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	Background	 Previous studies have suggested that breast cancer risk factors are associated with estrogen receptor (ER) and 
progesterone receptor (PR) expression status of the tumors.

	 Methods	 We pooled tumor marker and epidemiological risk factor data from 35 568 invasive breast cancer case patients 
from 34 studies participating in the Breast Cancer Association Consortium. Logistic regression models were 
used in case–case analyses to estimate associations between epidemiological risk factors and tumor subtypes, 
and case–control analyses to estimate associations between epidemiological risk factors and the risk of devel-
oping specific tumor subtypes in 12 population-based studies. All statistical tests were two-sided.

	 Results	 In case–case analyses, of the epidemiological risk factors examined, early age at menarche (≤12 years) was less 
frequent in case patients with PR2 than PR1 tumors (P = .001). Nulliparity (P = 3 × 1026) and increasing age at 
first birth (P = 2 × 1029) were less frequent in ER2 than in ER1 tumors. Obesity (body mass index [BMI] ≥ 30 kg/
m2) in younger women (≤50 years) was more frequent in ER2/PR2 than in ER1/PR1 tumors (P = 1 × 1027), 
whereas obesity in older women (>50 years) was less frequent in PR2 than in PR1 tumors (P = 6 × 1024). The 
triple-negative (ER2/PR2/HER22) or core basal phenotype (CBP; triple-negative and cytokeratins [CK]5/61 and/
or epidermal growth factor receptor [EGFR]1) accounted for much of the heterogeneity in parity-related vari-
ables and BMI in younger women. Case–control analyses showed that nulliparity, increasing age at first birth, 
and obesity in younger women showed the expected associations with the risk of ER1 or PR1 tumors but not 
triple-negative (nulliparity vs parity, odds ratio [OR] = 0.94, 95% confidence interval [CI] = 0.75 to 1.19, P = .61; 
5-year increase in age at first full-term birth, OR = 0.95, 95% CI = 0.86 to 1.05, P = .34; obesity in younger women, 
OR = 1.36, 95% CI = 0.95 to 1.94, P = .09) or CBP tumors.

	Conclusions	 This study shows that reproductive factors and BMI are most clearly associated with hormone receptor–positive 
tumors and suggest that triple-negative or CBP tumors may have distinct etiology.

	�	  J Natl Cancer Inst 2011;103:250–263
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Breast tumor subtypes with distinctive biology and treatment re-
sponses are defined by the immunohistochemical expression of 
estrogen receptor (ER), progesterone receptor (PR), and HER2. 
Furthermore, the ER-negative (ER2), PR-negative (PR2), and 
HER2-negative (HER22) tumors, also known as triple-negative 
phenotype (ER2/PR2/HER22), that express cytokeratin 5/6 
(CK5/6) or cytokeratin 5 (CK5) proteins and/or the epidermal 
growth factor receptor (EGFR) may represent another distinctive 
breast tumor subtype, known as the core basal phenotype (CBP), 
characterized by ER2/PR2/HER22, CK5 or CK5/6 positive ([CK5 
or CK5/6]1), and/or EGFR positive (EGFR1). CBP has been used 
to recapitulate the related “basal-like” breast cancers (1,2) and is 
associated with short- and long-term prognosis (3).

Epidemiological evidence suggests that associations between 
risk of breast cancer and both genetic and nongenetic risk factors 
vary by tumor pathology (4–6). In particular, reproductive risk 
factors such as parity-related factors and age at menarche seem 
more strongly associated with ER-positive (ER1) or PR-positive 
(PR1) tumors compared with those that are ER2 or PR2 (4,7). In 
addition, several breast cancer susceptibility loci in the genome also 
show differences in associations by hormone receptor expression 
(8). Although parity and premenopausal obesity are associated with 
reduced breast cancer risk overall, there is limited data on the asso-
ciation of these factors with reduced risk of CBP cancers (9). 
Tumors with CBP demonstrate unusual features that include over
representation among BRCA1 mutation carriers and African 
American women and are associated with specific histological 
patterns such as medullary or metaplastic carcinoma (10–12). 
Characterizing associations between breast cancer risk factors and 
tumor subtypes to which they are related may allow improved risk 
assessment; and predicting the risk for specific tumor subtypes may 
lead to targeted early detection of breast cancer and implementa-
tion of prevention strategies.

Despite amassing evidence that breast cancer is etiologically 
heterogeneous, results of individual studies have not been entirely 
consistent (4,13). Conclusions have been limited by insufficient 
statistical power in single investigations (4), and combining data 
from multiple studies has been restricted to systematic reviews or 
meta-analyses (4,7), which are susceptible to publication biases. In 
addition, recognition that finer tumor classification using ex-
panded marker panels in addition to ER and PR may reveal greater 
heterogeneity (1), heightens the need for large datasets.

To address these limitations, we pooled individual data for 35 568 
breast cancer case patients contributed by 34 studies participating in 
the Breast Cancer Association Consortium (BCAC), with risk factor 
information and ER and PR immunohistochemical expression data. 
We also performed extensive analyses of risk associations using five 
markers (ER, PR, HER2, CK5 or CK5/6, and EGFR) in a subset of 
case patients. Our goal was to definitively assess the evidence for 
heterogeneity in associations between nongenetic risk factors and 
breast cancer subtypes defined by marker expression in tumors.

Materials and Methods
Study Population
This analysis includes data from 34 studies participating in the 
BCAC that provided information on breast cancer risk factors 

CONTEXT AND CAVEATS

Prior knowledge
Breast cancer etiologic heterogeneity is attributed to genetic and 
nongenetic risk factors (eg, reproductive factors, body mass index, 
family history, etc.). The risk factors are known to vary by tumor 
subtypes, based on the expression of ER, PR, and HER2 receptors, 
as well as expression of core basal markers like CK5/6 and EGFR in 
the tumors.

Study design
To assess heterogeneity, associations between nongenetic risk 
factors and tumor subtypes were investigated. Data on risk factors 
and tumor subtypes were pooled from 34 studies participating in 
the Breast Cancer Association Consortium and risk associations 
were analyzed for ER, PR, HER2, CK5 or CK5/6, and EGFR on a large 
sample size.

Contribution
Reproductive risk factors (eg, age at menarche and parity-related 
variables) and increased body mass index were strongly associ-
ated with ER1 or PR1 tumors compared with ER2 and PR2 tumors. 
These factors were not associated with the risk of core basal phe-
notype (ER2/PR2/HER22/[CK5 or CK5/6]1 or EGFR1). Positive family 
history was associated with increased risk of breast cancer for all 
tumor subtypes; the association was slightly stronger for core 
basal phenotype.

Implications
Heterogeneity in breast cancer risk factors was defined by tumor 
subtypes. The etiology for core basal phenotype was different from 
that of hormone receptor positive tumors.

Limitations
Because data were pooled from different studies for analyses of 
risk associations, differences in collection and reporting of data 
may have introduced bias.

