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Abstract 
 
Amino acid residues on the outside of proteins are discussed as potential 

sites for chemical coupling of proteins to sensor surfaces.  This strategy is 

compared with the use of peptide tags, added to proteins, with an affinity for a 

particular surface material or chemical structure.  Using molecular biology to 

extend the amino acid protein sequence, in order to include an immobilisation 

component, is also shown to be suitable for fusion to binding proteins, that 

can act as the immobilisation partner, so that a compendium of 

immobilisation strategies is seen to emerge from this common approach of 

protein engineering. 
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1.Introduction	

The innovation model for biosensors is both application and technology driven. Eg, 

gene chip/DNA probe technology emerged from the human genome project and was 

translated to other areas of research and then to medical diagnostics.  The original 

amperometric enzyme electrode concept and the glucose biosensor has achieved a 

dominant biosensor market, driven by a population where diabetes is increasing. 

Similarly, other particular assay systems have gained prominence; for example, 

luciferase, which was discovered in 1962, began to emerge in molecular biology in 



the 90s, and is now a core ‘reagent’ in the development of many new sensor 

diagnostics. Surface plasmon resonance discovered in 1968 was first incorporated in 

an immunoassay in 1983. BIAcore first commercialized the technology in 1991 to 

provide sensing platforms for drug discovery. The diversity of applications emerging 

from such bio-mechanistic technologies gives some insight into how we might exploit 

signal generation in/from cell components. However, identification of further 

signaling systems are only one component required to increase the portfolio of 

diagnostic information that could be obtained and we are beginning to be able to 

engineer access to the diversity and selectivity of bio-inspired molecular apparatus 

with its capacity for analyte recognition, by merging the properties of transduction 

materials with the capacity of molecular biology. 

An important challenge in this mission is the interface between the transducer and 

biomolecule.  Traditional immobilisation methods are broadly categorised into 

adsorption-based methods [1], entrapment inside a membrane [2], or in a 

gel/polymer matrix [3], or via cross-linking reagents [4]. These methods do not take 

the orientation of the biomolecule into account, and regularly end up with the 

biorecognition molecule showing reduced functionality and poor communication with 

the underlying transducer [5]. 

Whereas the historical approach to immobilisation has been to use these traditional 

chemical methodologies, understanding how biology can be better interfaced with 

electronic or optical nano- and microsystems, in a platform that can be evolved and 

reconfigured for detection and diagnosis, is now expanding the biosensor portfolio. 

This review looks at the evolution of peptide molecular biology immobilisation 

techniques and considers developments that could further impact the biosenor field. 

The review begins with reactive amino acids introduced at the surface of a protein 

target and the strategies that have allowed chemical coupling with various 

transducer materials (section 2).  This method is close to the historical chemical 

methodologies. In contrast, inspiration from high affinity protein binding partners in 



nature offer ways of providing some generic immobilisation methods (section 3) that 

can be applied to many different systems by fusion of one of the binding partners to 

the biorecognition element.  This also begins to show how our understanding of 

peptide-protein binding can lead to biorecognition proteins with a fused peptide tag 

for binding to the transducer surface - all achieved with molecular biology. Peptides 

and their direct affinity for materials used as transduction surfaces in biosensors 

therefore expand this concept, with examples of sequences that might be fused to a 

biorecognition protein (section 4). 

 

2.	Selected	amino	acid	coupling	
	

2.1	Cysteine	coupling	
	
Due to the low prevalence of cysteine, it can be a natural target for insertion or 

exchange into a protein’s natural sequence. In terms of immobilisation, the choice of 

cysteine is favoured by easy thiol group chemical activity.  Depending on its 

positioning in the protein, it can therefore be an effective method of controlling 

protein orientation on the surface. Beissenhirtz et al [6] for example, introduced one 

or two additional cysteine residues in the enzyme, superoxide dismutase, and 

observed that binding to unmodified gold electrodes could then be achieved, 

together with direct electron transfer to the electrode, with higher sensitivity towards 

superoxide radicals compared to conventional cytochrome c.  

However, cysteine coupling can also cause inhibition due to opportunist bond 

formation with non-ideal orientation. For example, Lin et a.l [5] showed that cysteines 

14 and 17 of cytochrome c interact with a bare gold electrode inhibiting electron 

transfer. However, if a C-terminal cysteine tag is introduced on cytochrome c [7], 

enzyme immobilisation occurs with its binding domain on the opposite side, 

accessible from solution.  



Similarly, when Davis et al. [8] engineered a cysteine residue into cytochrome 

P450cam, where the enzyme’s haem group was closest to the surface, the enzyme 

was still catalytically active, and had higher and more ordered coverage of a gold 

electrode than the wild type enzyme. The activity was also higher, which was 

attributed to the cysteine being able to orientate the haem group, buried in the 

protein matrix, so that it was as close as possible to the electrode.  

Loechel et al. [9] also introduced a cysteine mutation of the residue Y442 in the 

protein trimethylamine dehydrogenase (TMADH) to couple into the protein’s electron 

transfer pathway to facilitate charge transfer between enzyme and an electrode. 

However, in this instance the necessary attachment point was in a cleft in the protein 

which was not accessible to couple directly with an electrode. This required a redox 

wire, poly-[Fe(5-NH2-phen)3]2+, to join and communicate between enzyme and 

electrode. Thus, surface modification of an amino acid doesn’t necessarily yield a 

direct match between transducer and protein immobilisation and coupling.  

