-2 is a macrophage chemoattractant: implications for macrophage distribution in tumors. Eur J Immunol 2002, 32:2393–2400
- Wang FQ, So J, Reierstad S, Fishman DA: Matrilysin (MMP-7) promotes invasion of ovarian cancer cells by activation of progelatinase. Int J Cancer 2005, 114:19–31
- Versteeg HH, Spek CA, Peppelenbosch MP, Richel DJ: Tissue factor and cancer metastasis: the role of intracellular and extracellular signaling pathways. Mol Med 2004, 10:6–11
- 62. Suganami E, Takagi H, Ohashi H, Suzuma K, Suzuma I, Oh H, Watanabe D, Ojima T, Suganami T, Fujio Y, Nakao K, Ogawa Y, Yoshimura N: Leptin stimulates ischemia-induced retinal neovascularization: possible role of vascular endothelial growth factor expressed in retinal endothelial cells. Diabetes 2004, 53:2443–2448
- Huminiecki L, Gorn M, Suchting S, Poulsom R, Bicknell R: Magic roundabout is a new member of the roundabout receptor family that is endothelial specific and expressed at sites of active angiogenesis. Genomics 2002, 79:547–552
- 64. Le Jan S, Amy C, Cazes A, Monnot C, Lamande N, Favier J, Philippe J, Sibony M, Gasc JM, Corvol P, Germain S: Angiopoietin-like 4 is a proangiogenic factor produced during ischemia and in conventional renal cell carcinoma. Am J Pathol 2003, 162:1521–1528
- Ertel W, Singh G, Morrison MH, Ayala A, Chaudry IH: Chemically induced hypotension increases PGE2 release and depresses macrophage antigen presentation. Am J Physiol 1993, 264:R655–R660
- Murata Y, Ohteki T, Koyasu S, Hamuro J: IFN-gamma and proinflammatory cytokine production by antigen-presenting cells is dictated by intracellular thiol redox status regulated by oxygen tension. Eur J Immunol 2002, 32:2866–2873
- Wojtowicz-Praga S: Reversal of tumor-induced immunosuppression: a new approach to cancer therapy. J Immunother 1997, 20:165–177
- Elgert KD, Alleva DG, Mullins DW: Tumor-induced immune dysfunction: the macrophage connection. J Leukoc Biol 1998, 64:275–290
- Leeper-Woodford SK, Mills JW: Phagocytosis and ATP levels in alveolar macrophages during acute hypoxia. Am J Respir Cell Mol Biol 1992, 6:326–334
- Lahat N, Rahat MA, Ballan M, Weiss-Cerem L, Engelmayer M, Bitterman H: Hypoxia reduces CD80 expression on monocytes but enhances their LPS-stimulated TNF-alpha secretion. J Leukoc Biol 2003, 74:197–205
- Albina JE, Henry Jr WL, Mastrofrancesco B, Martin BA, Reichner JS: Macrophage activation by culture in an anoxic environment. J Immunol 1995, 155:4391–4396
- Bellocq A, Suberville S, Philippe C, Bertrand F, Perez J, Fouqueray B, Cherqui G, Baud L: Low environmental pH is responsible for the induction of nitric-oxide synthase in macrophages. Evidence for involvement of nuclear factor-kappaB activation. J Biol Chem 1998, 273:5086–5092
- Heming TA, Dave SK, Tuazon DM, Chopram AK, Peterson JW, Bidani A: Effects of extracellular pH on tumor necrosis factor-alpha production by resident alveolar macrophages. Clin Sci (Lond) 2001, 101:267–274
- Guida E, Stewart A: Influence of hypoxia and glucose deprivation on tumor necrosis factor-alpha and granulocyte-macrophage colonystimulating factor expression in human cultured monocytes. Cell Physiol Biochem 1998, 8:75–88
- Knighton DR, Hunt TK, Scheuenstuhl H, Halliday BJ, Werb Z, Banda MJ: Oxygen tension regulates the expression of angiogenesis factor by macrophages. Science 1983, 221:1283–1285
- Crowther M, Brown NJ, Bishop ET, Lewis CE: Microenvironmental influence on macrophage regulation of angiogenesis in wounds and malignant tumors. J Leukoc Biol 2001, 70:478–490
- Vujaskovic Z, Anscher MS, Feng QF, Rabbani ZN, Amin K, Samulski TS, Dewhirst MW, Haroon ZA: Radiation-induced hypoxia may perpetuate late normal tissue injury. Int J Radiat Oncol Biol Phys 2001, 50:851–855
- 78. Schouwink H, Oppelaar H, Ruevekamp M, van der Valk M, Hart G,

Rijken P, Baas P, Stewart FA: Oxygen depletion during and after mTHPC-mediated photodynamic therapy in RIF1 and H-MESO1 tumors. Radiat Res 2003, 159:190–198

- van Wijngaarden J, de Rooij K, van Beek E, Bernsen H, Que I, van Hinsbergh VW, Lowik C: Identification of differentially expressed genes in a renal cell carcinoma tumor model after endostatin-treatment. Lab Invest 2004, 84:1472–1483
- Cooney MM, Ortiz J, Bukowski RM, Remick SC: Novel vascular targeting/disrupting agents: combretastatin a4 phosphate and related compounds. Curr Oncol Rep 2005, 7:90–95
- Wachsberger PR, Burd R, Marero N, Daskalakis C, Ryan A, McCue P, Dicker AP: Effect of the tumor vascular-damaging agent, ZD6126, on the radioresponse of U87 glioblastoma. Clin Cancer Res 2005, 11:835–842
- Staton CA, Brown NJ, Rodgers GR, Corke KP, Tazzyman S, Underwood JC, Lewis CE: Alphastatin, a 24-amino acid fragment of human

fibrinogen, is a potent new inhibitor of activated endothelial cells in vitro and in vivo. Blood 2004, 103:601-606

- Joseph IB, Isaacs JT: Macrophage role in the anti-prostate cancer response to one class of antiangiogenic agents. J Natl Cancer Inst 1998, 90:1648–1653
- Ohno S, Ohno Y, Suzuki N, Kamei T, Koike K, Inagawa H, Kohchi C, Soma G, Inoue M: Correlation of histological localization of tumorassociated macrophages with clinicopathological features in endometrial cancer. Anticancer Res 2004, 24:3335–3342
- Burke B, Sumner S, Maitland N, Lewis CE: Macrophages in gene therapy: cellular delivery vehicles and in vivo targets. J Leukoc Biol 2002, 72:417–428
- Griffiths L, Binley K, Iqball S, Iqball S, Kan O, Maxwell P, Ratcliffe P, Lewis C, Harris A, Kingsman S, Naylor S: The macrophage—a novel system to deliver gene therapy to pathological hypoxia. Gene Therapy 2000, 7:255–262