From the Editors
 

and data on ER and/or PR expression (14–46). These composed 
of 13 population-based studies that were defined as studies that 
included breast cancer case patients occurring in a geographi-
cally defined population during a specified period of time, and 
control subjects that were a random sample of the same source 
population as case patients and recruited during the same period 
of time (10 case–control and three prospective cohort studies); 
six hospital-based case–control studies that were defined as 
studies that included case patients diagnosed in a given hospital 
or hospitals during a specified period of time, and control sub-
jects that were selected from the catchment area of case patients 
during the same period of time; and 15 studies of mixed design 
(all other studies) (Table 1 and Supplementary Table 1, avail-
able online). For case–case analyses, studies were classified on 
the basis of the source of case patients (population-based case 
series, hospital-based case series, and mixed sources of case 
patients), without taking into consideration the source of con-
trol subjects. Analyses were restricted to invasive breast carci-
nomas, based on the availability of samples. We excluded 
subjects with missing information on age. Approximately 92% 
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of case patients were of European ancestry, with a median age of 
55.3 years at diagnosis (Table 1 and Supplementary Table 1, 
available online).

All investigations were approved by the institutional review 
boards of each study center. Written informed consent was 
obtained from all study subjects.

Table 1. Characteristics of the studies included in the pooled analysis*

Study, first author, year (reference)
Control subjects†  

(N = 60 273)
Case patients  
(N = 47 184)

Breast cancer case patients with information on the 
expression of five markers in the tumors‡

ER  
(N = 35 568)

PR  
(N = 31 276)

HER2  
(N = 14 268)

CK5 or CK5/6  
(6106)

EGFR  
(4311)

Prospective cohort
  MCCS, Giles, 2002 (31) 778 1234 878 876 462 464 445
  MEC, Kolonel, 2000 (32) 829 873 790 786 0 0 0
  NHS, Hankinson, 1998 (34) 1761 1029 904 883 0 0 0
Population-based case–control
  ABCFS, Dite, 2003 (14) 1077 1610 1358 1351 0 0 0
  GENICA, Pesch, 2005 (20) 1015 1021 971 969 680 0 0
  GESBC, Chang-Claude, 2000 (21) 1381 650 521 514 0 0 0
  MARIE, Flesch-Janys, 2008 (28) 7341 3580 2547 2545 2310 0 0
  NC-BCFR, John, 2004 (33) 337 1399 1226 1217 0 0 0
  OFBCR, John, 2004 (33) 367 1407 1000 981 0 0 0
  PBCS, Garcia-Closas, 2006 (37) 2378 2000 1804 1800 1291 1284 1283
  POSH, Eccles, 2007 (38) 0 1001 987 745 617 0 0
  SASBAC, Wedren, 2004 (40) 1524 1701 1056 1032 0 0 0
  UCIBCS, Anton-Culver, 2000 (45) 633 933 753 743 0 0 0
Hospital-based case–control§
  BIGGS, Colleran, 2009 (17) 913 975 742 581 0 0 0
  CGPS, Bojesen, 2005 (18) 12 534 3306 2560 1969 0 0 0
  KBCP, Hartikainen, 2005 (25) 532 492 438 436 389 327 328
  RBCS, Easton, 2007 (39) 801 747 553 461 0 0 0
  TBCS, Sangrajrang, 2008 (43) 390 474 243 233 220 0 0
  TWBCS, Ding, 2009 (44) 1410 909 753 753 326 0 0
Mixed design§
  ABCS, Schmidt, 2007 (15) 1140 1481 953 948 902 774 0
  BBCC, Fasching, 2008 (16) 1100 1374 1084 1081 950 0 0
  CNIO-BCS, Milne, 2006 (19) 1249 1105 204 228 103 0 36
  HABCS, Dork, 2001 (22) 1015 1108 748 670 0 0 0
  HEBCS, Syrjakoski, 2000 (23) 1287 2247 2145 2144 1221 975 777
  KARBAC, Lindblom, 1992 (24) 870 832 454 385 0 0 0
  KConFab/AOCS, Beesley, 2007 (26) 1009 344 203 181 0 0 0
  LMBC, De Maeyer, 2008 (27) 1142 1206 989 983 828 0 0
  MBCSG, Catucci, 2009 (29) 1243 277 101 100 0 0 0
  MCBCS, Olson, 2007 (30) 1574 1202 1049 1043 751 32 0
  OBCS, Erkko, 2007 (35) 511 537 537 536 537 0 0
  ORIGO, de Bock, 2004 (36) 1663 1326 989 818 0 0 0
  SBCS, MacPherson, 2004 (41) 1271 1115 707 336 355 341 0
  SEARCH, Lesueur, 2005 (42) 8096 6882 4568 2723 1949 1909 1442
  SZBCS, Jakubowska, 2009 (46) 1032 807 753 225 377 0 0

*	 A total of 34 studies participating in the Breast Cancer Association Consortium were included in the pooled analysis. Breast cancer cases for each tumor subtype 
were pooled across all studies with available data. ABCFS = Australian Breast Cancer Family Study; ABCS = Amsterdam Breast Cancer Study; BBCC = Bavarian 
Breast Cancer Cases and Controls; BIGGS = Breast Cancer in Galway Genetic Study; CGPS = Copenhagen General Population Study; CNIO-BCS = Spanish 
National Cancer Centre Breast Cancer Study; GENICA = Gene Environment Interaction and Breast Cancer in Germany; GESBC = Genetic Epidemiology Study of 
Breast Cancer by Age 50; HABCS = Hannover Breast Cancer Study; HEBCS = Helsinki Breast Cancer Study; KARBAC = Karolinska Breast Cancer Study; KBCP = 
Kuopio Breast Cancer Project; KConFab/AOCS = Kathleen Cuningham Foundation Consortium for research into Familial Breast Cancer/Australian Ovarian Cancer 
Study; LMBC = Leuven Multidisciplinary Breast Centre; MARIE = Mammary Carcinoma Risk Factor Investigation; MBCSG = Milan Breast Cancer Study Group; 
MCBCS = Mayo Clinic Breast Cancer Study; MCCS = Melbourne Collaborative Cohort Study; MEC = Multiethnic Cohort; NC-BCFR = Northern California Breast 
Cancer Family Registry; NHS = Nurses Health Study; OBCS = Oulu Breast Cancer Study; OFBCR = Ontario Familial Breast Cancer Registry; ORIGO = Leiden 
University Medical Centre Breast Cancer Study; PBCS = NCI Polish Breast Cancer Study; POSH = Prospective Study of Outcomes in Sporadic Versus Hereditary 
Breast Cancer; RBCS = Rotterdam Breast Cancer Study; SASBAC = Singapore and Sweden Breast Cancer Study; SBCS = Sheffield Breast Cancer Study; 
SEARCH = Study of Epidemiology and Risk factors in Cancer Heredity; SZBCS = IHCC-Szczecin Breast Cancer Study; TBCS = IARC-Thai Breast Cancer Study; 
TWBCS = Taiwanese Breast Cancer Study; UCIBCS = UCI Breast Cancer Study. CK5 or CK5/6 = cytokeratins 5 or 5/6; ER = estrogen receptor; EGFR = epider-
mal growth factor receptor; PR = progesterone receptor.