 

2.2	Lysine	coupling	
	
Lysine is typically located on the outside of protein because of its polarity and not 

involved in the catalytic sites. It is often in good abundance, making its amino group 

an obvious site for further biomolecule interaction and it can be readily and 

selectively targeted for interaction with activated surfaces (eg –COOH). However, its 

abundance also inhibits individual site directed immobilisation and orientation of a 

resultant protein is likely to include any of the surface lysines.  

Rather than attempting single amino acid attachment, polylysine could be 

engineered  as a protein tag to increase the likely position for site directed activation, 

and in principle, it can be electropolymerized on a glassy carbon electrode (GCE) 

surface by potential cycling  (Figure 1), but at rather high potentials where water 

oxidation is also likely and a part of the surface activation mechanism. Huang et al. 



[10] have proposed that the polymerisation process involves electrode activation (-

C=O, dependent on the water activation effect) of a GCE, followed by coupling to the 

protonated –NH3
+ of the lysine. This C-N bond formation has also been shown by 

others and the electrochemical polymerisation method proposed for other 

aminoacids [11,12].  On the other hand, protonated polylysine itself can be deposited 

directly on a pre-prepared graphene oxide surface, without electrochemical oxidation, 

and then provides a good non-specific immobilisation medium for a layer-by-layer 

type of electrostatic or covalent assembly. 

These preparation methods have also been applied in various other types of sensors, 

not just those involving proteins. Sun et al. [13] introduced a DNA sensor using 

graphene oxide as a platform to immobilize DNA on the surface of polylysine-

modified GCE. Polylysine film supported the stabilization of graphene oxide 

nanosheet through electrostatic attraction on GCE. Due to the high surface area, the 

authors proposed that an increased amount of probe DNA can be amide bonded, 

which results in better performance and detection limit of 1.69x10-13 M. Similarly, 

Wang et al. [14] immobilized probe DNA on gold nanoparticles, adsorbed on 

polylysine-modified GCE. Positively charged hexaamineruthenium(III) chloride 

bound to the negatively charged phosphate back bone of probe DNA on the gold 

nanoparticle served as a electroactive indicator. Wang demonstrated that this sensor 

can detect 3.5x10-14M of target DNA. Although these are not polylysine tagged, their 

outcome suggests that a tagging approach with electrochemical or chemical 

graphene oxide preparation could also be successful. 

Similarly Hua et al. [15] applied a polylysine modified GCE in a glucose sensor, 

where glucose oxidase was immobilized through self-assembly on graphene oxide 

which had been polylysine–modified. Direct electron transfer was suggested with 

good electrocatalytic activity in glucose detection of in the range of 0.25 to 5 mM. In 

the work of Shan et al. [16], polylysine was also used, linked to graphene oxide on a 



gold electrode. In this instance horseradish peroxidase was the target enzyme and 

H2O2 detected with very high sensitivity.  

 

Figure 1. Electropolymerization of polylysine film on GCE can be achieved by cyclic 

voltammetry scanning and reactions including the electrode activation (a), the 

transfer from l-Lysine molecules to cation molecules (b) and the polymerization of l-

Lysine on the electrode surface (c). 

 

Nevertheless, molecular biology can offer other tethering or ‘affinity’ sequences.  A 

major group of affinity tags usually uses a peptide that binds a small ligand linked on 

a solid support (e.g., his-tags that bind to immobilised metals), while another group 

includes tags that bind to an immobilised protein partner. These can be useful, for 

example, for antibody immobilisation and many of these techniques have been 

developed for protein purification, so that in reviewing peptide tagging for biosensors 

we can also gain inspiration from this field. 

2.3	Histidine	tag	(His-tag)	
	
The use of short histidine stretches or his-tags, usually placed at either the N-



terminus or C-terminus of the required protein, allows advantage to be taken of the 

interaction between transition metal ions and electron donating histidine groups. 

Typically, the support requires a ligand modification like nitrilotriacetic acid (NTA) for 

immobilising transition metal cations such as nickel or copper, to provide an 

anchoring point for the histidine. The method was developed as an affinity 

purification tag and is generally thought to lead to only a mild change in protein 

structure.  

Schroper et al. [17] considered a histidine tag to control cytochrome c orientation on 

an Ni-NTA functionalised gold electrode by comparing His-tags added at the N 

terminus, the C terminus and on both termini of the enzyme. The C terminus His tag, 

which is close to one the enzyme’s main electron transfer pathways, was found to 

have the most efficient electron transfer with the electrode. Madoz Gurpide et al. [18] 

were able to engineer a surface-exposed α-helix of ferredoxin:NADP+ reductase 

(FNR) with a histidine pair, so that the protein was predicted to be immobilised with 

the edge of the isoalloxazine FAD ring system perpendicular to the electrode with its 

electron-exchanging site facing the electrode. They showed that in contrast to other 

mutants without this predicted orientation advantage, electrocatalytic activity with 

substrate (NADPH) could be demonstrated.  Demin et al. [19] genetically modified a 

deglycosylated glucose oxidase (GOx) with a C terminal hexahistidine tag, which 

shortened the electron transfer distance and enabled orientated immobilisation on a 

Cu2+-NTA ligand functionlised glassy carbon electrode. This system eliminated the 

use of mediator for biosensor, and also established a robust fast electrochemical 

connection between enzyme and electrode.                  