†	 Control subjects in population-based studies were randomly selected from the same source population as the case patients and recruited during the same period 
of time.

‡	 Only invasive cases with ER or PR and age at diagnosis data were included.

§	 Studies within these design groups were only included in case–case analyses.
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Breast Cancer Risk Factors
Participating studies provided information on one or more of the 
following factors—age at menarche (25 306 case patients from 
27 studies), parity (28 869 case patients from 30 studies), age at first 
full-term birth (20 373 case patients from 25 studies), family history 
of breast cancer in first-degree relatives (32 868 case patients from 
33 studies), and current (baseline for cohort studies) body mass 
index (BMI) (25 679 case patients from 23 studies) from study ques-
tionnaires, as detailed in Supplementary Table 2, available online.

Assessment of Tumor Markers
The source of tumor marker data (ie, data on expression of ER, 
PR, HER2, CK5 or CK5/6, and EGFR) and defining whether a 
tumor was positive for a specific marker varied across studies. ER, 
PR, and HER2 status of a breast tumor were primarily extracted 
from medical records (24 of 34 studies for ER and PR, and nine of 
17 studies for HER2), whereas data for CK5 or CK5/6 and EGFR 
were obtained from immunohistochemical staining of tissue 
microarrays or whole sections. Details of numbers of case patients 
with marker information and methods of determination are pre-
sented in Table 1 and Supplementary Table 3, available online, 
respectively. Previous publications from participating groups in 
the current study have shown good concordances between marker 
status from medical records and standardized measurements from 
tissue microarray analyses (47–49), supporting our approach of 
combining data from different sources.

We classified breast tumors according to their expression of ER 
(35 568 case patients), PR (31 276 case patients), and joint status of 
both ER and PR expression (31 106 case patients). For studies with 
data available on ER, PR, and HER2 (14 141 case patients), we 
defined four tumor subtypes (ER1/HER22 or PR1/HER22, ER1/
HER21 or PR1/HER21, ER2/PR2/HER21, and ER2/PR2/HER22

[triple negative]), shown in Figure 1. In seven studies with data 
available on CK5 or CK5/6 or EGFR, triple-negative tumors were 
subclassified into CBP (ER2/PR2/HER22/[CK5 or CK5/6]1 and/

or EGFR1) and the 5-negative (ER2/PR2/HER22/[CK5 or 
CK5/6]2/EGFR2) phenotype. The 5-negative phenotype may 
represent biologically uncharacterized subtype(s) and a hetero-
geneous group that includes tissues with low immunoreactivity 
of all the five markers mentioned above. Therefore, the 
analyses presented in this article focused on the other tumor 
subtypes.

Statistical Analysis
Our primary goal was to assess heterogeneity in associations 
between epidemiological risk factors and breast tumor subtypes 
that are defined by immunohistochemical staining patterns. The 
number of case patients for each tumor subtype was pooled across 
all studies with data on the particular subtype; heterogeneity in 
breast cancer risk was determined by comparing the associations 
between different tumor subtypes and risk factors using case–case 
odds ratios (ORs). We then performed case–control analyses by 
comparing case patients in each tumor subtype to a common set of 
control subjects to assess how associations between risk factors and 
tumor subtypes in case patients, measured by the case–case odds 
ratios, translated into differences in relative risks by tumor sub-
type, measured by the tumor subtype–specific case–control odds 
ratios. It should be noted that a case–case odds ratio for a dichot-
omous tumor characteristic (eg, ER status) is the ratio of case–
control odds ratios for the association of the risk factor for each of 
the two subtypes defined by the tumor marker (eg, ER1 and 
ER2 tumors).

Case–Case Analyses for the Assessment of Associations 
Between Risk Factors and Tumor Characteristics.  Case–case 
comparisons were performed using a standard and polychotomous 
unconditional logistic regression model to estimate odds ratios, 
95% confidence intervals (CIs), and P values for associations 
between risk factors and breast tumor subtypes. Outcome (depen-
dent) variables were breast tumor subtypes defined by specific 

Figure 1. Breast tumor subtypes defined by ex-
pression of estrogen receptor (ER), progester-
one receptor (PR), HER2, cytokeratins 5 or 5/6 
(CK5 or CK5/6), and epidermal growth factor 
receptor (EGFR) in 34 studies participating in 
the Breast Cancer Association Consortium. The 
number of case patients for each tumor sub-
type was pooled across all studies with data on 
the particular subtype.
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tumor markers, and explanatory variables comprised risk factors of 
interest, as well as age at diagnosis (<40, 40–49, 50–59, 60–69, ≥70 
years) and study. Risk factors were specified as: age at menarche 
(≤12, 13, 14, ≥15 years), parity (nulliparous vs parous), age at first 
full-term birth (<20, 20–24, 25–29, 30–34, ≥35 years, and as a con-
tinuous variable), family history of breast cancer among first-degree 
relatives (present vs absent), and BMI (<25, 25–30, ≥30 kg/m2). 
Because it is known that BMI is associated with breast cancer risk 
differently in pre- and postmenopausal women, we stratified these 
analyses by age (≤50 and >50 years) as a surrogate for menopausal 
status. Results from analyses using more extreme age cut points 
(≤45 and >55 years) as surrogates for menopausal status were sim-
ilar and, therefore, not shown. A multivariable-adjusted logistic 
regression model that included all risk factors produced similar risk 
estimates as those adjusted for age at diagnosis and study only; for 
simplicity, we present the latter. To evaluate which of the several 
related tumor features (histological type, grade, nodal status, 
marker expression) were most important in driving associations 
with exposures, we also fitted regression models with the risk expo-
sure of interest as the outcome variable and tumor characteristics as 
the explanatory variables.

Forest plots were used to present study-specific case–case odds 
ratios and 95% confidence intervals for associations between risk 
factors and tumor markers. We also performed meta-analyses 
using the random-effects model of DerSimonian and Laird (50) to 
estimate summary case–case odds ratios from study-specific esti-
mates, weighted by the inverse of the variance. The I2 statistic was 
used to test the null hypothesis that associations were homoge-
neous across studies (51). I2 value less than 0.25 indicates low het-
erogeneity, 0.5 indicates moderate heterogeneity, and greater than 
0.75 indicates high heterogeneity (51).