Mikula et al. [20] also used the histidine tagged domain of the receptor for advanced 

glycation end products (RAGE) linked to a N-acetylcysteamine (NAC) and thiol 

derivative of diethylene triamine pentaacetic acid (DPTA) modified electrode. The 

authors concluded that binding of the peptides, Aβ16-23 and Aβ1-40, for early diagnosis 

of neurodegenerative diseases caused a conformational change of the RAGE 



domain which restricted counter ion access. Using Cu2+ as the probe, this resulted in, 

a decrease of Cu2+ redox current. A similar principle was applied in the development 

of an analytical tool for the screening of interactions between rHIs6 – Rio1 and 

compounds that could function as potential kinase inhibitors. [21] In this case, a 

monolayer of thiol derivative of iminodiacetic acid and NAC were self-assembled on 

the Au electrode, and the immobilisation of rHIs6 – Rio1 was achieved by chelating 

to the Cu2+ on the electrode surface.  

In addition to the thiol group of cysteine, the imidazole group of the histidine, the α-

amino groups of the main chain and the ε-amino groups of lysine, proteins have 

various other functional groups that can be covalently bound to modified surfaces 

under mild conditions.  For example, the α-carboxyl group of the chain; the β- and γ-

carboxyl groups of aspartic and glutamic acids; the phenol ring of tyrosine and the 

indol group of tryptophan are all viable covalent bonding sites. Nevertheless, not all 

these chemistries give high yields, and additionally the strategies must take resultant 

activity of the protein into account. 

3.	Coupling	via	binding	proteins	

3.1	Streptavidin-Biotin	

The streptavidin-biotin coupling is possibly one of the most used and versatile 

immobilization systems to date for many different base biosensors. It is reported to 

have a high association rate constant (k1> 107 M-1 s-1) and an affinity constant (KD) of 

~10-14 M [22,23].  The two coupling components can be used either way around as 

anchor and label, but more typically biotin is immobilized using succinimidyl ester 

chemistry onto an amine-functionalized sensor surface. The NHS–biotin linker may 

also include a spacer arm such as PEG. Since the dissociation constant associated 

with the interaction is so low (approximately 10−15 M), the binding is very stable, but 

this also means that the surface is difficult to regenerate for reuse [24]. 

More recently biotin tagging has been proposed by using the biotin carboxyl carrier 



protein (BCCP) [25].  The authors suggest that protein tagging by connecting BCCP 

to fusion partner proteins would provide a system that could then be directly 

biotinylated, mediated by the biotin protein ligase (BPL) from the thermophilic 

archaeon Sulfolobus tokodaii. However, instead of requiring that the protein of 

interest for the assay (antibody, binding protein, enzyme etc) has to be modified with 

biotin to create the other end of the coupling system, an alternative approach is to 

use a peptide tag that binds streptavidin directly.  For example Streptag II an 

octapeptide (WSHPQFEK) can be fused with the protein of interest.  This is rather 

an interesting option for chips/surfaces (eg SPR) which might be reused, since the 

streptag fusion system can be eluted from the surface with a biotin analog.  A special 

advantage of this peptide sequence is that its binding of the tag to streptavidin is not 

influenced by metal ions, so that it is also suitable for metalloproteins [26]. 

3.2	Glutathione-S	-Transferase	(GST)		

Another approach to immobilization is the covalent linkage of anti-Glutathione S-

transferase (GST) antibody to the sensor chip surface and then using a GST tagged 

protein for coupling. A range of commercial vectors are available for the expression 

of GST-fusion proteins, so that cloning, expression, and purification of GST tagged 

proteins are well documented and straightforward. The GST/anti-GST antibody 

interaction can be disrupted by washing with glycine/HCl and the anti-GST surface 

regenerated >200 times, so the system becomes quite versatile. It has been 

especially popular in SPR devices.  

Alternatively, the need for the anti-GST surface can be avoided by achieving 

connectivity through a glutathione (GSH) – GST affinity bond. Sehr et al. formulated 

a glutathione S-transferase (GST, 26 kDa) fusion protein system to present a 

generic capture ELISA using GSH as the capture ligand [27]. They noted that the 

GST interacted with the γ-glutamyl group of glutathione (GSH) so they linked the 

sulfydryl group of GSH to a casein support via sulfosuccinimidyl-4-[p-



maleimidophenyl] butyrate. The sulfhydyl group is also clearly available for direct 

self-assembly onto gold.  However, Praig and Hall found that in contrast to simple n-

alkanethiol SAMs, disordered unstable layers were usually formed with GSH.  They 

developed an electrochemical method to form an Au-S bond with the GSH under 

applied potential >0.2V vs Ag/AgCl and assembled a stable GSH layer on an Au-

SPR surface [28]. The resulting layer was able to bind GST specifically at an initial 

rate of ∼1.2×107 molecules/s, yielding saturation at ∼1.2×1010 molecules/mm2 after 

>5000 s.  This is slower than the rate of binding to anti-GST, but produces a stable 

layer.  The authors showed the immobilization of the fusion protein of GST with the 

plant cyclin-dependent kinase (CDK) Cdc2aAm. The latter belongs to a class of 

CDKs which interact with cyclins via an evolutionarily conserved 16 amino acids 

sequence called PSTAIR (EGVPSTAIREISLLKE).  The presence and accessibility of 

the sequence was confirmed using an anti-PSTAIR antibody. 