Case–Control Analyses for the Estimation of Relative Risks 
Associated With Risk Factors.  Table 1 shows the design of all 
studies included in this report. Hospital-based case–control studies 
or studies of mixed designs are more prone to selection biases for 
the estimation of relative risks than population-based or cohort 
studies. Thus, to minimize selection bias, estimation of relative 
risks was restricted to three case–control studies nested in cohorts 
and nine population-based case–control studies (one population-
based study, Prospective Study of Outcomes in Sporadic versus 
Hereditary Breast Cancer [POSH], did not have control subjects 
and therefore was excluded from case–control analyses). Two of 
the 12 studies (Ontario Familial Breast Cancer Registry [OFBCR] 
and Northern California Breast Cancer Family Registry 
[NC-BCFR]) were excluded from analysis of family history 
because recruitment was based on family history of breast cancer 
(Supplementary Table 1, available online). Odds ratios, 95% con-
fidence intervals, and P values were estimated using an uncondi-
tional logistic regression model with case–control status (each 
tumor subtype vs control) as outcome variables, and age, study, 
and each risk factor as explanatory variables.

All statistical tests were two-sided and performed using SAS 
(version 9.1; SAS Institute, Inc, Cary, NC), except for forest plots 
that were obtained using STATA (version 9; StataCorp, College 
Station, TX). All P values less than .05 were considered statistically 
significant.

Table 2. Characteristics of breast cancer case patients included in 
the participating studies*

Characteristic
No. of  
studies

Case patients,  
No. (%)

Clinical risk factors  
  Age at diagnosis, y 34
    <40  3940 (11)
    40–49  7657 (21)
    50–59  10 746 (30)
    60–69  8959 (25)
    ≥70  4436 (12)
  Ethnicity 34
    Caucasian  32 321 (92)
    Asian  1829 (5)
    Other  1061 (3)
  Age at menarche, y 27
    ≤12  8697 (35)
    13  6405 (25)
    14  5265 (21)
    ≥15  4801 (19)
  Parity 30
    Parous  24 558 (85)
    Nulliparous  4311 (15)
  No. of full-term births in parous  
      women

30

    1  5676 (23)
    2  10 737 (44)
    ≥3  8145 (33)
  Age at first full-term birth, y 25
    <20  2418 (12)
    20–24  10 547 (40)
    25–29  16 980 (32)
    30–34  19 505 (12)
    ≥35  20 373 (4)
  BMI, kg/m2  
    Among women ≤50 y 23
      <25  5172 (58)
      25–30  2528 (28)
      ≥30  1299 (14)
    Among women >50 y 23
      <25  7214 (43)
      25–30  6069 (36)
      ≥30  3397 (21)
  Family history of breast cancer  
      in first-degree relatives

33

    Absent  26 175 (80)
    Present  6693 (20)
Expression of tumor markers  
  ER status 34
    ER2  8519 (24)
    ER1  27 049 (76)
  PR status 34
    PR2  10 976 (35)
    PR1  20 300 (65)
  ER and PR status 34
    ER1/PR1  18 907 (61)
    ER1/PR2  4324 (14)
    ER2/PR1  1310 (4)
    ER2/PR2  6565 (21)
  HER2 status 18
    HER22  11 619 (81)
    HER21  2649 (19)
  ER, PR, and HER2 status 18
    ER1/HER22 or PR1/HER22  9534 (67)
    ER1/HER21 or PR1/HER21  1657 (12)

(Table continues)



jnci.oxfordjournals.org  	 JNCI | Articles 255

Results
Distribution of Breast Cancer Risk Factors and Tumor 
Subtypes
The distribution of risk factors and tumor subtypes included in this 
pooled analysis of 34 BCAC studies are shown in Table 2. The 
associations between tumor subtypes and patient and tumor char-
acteristics, including age at diagnosis, tumor size, histology, and 
grade, were consistent with those established in the literature 
(Supplementary Table 4, available online).

Case–Case Analyses of Risk Factor Associations With 
Tumor Subtypes
Age at Menarche.  Early menarche (≤12 years) was less frequent in 
case patients with PR2 tumors compared with case patients with PR1 

Characteristic
No. of  
studies

Case patients,  
No. (%)

    ER2/PR2/HER21  953 (7)
    ER2/PR2/HER22†  1997 (14)
  CK5/6 or CK5 status 8
    CK5/62 or CK52  5311 (87)
    CK5/61 or CK51  795 (13)
  EGFR status 6
    EGFR2  3756 (87)
    EGFR1  555 (13)

*	 A total of 34 studies participating in the Breast Cancer Association 
Consortium were included in the pooled analysis. Risk factor and marker ex-
pression data were pooled from case patients across all studies. BMI = body 
mass index; CK5 or CK5/6 = cytokeratins 5 or 5/6; EGFR = epidermal growth 
factor receptor; ER = estrogen receptor; PR = progesterone receptor .

†	 Also known as triple-negative phenotype.

Table 2 (Continued). tumors (OR = 0.88, 95% CI = 0.81 to 0.95, P = .001) (Table 3), a 
finding that was consistent across studies (Supplementary Figure 1, 
A, available online). For tumor subtypes defined by combined ER 
and PR status, the lowest frequency of early menarche in women was 
associated with ER1/PR2 tumors (P = .001). When the analysis was 
extended to include HER2 expression, compared with ER1/HER22 
or PR1/HER22 tumors, there were no statistically significant differ-
ences in age at menarche in the other three subtypes—ER1/HER21 
or PR1/HER21 (P = .89), ER2/PR2/HER21 (P = .16), and ER2/PR2/
HER22 (triple negative; P = .35). However, early menarche was less 
frequent in case patients with ER2/PR2/HER21 tumors compared 
with case patients with ER1/HER22 or PR1/HER22 tumors (OR = 
0.85, 95% CI = 0.67 to 1.07, P = .16) (Table 3).

Parity.  Nulliparity was consistently less frequent in case patients 
with ER2 tumors compared with case patients with ER1 tumors 
(OR = 0.82, 95% CI = 0.76 to 0.89, P = 3 × 1026) (Table 4 and 
Supplementary Figure 1, B, available online) and showed a weaker 
association with PR status (PR2 vs PR1 tumors: OR = 0.91, 95% CI 
= 0.84 to 0.98, P = .01). Similarly, nulliparity was less frequent in 
case patients with ER2/PR2 tumors compared with case patients 
with ER1/PR1 tumors (OR = 0.80, 95% CI = 0.73 to 0.88, P = 5 × 
1026). This finding was strengthened when analyses were extended 
to additional markers, such that the frequency of nulliparity was 
lowest among triple-negative tumors (13%) compared with other 
subtypes—ER1/HER22 or PR1/HER22 tumors (17%), ER1/
HER21 or PR1/HER21 tumors (18%), and ER2/PR2/HER21 
tumors (18%) (Table 4). Among parous women, increasing age at 
first full-term birth was less frequent in case patients with ER2 
tumors compared with case patients with ER1 tumors (per 5-year 
increase, OR = 0.90, 95% CI = 0.87 to 0.93, P = 2 × 1029). Similar 
to parity, this difference was confined to triple-negative tumors and 

Table 3. Associations between age at menarche and tumor subtypes in case–case analyses*