3.3	Maltose	binding	protein	(MBP)	

MBP undergoes conformational change upon the presence of maltose from the 

opened to the closed conformation (Figure 2). This substrate-induced conformational 

change has been applied widely in the biosensor arena. For example, Fehr et al. [29] 

produced recombinant protein by combining enhanced cyan fluorescent protein 

(ECFP) and enhanced yellow fluorescent protein (EYFP) at each end of MBP. ECFP 

and EYFP worked as a donor and acceptor chromophore, respectively, and 

increased fluorescence resonance energy transfer (FRET) when maltose bound to 

the binding pocket and the distance between ECFP and EYFP was reduced through 

hinge-bend movement. By using this recombinant protein, a nondestructive dynamic 

nanosensor has been constructed, which allows better understanding of 

transportation systems between and within cells by monitoring the concentration of 

cytosolic maltose.  

Similarly, reporter groups, which are conjugated to MBP have been used to generate 



currents in the presence of maltose. Benson et al. [30] introduced thiol-reactive 

ruthenium to the cysteine on a mutant MBP, so that the ligand binding site of MBP 

was designed to point toward the bulk solution, while ruthenium, the reporter group 

was designed to face the electrode,  This then links substrate-induced 

conformational change and electrochemical signal.  With the increased 

concentration of maltose, the closed form of MBP increased the distance between 

ruthenium and the gold electrode and the generated signal. 

 

	

Figure 2. Substrate-induced conformational change of maltose binding protein 

(MBP). Upon the binding of maltose (green spheres), MBP changes its structure 

from opened form [31] (A) to closed form [32] (B). 
 

3.4	Choline-binding	protein	(CBP)	

With molecular biology techniques becoming increasingly routine, other binding 

proteins have been identified, also with potential to be both fusion partner for an 

analyte directing protein and immobilization aid. One promising affinity tag for protein 

immobilization comes from the C-terminal domain of the choline-binding protein 

(CBP), LytA amidase, from Streptococcus pneumoniae (C-LytA).  This originates in 



recognition of choline residues of the pneumococcal cell wall. The C-LytA crystal 

structure has been solved and folding stability increased through protein engineering 

to enable this system to be used as an affinity tag [33]. To employ this immobilization, 

a transducer surface needs to be created that presents a choline functionality for 

interaction.  For example, Madoz et al. [34] modified a gold electrode with a choline-

thiol SAM and assembled a β-galactosidase fused to C-LytA (CLyt-βGal protein) on 

the surface.  Full β-galactosidase activity was retained.  Bello-Gil et al have 

extended this idea so that choline can be presented on a graphite surface [35].  In 

their example the graphite was functionalized using electrochemical reduction of the 

diazonium salt formed from 4-aminophenylacetic, similar to the method used for the 

NTA active surface linking GOx above [19].  However, in this instance activation and 

esterification of the 4APA carboxylic groups was achieved after attachment to the 

electrode with a mixture of N,N-diethylethylenediamine (DEAEA), to present a 

choline-like surface, and ethanolamine (EA) as a spacer, at a ratio of 1:8. The 

authors report a CLyt-βGal protein loading of 313fmole mm2 using this method 

compared with 23fmole mm2 reported for the same CLyt-bGal on gold [18].  The 

βGal oxidized p-aminophenyl β-D-galactopyranoside and the product 4-aminophenol 

(PAP) could be oxidized at the electrode. Without the CLyt immobilization, the 

resultant current was circa 3% of the choline immobilized protein. 

4.	Peptide	sequences	for	coupling	

4.1	FLAG	and	other	antibody	selective	sequences	

Another approach has been to use the M1 monoclonal antibody (mAb) as an affinity 

surface.  Short affinity tags such as the FLAG hydrophilic octapeptide (DYKDDDDK) 

will bind M1, although recent studies suggested that a shorter FLAG-related peptide 

(DYKD) could also be used.  This gives rise to the idea that FLAG peptides can be 

designed as fusion partners with the protein of interest and immobilized to the M1 

surface.  A FLAG containing plasmid has been constructed to fuse the FLAG motif to 



the protein of interest, originally for more accessible purification, Western blot 

analysis and immunofluorescence assay.   Jin et al. [36] have taken this a further 

step by developing a nanovesicle- based bioelectronic nose, combining a single-

walled carbon nanotube-based field effect transistor (FET) and human olfactory 

receptor, containing cell-derived nanovesicles. In this example, the hydrophilic FLAG 

tag with 3 consecutive aspartate residues hanging on the outside of the vesicle, 

providing negative charge, may be important for immobilization to the polylysine 

surface deposited on the FET.  This work is also of interest because a second rho-

tag (rhodopsin), was also included, targeting the receptor protein on cell membranes 

and nanovesicles were produced from the construct-expressed human embryonic 

kidney HEK-293 cells. 

 

Inspiration may also be gained from other sequences that have been devised in the 

protein purification field such as Softag1 and Softag3. These are small peptides 

(SLAELLNAGLGGS and TKDPSRVG, respectively) recognized by polyol-selective 

antibodies, but with potential for interactions with other user-designed surfaces.  

4.2	Spycatcher	

A rather interesting combination for future consideration in biosensors is the 

spycatcher system.  This is based on the immunoglobulin-like collagen adhesion 

domain of Streptococcus pyogenes  (CnaB2). The CnaB2 protein has been divided 

so that the N-terminal of the protein contains the Lys31 and a peptide residue which 

includes Asp117 [37]. The key feature of this coupling mechanism is the 

spontaneous formation of an isopeptide covalent bond between the Lys and Asp.  

This has been optimized for the purpose of irreversible immobilization to create 

modified peptide and protein fragments named SpyTag and SpyCatcher, 

respectively. There are variations of the SpyTag, but in general the original C-

terminal sequence of CnaB2 (AHIVMVDA) is extended to increase interaction with 



the protein.  For example, with SpyTag (AHIVMVDAYKPTK) interaction between the 

peptide and protein appears to be initiated by the first eight residues of SpyTag that 

insert into the hydrophobic core of SpyCatcher and the extensive parallel hydrogen 

bonds with the β -strand of SpyCatcher [38]. The remaining additional amino acids 

may improve the efficiency and/or stability of the complex.  Sun et al. has reported 

covalently cross-linked protein hydrogels prepared by SpyCatcher-SpyTag system. 

The Spy network acted as artificial extracellular matrix for cell encapsulation, which 

provides a valuable technique for creation of a biomimetic environment [39]. Chen et 

al. has combined the SpyCatcher-SpyTag interaction with curli amyloid fibrils 

produced by E. coli. These fibrils containing CsgA proteins could help the bacteria to 

attach to electrode surfaces, and could assemble quantum dots (QDs) with gold 

nanoparticles (AuNPs) through the SpyCatcher-SpyTag interaction as well as the 

interaction between anti-FLAG antibodies and FLAG affinity tag. The resulting 

CsgASpyTag fibrils were bound by the Spy-Catcher conjugated QDs, whereas the 

CsgAFLAG fibrils were bound by AuNPs conjugated secondary anti-FLAG antibodies. 

Changes in fluorescence lifetime and intensities were obtained by fluorescence-

lifetime imaging microscopy (FLIM) for the co-assemblies of QDs and AuNPs 

compared to the QDs alone [40]. The research lays a foundation for the 

development of biosensor devices based on fluorescent inorganic materials.  

The Spy system was also successfully used for protein immobilisation in a “Biofilm 

Integrated Nanofiber Display” (BIND) system to display protein information to 

program biofilm, and possess artificial enzymatic, electron transport, and sensing 

capabilities. The covalent affinity between BIND-SpyTag and SpyCatcher-GFP 

results in a green fluorescent under confocal microscopy. The successful 

immobilisation further proved that the SpyTagged biofilm system may be of great 

importance in the development of biocatalysts and biosensors [41]. 

 



4.3	Inorganic	binding	peptides	

Many of the examples discussed above require a capture molecule to be bound on 

the substrate. However, these capture surfaces sometimes reduce the signal 

measurement efficiency, for example, by extending the distance between the analyte 

recognition biomolecule and the transducer, resulting in reduced signal. Therefore, in 

principle, the direct binding of proteins on inorganic materials may be more desirable 

for efficient measurement. If the protein can be immobilized so that it is directly 

bound to the transducer surface, then modification of the transducer surface isn’t 

needed. After decades of discovery and development, a huge library containing 

peptides binding to various materials have been studied. Some bare great potential 

in photonics, electronics and electrochemical sensing applications (Table 1).  

 

Materials Sequences Length 
Au MHGKTQATSGTIQS 14 

 VSGSSPDS 8 
 WALRRSIRRQSY 12 
 WAGAKRLVLRRE 12 
   

Pt PTSTGQA 7 
   

Ti RKLPDA 6 
   

Ag AYSSGAPPMPPF 12 
 NPSSLFRYLPSD 12 
 SLATQPPRTPPV 12 
   

Si SSKKSGSYSGSKGSKRRIL 19 
   
Cu2O RHTDGLRRIAAR 12 
   
ZnO RIGHGRQIRKPL 12 

 EAHVMHKVAPRP 12 
   
ZnS NNPMHQN 7 

   
GaAs AQNPSDNNTHTH 12 

 RLELAIPLQGSG 12 
 TPPRPIQYNHTS 12 
   



CNT HWKHPSGAWDTL 12 
 HWSAWSIRSNQS 12 

 

Table 1: Examples of inorganic binding peptides. The colours indicate the various 

classes that the individual amino acid falls into. Yellow indicates small nonpolar 

amino acid, Green hydrophobic amino acids, Magenta polar amino acids, Red 

negatively charged amino acids, and finally Turquoise indicate positively charged 

amino acids. 