Tumor subtypes† No. of studies

Age at menarche, y

≥15 14 13 ≤12 ≤12 vs ≥15

No. (%) No. (%) No. (%) No. (%) OR (95% CI) P‡

ER1 27 3622 (19.0) 4036 (21) 4835 (25) 6571 (34) 1.00 (referent)
ER2 27 1154 (19.3) 1213 (20) 1539 (26) 2082 (35) 0.92 (0.85 to 1.01) .06
PR1 27 2743 (18.8) 3048 (21) 3703 (25) 5069 (35) 1.00 (referent)
PR2 27 1615 (20.6) 1656 (21) 2006 (25) 2556 (32) 0.88 (0.81 to 0.95) .001
ER1/PR1 27 2554 (18.8) 2858 (21) 3439 (25) 4701 (35) 1.00 (referent)
ER1/PR2 27 694 (22.2) 696 (22) 783 (25) 955 (30) 0.83 (0.74 to 0.93) .001
ER2/PR1 27 174 (18.3) 184 (19) 252 (26) 342 (36) 0.90 (0.74 to 1.10) .3
ER2/PR2 27 911 (19.6) 947 (20) 1204 (26) 1583 (34) 0.90 (0.81 to 0.99) .03
ER1/HER22 or PR1/HER22 14 1605 (21.5) 1619 (22) 1834 (25) 2422 (32) 1.00 (referent)
ER1/HER21 or PR1/HER21 14 227 (20.8) 238 (22) 275 (25) 350 (32) 1.01 (0.84 to 1.22) .89
ER2/PR2/HER21 14 153 (22.7) 155 (23) 179 (27) 187 (28) 0.85 (0.67 to 1.07) .16
ER2/PR2/HER22 14 280 (19.1) 337 (23) 360 (25) 490 (33) 1.08 (0.92 to 1.28) .35

*	 Unconditional logistic regression models were used to estimate associations between tumor subtypes and age at menarche (comparing case patients 
who were aged ≤12 years at menarche to case patients who were aged ≥15 years at menarche) using tumor subtypes as the outcome variable and age 
at menarche, age at diagnosis, and study as independent variables. CI = confidence interval; ER = estrogen receptor; OR = odds ratio; PR = progesterone 
receptor .

†	 Defined by expression status of ER, PR, and HER2 in tumors. Expression data were based on immunohistochemical staining and pathologist readings and/or 
imaging analysis.

‡	 P values were calculated using a two-sided Wald test.
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consistent across studies (Table 5 and Supplementary Figure 1, C, 
available online). Compared with having one child, having greater 
than or equal to three children was slightly more frequent in  
case patients with ER2 particularly triple-negative tumors com-
pared with case patients with hormone receptor–positive tumors 
(Supplementary Table 5, available online).

BMI Among Younger Women (≤50 years).  Obesity (BMI ≥ 30 
kg/m2) was more frequent in case patients with ER2/PR2 tumors 
compared with case patients with other combinations of hormone 
receptor expression (ER2/PR2 vs ER1/PR1 tumors: OR = 1.49, 

Table 4. Associations between parity and tumor subtypes in case–case analyses*

Tumor subtypes† No. of studies

Parity

Parous Nulliparous Nulliparous vs parous

No. (%) No. (%) OR (95% CI) P‡

ER1 30 18 640 (85) 3378 (15) 1.00 (referent)
ER2 30 5826 (86) 917 (14) 0.82 (0.76 to 0.89) 3 × 1026

PR1 30 14 202 (85) 2610 (16) 1.00 (referent)
PR2 30 7571 (86) 1287 (15) 0.91 (0.84 to 0.98) .01
ER1/PR1 30 13 248 (84) 2441 (16) 1.00 (referent)
ER1/PR2 30 2988 (84) 572 (16) 1.06 (0.96 to 1.18) .25
ER2/PR1 30 904 (85) 161 (15) 0.99 (0.83 to 1.18) .88
ER2/PR2 30 4541 (87) 707 (14) 0.80 (0.73 to 0.88) 5 × 1026

ER1/HER22 or PR1/HER22 15 6661 (83) 1331 (17) 1.00 (referent)
ER1/HER21 or PR1/HER21 15 1001 (82) 216 (18) 1.00 (0.85 to 1.18) .98
ER2/PR2/HER21 15 622 (82) 135 (18) 0.98 (0.81 to 1.20) .87
ER2/PR2/HER22 15 1374 (87) 204 (13) 0.69 (0.59 to 0.81) 7 × 1026

*	 Unconditional logistic regression models were used to estimate associations between tumor subtypes and parity (comparing nulliparous case patients to parous 
case patients) using tumor subtypes as the outcome variable and parity, age at diagnosis, and study as independent variables. CI = confidence interval; ER = 
estrogen receptor; OR = odds ratio; PR = progesterone receptor .

†	 Defined by expression status of ER, PR, and HER2 in tumors. Expression data were based on immunohistochemical staining and pathologist readings and/or 
imaging analysis.

‡	 P values were calculated using a two-sided Wald test.

95% CI = 1.29 to 1.73, P = 1 × 1027) (Table 6). However, there was 
some evidence of heterogeneity for this relationship by study (for 
hospital-based and population-based case patients, ER2 vs ER1 
tumors: OR = 1.67, 95% CI = 1.28 to 2.17 and OR = 1.39, 95%  
CI = 1.14 to 1.69, respectively, P for heterogeneity = .03) 
(Supplementary Figure 2, A, available online). When tumors were 
further classified according to HER2, the association in younger 
women between obesity and ER and PR status appeared to be  
confined to case patients with triple-negative tumors (triple-negative 
vs ER1/HER22 or PR1/HER22 tumors: OR = 1.80, 95% CI = 1.42 
to 2.29, P = 2 × 1026) (Table 6).

Table 5. Associations between age at first full-term birth among parous women and tumor subtypes in case–case analyses*

Tumor subtypes† No. of studies

Age at first full-term birth, y

<20 20–24 25–29 30–34 ≥35 5-year increase

No. (%) No. (%) No. (%) No. (%) No. (%) OR (95% CI) P‡

ER1 25 1711 (11) 6060 (40) 4853 (32) 1925 (13) 681 (5) 1.00 (referent)
ER2 25 692 (14) 2050 (40) 1563 (31) 589 (12) 185 (4) 0.90 (0.87 to 0.93) 2 × 1029

PR1 25 1322 (11) 4576 (39) 3736 (32) 1505 (13) 512 (4) 1.00 (referent)
PR2 25 793 (12) 2602 (40) 2019 (31) 787 (12) 288 (4) 0.97 (0.94 to 1.01) .11
ER1/PR1 25 1204 (11) 4250 (39) 3454 (32) 1412 (13) 484 (5) 1.00 (referent)
ER1/PR2 25 256 (10) 1006 (40) 830 (33) 313 (12) 134 (5) 1.05 (1.01 to 1.10) .02
ER2/PR1 25 110 (13) 317 (39) 275 (34) 90 (11) 27 (3) 0.91 (0.84 to 0.98) .02
ER2/PR2 25 530 (14) 1586 (41) 1179 (30) 466 (12) 153 (4) 0.91 (0.88 to 0.95) 6 × 1026