 

Peptides are now being discovered with an affinity for abiotic materials by using a 

combinatorial library approach to screen for potential ‘hits’ [42].  Sequences have 

been identified that bind to metals (Au,Ag, Pt [43-47,56-59]), and oxides 

/semiconductors (ZnO, Cu2O,TiO2, SiO2, GaN and GaAs [48,49]). By using these 

peptides in combination with proteinaceous analytical reagents, immobilization on to 

surfaces of transducers and components of analytical systems becomes more 

efficient, without the need for complex chemistries or membranes.  For example, 

Borghei and Hall have reported on a BRET system between Red Fluorescent 

Protein (RFP) and luciferase [50] that gives a measurement for ATP.  When the 

protein is immobilized on ZnO, energy transfer from the luciferase to the RFP is 

improved, but immobilization of the protein needs to be directed.  Immobilisation to 

ZnO can be achieved with a His-tag, since the histidine shows an affinity towards 

Zn2+ binding, however Yokoo et al. [51] used a ZnO-binding peptide (ZnOBP, 

EAHVMHKVAPRP) [52] for immobilization of recombinant proteins on a ZnO 

substrate. Although GFP fused with ZnOBP could be weakly immobilized on NiO 

particles, no GFP-ZnOBP immobilization was observed on TiO2, SnO2, Fe2O3, or 

Al2O3. By comparing shortened binding sequences, the authors were able to identify 

that the binding was predominantly driven by an enthalpy change (ΔH) causing 

variation in Ka. They concluded that their results indicated that interaction between 



the peptide and ZnO surface was via electrostatic binding (At pH 7.5, the surface of 

ZnO, is positively charged). 

 

Titanium is another useful material for a biosensor surface. Nishida et al have used 

the peptide described by Sano et al. (RKLPDA: TBP-1 titanium-binding peptide-1) 

[53] to examine TBP-tagged DNA polymerase (TBP-POL) behaviour on SPR and 

FET devices [54]. Key residues in this peptide are considered to be the arginine in 

the first position and the aspartic acid at the fifth position which are proposed to point 

to the same face and interact with the -O‑  and -OH2
+  groups respectively, of the 

oxidized titanium. In the FET model examined, DNA extension was followed with the 

TBP-POL in the presence of DNA substrate and dNTPs and MgCl2. Later in 2005, 

Sano et al. [55] characterized the specificity of TBP-1 and discovered that it binds to 

Ti, Si and Ag, although mutated versions of it showed less binding activity towards 

the latter two elements. The finding identifies a general concern with all peptides’ 

capacity for binding specificity and suggests that considerable due diligence is 

required.  

 

4.4	Au	binding	peptide	

One challenge with antibody immobilisation is the orientation of the antibody such 

that its binding sites are available for analyte interaction. A key to this can be to use 

protein A or G which specifically recognise and bind the Fc portion of antibodies, so 

that orientation is guaranteed with the Fab sites away from the A or G interaction. 

Soh et al. [56] have proposed a gold binding peptide (AuBP) with three repeats of 

MHGKTQATSGTIOS for use with protein G whereas Ko et al. [57] created the 

AuBP-Protein A fusion with two repeats of the binding sequence, which showed a 

high affinity towards gold. Tamerler et al. have suggested that hydroxyl and amine 

groups in methionine, lysine, serine, threonine, glutamine are important for improving 



adhesion in gold binding peptides. [58] This provided a method for modification of Au 

nanoparticles, that could then be attached to a SPR gold chip at a density of 1x109 

particles/cm2 to offer an antibody immobilization surface.  With anti-Salmonella 

antibodies for detection of Salmonella typhimurium, the authors report a 10 fold 

improvement in detection, compared with classical SPR methodology. 

 

The GBP has also been used successfully in electrochemical biosensors with Au 

NP-anchored graphene sheets. Yang et al. used organophosphorus hydrolase 

(OPH) as a model enzyme. Key to this particular model system is the chemically 

modified graphene, which contains the Au NPs, increasing the electroactive area 

and facilitating electron transfer [59], but also providing an ordered binding point for 

the GBP (fused with OPH). Whereas the CD showed conformational changes for the 

OPH enzyme directly associated with the Au-graphene, the secondary structure of 

GBP-OPH after immobilization onto the surface of Au-graphene was quite similar to 

that of free GBP-OPH, indicating no conformational changes in GBP-OPH occur 

during immobilization and resulting in excellent catalytic and electrical properties. 

The GBP-OPH biosensor system was successfully demonstrated for the detection of 

paraoxon (2 to 20 mM) [60]. 

4.5	Si	binding	peptide	

Biosilification happens naturally in diatoms and sponges, but they adopt very 

different strategies. Diatoms use silaffins (R5 H2N-SSKKSGSYSGSKGSKRRIL-

COOH), which are small and heavily modified peptides. Sponges use silicatein, 

which is homologous to the cysteine protease cathepsin.   Both proteins act as 

structural templates and mechanistic catalysts for the biosilification reaction. [61] 

Recently, the R5 peptide from the diatom Cylindrotheca fusiformis has drawn 

substantial attention due to its outstanding activity in silica precipitation under mild 

conditions, and the option to generate genetic fusions of the R5 sequence with a 



protein of interest. Such protein-R5 fusions have great potential for immobilisation of 

proteins on silica, and thus, the development of biosensors. [62,63] 

 

Luckarift et al. [64] utilised free R5 peptide as a catalyst for biosilificatin of 

tetramethyl orthosilicate (TMOS), to create silica nanospheres entrapping the 

enzyme butyrylcholinesterase. After immbolisation, 90% of the initial free enzyme 

activity was retained, compared to 10% retention by using a conventional chemical 

silification method. Invitski et al. [65] adopted a similar method for glucose oxidase 

(GOx); they entrapped GOx within a conductive TMOS silica matrix, which was 

achieved by integrating single-walled carbon nanotubes into this biologically derived 

TMOS silica. Such a strategy not only allows simple integration into biodevices but 

also presents an opportunity to realise direct electron transfer. Oxidation and 

reduction peaks at an optimal potential close to that of the FAD/FADH2 of 

immobilised GOx were observed from the cyclic voltammetry, and the immobilised 

GOx was stable for a month without any lost of its enzymatic activity.  