ER1/HER22 or PR1/HER22 13 659 (11) 2490 (42) 1841 (31) 735 (12) 240 (4) 1.00 (referent)
ER1/HER21 or PR1/HER21 13 101 (11) 379 (42) 269 (30) 113 (12) 46 (5) 0.99 (0.92 to 1.07) .7
ER2/PR2/HER21 13 56 (10) 242 (43) 180 (32) 64 (11) 25 (4) 1.01 (0.92 to 1.10) .91
ER2/PR2/HER22 13 178 (14) 552 (44) 333 (26) 153 (12) 44 (4) 0.89 (0.83 to 0.95) .0007

*	 Unconditional logistic regression models were used to estimate associations between tumor subtypes and age at first full-term birth (per 5-year increase) using 
tumor subtypes as the outcome variable and age at first full-term birth (continuous, per 5-year increase), age at diagnosis, and study as independent variables. 
CI = confidence interval; ER = estrogen receptor; OR = odds ratio; PR = progesterone receptor .

†	 Defined by expression status of ER, PR, and HER2 in tumors. Expression data were based on immunohistochemical staining and pathologist readings and/or 
imaging analysis.

‡	 P values were calculated using a two-sided Wald test.
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BMI Among Older Women (age >50 years).  Obesity (BMI ≥ 30 
kg/m2) among older women was consistently less frequent in case 
patients with PR2 tumors compared with case patients with PR1 
tumors (OR = 0.85, 95% CI = 0.78 to 0.93, P = 6 × 1024), particularly 
for smaller tumors (Table 7 and Supplementary Table 6, available 
online). This association was driven by a lower frequency of obesity 
among ER1/PR2 tumors, which occurred in both smaller and larger 
tumors. No statistically significant differences were observed upon 
further classification of tumors by HER2, CK5/6 or CK5, and 
EGFR (Supplementary Table 6, available online).

Family History of Breast Cancer.  The frequency of family his-
tory of breast cancer did not vary statistically significantly by 
tumor subtypes defined by hormone receptors and HER2, although 
having a positive family history of breast cancer was more frequent 
in case patients with CBP tumors compared with case patients with 
ER1/HER22 or PR1/HER22 tumors (OR = 1.38, 95% CI = 1.08 
to 1.75, P = .01) (Supplementary Table 7, available online).

Analyses Restricted to Case Patients With CBP Marker (CK5/6 
or CK5 or EGFR) Data.  When triple-negative tumors were further 

Table 6. Associations between body mass index (BMI) among women aged 50 years or younger and tumor subtypes in case–case 
analyses*

Tumor subtypes† No. of studies

BMI in younger women, kg/m2

<25 25–30 ≥30 ≥30 vs <25

No. (%) No. (%) No. (%) OR (95% CI) P‡

ER1 23 3557 (58) 1719 (28) 830 (14) 1.00 (referent)
ER2 23 1594 (56) 798 (28) 461 (16) 1.41 (1.24 to 1.61) 1 × 1027

PR1 23 3029 (59) 1467 (28) 678 (13) 1.00 (referent)
PR2 23 1614 (57) 773 (27) 456 (16) 1.32 (1.16 to 1.51) 4 × 1025

ER1/PR1 23 2692 (58) 1308 (28) 607 (13) 1.00 (referent)
ER1/PR2 23 430 (60) 190 (27) 96 (13) 0.96 (0.76 to 1.22) .76
ER2/PR1 23 331 (60) 156 (28) 66 (12) 1.03 (0.78 to 1.37) .82
ER2/PR2 23 1169 (56) 575 (27) 357 (17) 1.49 (1.29 to 1.73) 1 × 1027

ER1/HER22 or PR1/HER22 13 1188 (57) 625 (30) 287 (14) 1.00 (referent)
ER1/HER21 or PR1/HER21 13 333 (58) 165 (29) 80 (14) 0.95 (0.71 to 1.28) .75
ER2/PR2/HER21 13 168 (55) 93 (31) 43 (14) 1.25 (0.87 to 1.80) .22
ER2/PR2/HER22 13 319 (52) 173 (28) 128 (21) 1.80 (1.42 to 2.29) 2 × 1026

*	 Unconditional logistic regression models were used to estimate associations between tumor subtypes and BMI among women aged 50 years or younger (com-
paring case patients who had BMI ≥30 kg/m2 to case patients who had BMI <25 kg/m2) using tumor subtypes as the outcome variable and BMI among women 
aged 50 years or younger, age at diagnosis, and study as independent variables. BMI = body mass index; CI = confidence interval; ER = estrogen receptor; OR = 
odds ratio; PR = progesterone receptor .

†	 Defined by expression status of ER, PR, and HER2 in tumors. Expression data were based on immunohistochemical staining and pathologist readings and/or 
imaging analysis.

‡	 P values were calculated using a two-sided Wald test.

Table 7. Associations between body mass index (BMI) among women older than 50 years and tumor subtypes in case–case analyses*

Tumor subtypes† No. of studies

BMI in women older than 50 years, kg/m2

<25 25-30 ≥30 ≥30 vs <25

No. (%) No. (%) No. (%) OR (95% CI) P‡

ER1 23 5712 (43) 4818 (37) 2637 (20) 1.00 (referent)
ER2 23 1477 (43) 1240 (36) 753 (22) 1.06 (0.96 to 1.17) .22
PR1 23 4113 (43) 3504 (36) 2012 (21) 1.00 (referent)
PR2 23 2403 (45) 1870 (35) 1018 (19) 0.85 (0.78 to 0.93) .0006
ER1/PR1 23 3905 (43) 3323 (36) 1906 (21) 1.00 (referent)
ER1/PR2 23 1192 (48) 889 (36) 417 (17) 0.70 (0.62 to 0.79) 3 × 1028

ER2/PR1 23 194 (41) 174 (37) 101 (22) 0.94 (0.74 to 1.20) .62
ER2/PR2 23 1200 (43) 977 (35) 599 (22) 0.99 (0.89 to 1.11) .92
ER1/HER22 or PR1/HER22 13 2208 (40) 2099 (38) 1198 (22) 1.00 (referent)
ER1/HER21 or PR1/HER21 13 349 (44) 301 (38) 147 (18) 0.93 (0.76 to 1.14) .48
ER2/PR2/HER21 13 224 (47) 165 (34) 92 (19) 0.84 (0.65 to 1.08) .18
ER2/PR2/HER22 13 397 (41) 336 (35) 238 (25) 1.09 (0.91 to 1.29) .36

*	 Unconditional logistic regression models were used to estimate associations between tumor subtypes and BMI among women older than 50 years (comparing 
case patients who had BMI ≥30 kg/m2 to case patients who had BMI <25 kg/m2) using tumor subtypes as the outcome variable and BMI among women older 
than 50 years, age at diagnosis, and study as independent variables. BMI = body mass index; CI = confidence interval; ER = estrogen receptor; OR = odds ratio; 
PR = progesterone receptor.

†	 Defined by expression status of ER, PR, and HER2 in tumors. Expression data were based on immunohistochemical staining and pathologist readings and/or 
imaging analysis.

‡	 P values were calculated using a two-sided Wald test.
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classified according to the expression of CBP markers from seven 
studies (15,23,25,31,37,41,42), CBP tumors were found to be sta-
tistically significantly associated with lower frequency of nullipar-
ity (OR = 0.56, 95% CI = 0.41 to 0.76, P = .0002), lower frequency 
of older age (>30 years) at first birth (per 5-year increase: OR = 
0.81, 95% CI = 0.71 to 0.92, P = .001), higher frequency of obesity 
among younger women (OR = 2.15, 95% CI = 1.44 to 3.19, P = 
.0002), and family history of breast cancer (OR = 1.38, 95%  
CI = 1.08 to 1.75, P =.01) compared with ER1/HER22 or PR1/
HER22 tumors.

Differences by Age and Study Design.  The associations between 
risk factors and tumor subtypes defined by marker expressions 
remained statistically significant after adjustment for clinical 
tumor characteristics (stage, histology, size, and nodal status) and 
showed similar patterns in analyses stratified by tumor characteris-
tics. Associations were also similar in analyses restricted to white 
case patients, population-based case series, and younger (≤40 
years) or older (>50 years) case patients (data not shown), with the 
exception of the association between ER and BMI in younger 
women that varied in population- and hospital-based case series.

Case–Control Analyses of Risk Factor Associations by 
Tumor Subtypes
Case–control comparisons in a subset of 12 cohort or population-
based case–control studies (14,20,21,28,31–34,37,40,45) showed 
relative risk estimates for risk factors generally consistent with 
expected associations based on the literature. The only exception 
was elevated BMI among older women (>50 years) that was associ-
ated with increased risk of large (>2 cm) tumors (OR = 1.29, 95% 
CI = 1.12 to 1.50, P = .0005) but not with breast cancer overall 
(OR = 0.92, 95% CI = 0.86 to 1.00, P = .04). Relative risk estimates 
for specific tumor subtypes based on case–control analyses of 

cohort/population-based studies were consistent with the risk fac-
tor–tumor marker associations observed in case–case analyses in-
cluding all studies in this report. Figure 2 shows the case–control 
comparisons stratified by mutually exclusive categories of ER 
status. The analysis included up to 14 795 case patients (10 900 for 
ER1 and 3895 for ER2) and 17 399 control subjects. This 
figure shows the expected relationships for ER1 tumors. However, 
reproductive history and BMI in younger women were not associ-
ated with the risk of ER2 tumors, and the risk association for early 
age at menarche was only seen in the extreme categories. A similar 
pattern was found when stratifying tumors by PR status (data not 
shown). Further tumor stratification with HER2 suggested that 
age at menarche was associated with the risk of all tumor subtypes, 
except for ER2/PR2/HER21, although this interpretation was 
limited by the precision of the estimates because analyses were 
only based on four studies (20,28,31,37) with data for the three 
markers (data not shown). Based on these four studies, nulliparity 
and increasing age at first full-term birth were not associated with 
increased risk for triple-negative tumors (nulliparity vs parity,  
OR = 0.94, 95% CI = 0.75 to 1.19, P = .61; 5-year increase in age 
at first full-term birth, OR = 0.95, 95% CI = 0.86 to 1.05, P = .34). 
This observation was unique to triple-negative tumors and was not 
observed in other tumor subtypes (data not shown). Information 
on CBP markers was only available in two population-based 
studies (31,37) that also showed no increase in risk for CBP for 
nulliparity (OR = 0.97, 95% CI = 0.63 to 1.51, P = .90) and 
increasing age at first birth (OR = 0.92, 95% CI = 0.76 to 1.10,  
P = .48). Similarly, obesity among younger women was protective 
for all tumor subtypes except triple-negative tumors (BMI ≥ 30 vs 
<25, OR = 1.36, 95% CI = 0.95 to 1.94, P = .09).

The risk association for BMI among women older than 50 years
 was not statistically significantly modified by ER status and thus is 
not shown in Figure 2. However, in case–control analyses, higher 

Figure 2.  Risk factors and differential associa-
tions with the risk of estrogen receptor (ER)–
positive and ER-negative tumor subtypes 
based on case–control comparisons in 12 pop-
ulation-based studies. Case–control compari-
sons were stratified by mutually exclusive 
categories of ER status. The analysis included 
14 795 case patients (10 900 for ER1 and 3895 
for ER2) and 17 399 control subjects pooled 
across 12 studies. The black diamonds and the 
horizontal lines represent odds ratios (ORs) 
and corresponding 95% confidence intervals 
(CIs), respectively. Odds ratios were obtained 
from unconditional logistic regression models 
with case–control status (case patients were 
stratified by ER status) as outcome variables 
and age, study, and each risk factor separately 
as independent variables. The associations 
between body mass index (BMI) in women 
older than 50 years and family history in first-
degree relatives are not shown because they 
were not statistically significantly modified by 
ER status in case–case comparisons. Ref = ref-
erent category. Odds ratio are presented on the 
log scale.
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BMI was associated with increased risk of larger breast tumors 
only; data suggested a decreased risk of smaller tumors (data not 
shown). Among larger tumors (>2 cm), risk associated with BMI 
was not statistically significantly modified by PR status. However, 
consistent with the case–case analysis, the reduced risk for smaller 
tumors (≤2 cm) was stronger for PR2 tumors (data not shown).

Family history of breast cancer was associated with increased 
risk of all tumor subtypes, with some suggestion of a stronger as-
sociation for tumors with CBP (data not shown).

Discussion
In this large pooled analysis of 35 568 invasive breast cancer case 
patients, we pooled tumor marker and epidemiological risk factor 
data from 34 studies participating in the BCAC and demonstrated 
that reproductive factors, such as early age at menarche, nullipar-
ity, increasing age at first full-term birth in parous women, and 
elevated BMI in younger women, were more strongly associated 
with hormone receptor–positive tumors as compared with 
hormone receptor–negative tumors in case–case analyses. Our 
findings also suggested that the triple-negative or CBP tumors 
account for much of the risk factor heterogeneity between 
hormone receptor–positive and hormone receptor–negative 
tumors. We also conducted case–control analyses in 12 popula-
tion-based studies and observed that nulliparity, increasing age at 
first birth, and BMI in younger women were associated with the 
risk of ER1 or PR1 tumors but not with ER2/PR2 tumors, partic-
ularly, triple-negative or CBP tumors.

These findings strengthen and quantify conclusions of previous 
reviews and meta-analyses (4,7), in addition to suggesting further 
etiological differences among subtypes of ER2 tumors. These 
results complement emerging evidence that associations between 
common genetic variants and breast cancer risk varied by breast 
tumor subtypes (8) and data showing that breast cancer incidence 
rates varied markedly by histological type, grade, and molecular 
subtype (52).