 

Later on, genetically modified R5 with various functional proteins 

(phosphodiesterase (Pde), organophosphate hydrolase (Opd) and green fluorescent 

protein (GFP)) were created by Marner et al.. [66] It was suggested that the loading 

capacity of the silica formed by the fusion protein R5-Pde was improved 2 fold 

compared to the loading achieved by mixing of the free R5 and Pde moieties, and 

84% of the enzymatic activity was retained as well as its stability being enhanced 

after entrapment within the silica matrix. The morphology of the silica matrix can be 

controlled by the number repeats of the R5 units, For example, fusion of Opd with 

three repeats of R5 could produce smaller silica nanospheres (~ 200nm) compared 

to the matrix formed by one R5 (~ 500nm).  

 



Recently, the R5 tag has been used in the development of various sensors. Marshall 

et al. [67] created an in vivo biosilica-localised ribose sensor that depends on ligand-

binding and conformational change to drive FRET-based signalling capabilities. The 

sensor construct included a bacterial periplasmic ribose binding protein (RBP), 

flanked by the FRET pair CyPet and YPet, creating a CyPet-RBP-YPet (CRY) 

sensor cassette, which requires ribose binding and a conformation change by RBP 

to drive changes in FRET.  A silaffin tag was inserted upstream of CRY for 

localisation in the diatom silica. After transforming the silaffin-CRY sequence into a 

diatom species, T. pseudonana, ribose induced changes in FRET were observed in 

both living transformed cells and isolated biosilica cell walls.  In addition, Nam et al. 

[68] demonstrated silaffin peptides could be used as a signal enhancer for 

gravimetric biosensors. As a model system, a R5 tagged GFP was immobilised on a 

gold quartz crystal resonator for quartz crystal microbalances.  In this instance 

however, the R5 tag was of interest as a label and immobilisation used a self-

assembly monolayer with a histidine tag. A significant change in resonance 

frequency was observed when a solution of silicic acid was supplied onto the R5-

GPF immobilized surface. Nevertheless, this experiment demonstrates that the R5 

concept could be applied both as immobilisation tag or as label, the latter when the 

protein is tagged with R5, for example in a sandwich assay, and the R5 label is read 

by inducing biosilification when a silicic acid is applied, consequently increasing the 

mass and thus amplifying the signal.  

 

4.6 Ag binding peptide 

Silver is another metal that is of considerable interest in SPR sensing and 

fluorescent imaging. Naik et al. [43] discovered a silver binding peptide (AgBP) with 

the sequence NPSSLFRYLPSD through a combinatorial phage display peptide 

library and demonstrated the biosynthesis of silver nanoparticles from silver nitrate 

successfully. Zhang et al. [69] further explored the approach by adding chitosan to 



the peptide, forming a matrix. As a result, the size and the morphology of the silver 

nanoparticles are to a certain extent, controllable by the relative ratio of the chitosan 

and the peptide. The nanoparticles, however, remain largely polydisperse and non-

uniform in their shapes. Nonetheless, the ability to synthesise silver nanoparticles 

using a biocompatible method is particularly interesting in the field of in vitro 

fluorescent microscopy. Yu et al. [70] engineered another AgBP 

(HDCNKDKHDCNKDKHDCN) and used it to synthesize and stabilise clusters in the 

cell and obtained fluorescent microscopic images. 

 

4.7 Cu2O binding peptide 

Dai et al. [71] fused a CN225 sequence (RHTDGLRRIAAR) into a Trali1753 and 

obtained a DNA and Cu2O binding peptide with the ability to assemble Cu2O 

nanoparticles and further organize them into a loopy structure. The extraordinary 

aspect of this finding is the possibility to insert any inorganic binding motifs into 

several of the permissive sites of the TraIi protein and eventually obtain a 

multifunctional peptide that has the ability to selectively assemble different materials 

in solution. This poses great potential in electronic fabrication and sensing 

applications. 

4.8 Carbon Nanotube binding peptides 

Another material that is of great interest in electronics and electrochemistry is carbon 

nanotube (CNT). Wang et al. [72] synthesized two sequences B1 

(HWKHPSGAWDTL) and B3 (HWSAWSIRSNQS) that bind to CNT. The spatial 

clustering of aromatic and hydrophobic residues in the sequences achieves a folded 

conformation (one of the low-energy conformations). Such orientation helps the 

peptide stack on the surface of the nanotube. 