In the case–control analyses, we observed that nulliparity and 
increasing age at first full-term birth were mainly associated with 
elevated risk of ER1 and/or PR1 breast cancers, but not with ER2/
PR2 cancers, as suggested previously. A meta-analysis estimated 
that each birth was associated with an 11% decrease in the risk of 
ER1/PR1 breast cancers but was unrelated to the risk of ER2/PR2 
cancers (7). The Hawaii–Los Angeles Multiethnic Cohort study 
showed similar results (53). Furthermore, we extended this work 
to suggest that nulliparity and increasing age at first birth do not 
increase risk for triple-negative tumors, and perhaps more specif-
ically, for CBP tumors. Similarly, Millikan et al. (9) reported that 
parity and early age at first full-term birth were not protective for 
CBP and suggested that these factors may actually increase the risk 
for CBP. Estimates of association from our case–control analyses 
are consistent with these findings but are based on limited data.

A meta-analysis (7) and subsequent studies (53,54) suggested 
that early age at menarche might be more strongly associated with 
the risk of ER1/PR1 tumors. Our data support these findings, 
although associations with ER and PR were weaker than for par-
ity-related variables, perhaps reflecting larger measurement error 
for this variable. Data suggested strongest differences in age at 

menarche for ER1/PR2 cancers, which might differ biologically 
from ER1/PR1 cancers (55,56); however, further studies are 
needed to confirm this finding. Hypotheses suggested to account 
for the stronger associations between menstrual and reproductive 
risk factors and receptor positive tumors include relationships of 
menstrual period with levels of circulating hormones, total number 
of menstrual cycles, and induction of cell differentiation (57). The 
differences in associations that we found between menarche and 
parity-related variables and tumor subtypes might point to differ-
ences in mechanisms underlying these factors.

Epidemiological studies have shown that premenopausal obesity 
is overall protective for breast cancer (58), whereas postmenopausal 
obesity is associated with increased risk (59). Our case–control 
analysis showed that among younger women, obesity was inversely 
associated with risk for receptor positive tumors only, which seems 
to reflect a lack of protection for ER2/PR2 cancers. However, this 
question deserves further study since there were inconsistencies 
among population-based studies, which might reflect differences in 
the definition of this variable. Further analysis suggested that differ-
ences by hormone receptor status were driven by a lack of protec-
tion for triple-negative/CBP tumors. Millikan et al. (9) previously 
found that increased waist to hip ratio, a measure of central adi-
posity, was related to elevated risk for CBP, irrespective of meno-
pausal status. It has been postulated that a high prevalence of central 
obesity among African American women may contribute to the 
particularly strong risk for CBP tumors (60); however, we could not 
assess this finding in our dataset. Proposed mechanisms underlying 
the protective effect for premenopausal obesity include increased 
anovulatory cycles, which would reduce cumulative exposure to 
cyclic sex hormones and might reduce risk for hormone responsive 
tumors (61,62). However, obesity (particularly central adiposity) 
may be associated with increased levels of insulin and related growth 
factors, which could increase risk specifically for some breast tumor 
subtypes, possibly including the triple-negative/CBP group (63,64). 
A recent study found that women with triple-negative tumors had a 
high prevalence of metabolic syndrome, characterized by obesity 
and insulin resistance (63). Insulin resistance may increase risk of 
premenopausal breast cancer by reducing sex hormone–binding 
globulin levels, resulting in an increase in free estrogen and 
androgen levels, and increasing proliferation of breast epithelial 
cells (64).

Among older case patients, obesity was less frequent in women 
with PR2 tumors, particularly those that were ER1/PR2. A meta-
analysis found that a consistent result across studies was that post-
menopausal obesity women were not associated with increased risk 
of ER1/PR2 breast cancer (65). These data suggest a possible link 
between postmenopausal obesity, elevated circulating estrogens, 
and cancers with intact ER-induced transcription, resulting in PR 
coexpression (66). A previous publication using data from the 
Polish Breast Cancer Study (PBCS, included in this report) sug-
gested that the risk association with obesity in postmenopausal 
women was limited to large tumors (37). Case–case and case–
control analyses of our data further support these findings, inde-
pendent of ER or PR status. Interpreting relationships for obesity 
in older women is complicated by several factors, including the 
positive relationship with tumor size, screening history, and pos-
sible interactions with use of hormone replacement (67,68).
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Finally, we found that a positive family history increased risk 
similarly for all subtypes of breast cancer, though possibly some-
what more for CBP. However, completeness and methods for 
evaluating family history varied among studies, and our dataset 
undoubtedly includes unidentified BRCA1 carriers, who are partic-
ularly prone to develop CBP.

Strengths of this analysis compared with previous reports include 
a large sample size from a large set of studies unselected by prior 
publication. However, differences in study populations, designs and 
methods of collecting risk factors, and marker data are potential 
limitations. However, these factors are unlikely to be related to risk 
factors of interests and thus would tend to underestimate rather than 
overestimate the case–case comparisons that support our main con-
clusions. The average age at diagnosis was younger, and percentage 
of case patients having a positive family history of breast cancer was 
higher in this analysis than in most populations because some studies 
were enriched for younger and familial case patients. Nonetheless, 
most of our findings were consistent across studies (Supplementary 
Figures 1 and 2, available online), thus supporting our interpreta-
tions. We also restricted our case–control analyses to prospective 
cohorts and population-based case–control studies to minimize se-
lection bias derived from the inclusion of nonrepresentative control 
subjects in analyses to estimate relative risks. Although misclassifica-
tion of markers may have weakened the strength of associations 
observed, previous studies have found good concordances between 
marker status from pathology reports from different sources and 
standardized measurements (47–49). In addition, the relationships 
between marker data with age and pathological variables were as 
expected. Furthermore, associations between tumor subtypes and all 
risk factors were similar in analyses restricted to eight studies in 
which marker data were based on immunohistochemical staining of 
tissue microarrays or whole sections (data not shown). Another lim-
itation is the large amount of missing data for HER2 and CBP 
markers, which may have limited power and generalizability of our 
findings. Ongoing efforts in BCAC to standardize and quantify 
marker analyses from tissue microarrays aided by automated image 
analyses may address the above limitations in future studies.

In conclusion, this large pooled analysis demonstrates that as-
sociations for menstrual and reproductive risk factors and BMI 
vary by breast cancer tumor subtypes defined by ER, PR, HER2, 
and CBP markers. Our results support the view that, from an eti-
ological perspective, there is more than one type of breast cancer 
and specifically supports the hypothesis that CBP tumors have 
different etiology from hormone receptor–positive tumors. This 
evidence suggests that developing risk models for specific types of 
breast cancer may improve prediction and allow targeted screening 
and prevention in the future. This approach would align the efforts 
of prevention research with those of clinical research where delin-
eating the molecular pathogenesis of specific types of breast can-
cers has enabled the development of targeted treatments.
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