4.9 Au-Si binding peptide 

By fusing two peptides with inorganic binding capability together, it is possible to 



create an entire class of peptides that have great potential in material synthesis and 

fabrication. Hnilova et al. [73] fused a AuBP (WAGAKRLVLRRE) with a silica binding 

peptide (QBP) (PPPWLPYMPPWS) using a structural poly-glysine (GGG) spacer, 

resulting in two forms, AuBP-QBP and QBP-AuBP. Out of the two peptides, QBP-

AuBP exhibits great ability to control both the assembly and the synthesis of gold 

nanostructures on silica substrates. Nochomovitz et al. [74] created another one that 

binds to silica and gold with the sequence of MHGKTQATSGTIQS-GGG-

HPPMNASHPHMH. It was used to deposit gold colloids on oxidized silicon wafers. 

These multifunctional peptides offer better biocompatibility than conventional 

chemical immobilization methods. 

 

4.10 Au-C binding peptide 

Another example of a bifunctional peptide is one that binds to gold and carbon. The 

fusion is possible through repetitions of glysine as a linker. Cui et al. [75] first 

discovered a peptide with affinity to graphene (EPLQLKM), and then fused a gold 

binding peptide to it and created a bifunctional sequence (EPLQLKM-GGGG-

AYSSGAPPMPPF). Both the CNTBP and GrapheneBP are rich in aromatic residues 

that interact favorably with nanotubes and graphene surfaces via π-π interactions. 

The GrapheneBP, in contrast, has alternative hydrophobic and hydrophilic residues 

which fold to accommodate the planar graphene surfaces. Cui further demonstrated 

the application of the fused peptide by crafting a TNT sensor around it achieving 

ultrasensitivity. 



 

Figure 3: How to immobilize your protein: immobilization strategies using amino 

acids, peptides and proteins as the binding element. 

 

 



5.	Conclusions	

It has been seen in this review that by taking a biomimetic approach to 

immobilisation, couplings ranging from single amino acids and short polypeptide tags 

to larger binding proteins can be used to achieve a degree of order and stability on a 

biosensor surface (figure 3). Coupling strategies have invoked many binding and 

affinity mechanisms whose roots are in other fields.  For example, the immunoassay 

configuration of antibody-antigen also offers a coupling system for the antigen to 

sensor, via an intermediate antibody. Similarly, peptide sequences from nature with 

an affinity for a particular material can be used, for example the silaffin sequence 

that causes silica deposition, will bind to silica when it is part of a biosensor. 

So can an immobilization method be selected as a function of the type of protein, i.e. 

enzyme/ antibody/ binding protein etc.? At present the answer to this important 

question is probably not. The key criteria in the design process are the matching 

between the surface material of the sensor and the protein to be immobilised.  The 

front line decision is not whether it is an enzyme of antibody, but where the active 

site for analyte interaction is and whether molecular biology can be used to place the 

affinity sequence of choice in a position on that enzyme/antibody to optimise the 

transduction. The identification of new peptide sequences with affinity for different 

materials, many having potential as part of a transduction system in a biosensor 

configuration, and the opportunity to use protein engineering techniques to achieve 

this coupling, is propagating the use of ‘direct’ sensor-protein coupling with a fusion 

or tagged protein. 

However, in some tagging cases a chemical modification of the transducer surface is 

still required.  For example, the polyhistidine tag needs a surface that has been 

modified with a metal chelating agent, and loaded with metal ions, so that a surface 

can be presented with a divalent ion like Cu2+, Ni2+ etc.. Nevertheless, even in these 



examples, coupling to a surface like ZnS or ZnO2 offers enough coupling capacity 

with the histidine for a direct bonding. 

The potential advantages of the biomimetic interface approach, comes from the 

ability to design the orientation of the coupling and achieve it without further 

chemical modification of the protein and denaturation.  Depending on the particular 

immobilisation model, it can also bring the proteins closer to the transducer, which 

may improve coupling, for example with redox enzymes such as Cytochrome C, 

glucose oxidase and TMADH on electrodes, leading to faster electron transfer 

between enzyme and the electrode.  In these cases however, an enzyme specific 

design is probably required to maximise the coupling efficiency for each protein 

structure. 

In other cases, like the streptavidin-biotin coupling and the glutathione S-transferase 

(GST) linker a more generic solution applies, which has made these popular choices. 

These, and other binding proteins, such as maltose binding protein (MBP) and 

choline binding protein (CBP), are commonly employed in the development of 

techniques like SPR biosensing devices, where a reproducibly defined base layer 

can be used, together with many different analyte binding systems and the 

transduction method needs to respond to the binding event and not an electron 

transfer or other physicochemical event resulting in some change in state, that can 

only be detected through intimate contact with the transducer.  

Discoveries in peptide properties and development in nanotechnology have further 

linked the bridge of the interaction between biomolecule and the transducer. This 

offers new material properties and opportunities for the identification of proteins and 

peptides with some exquisite affinity or interaction that is likely to further build this 

immobilisation family in the future. 

 



5.	References	

[1] E.M.I.M. Ekanayake, D.M.G. Preethichandra, K. Kaneto, Polypyrrole 
nanotube array sensor for enhanced adsorption of glucose oxidase in glucose 
biosensors, Biosens. Bioelectron. 23 (2007) 107–113. 
doi:10.1016/j.bios.2007.03.022. 

[2] A.N. Sekretaryova, D. V. Vokhmyanina, T.O. Chulanova, E.E. Karyakina, A. 
A. Karyakin, Reagentless biosensor based on glucose oxidase wired by the 
mediator freely diffusing in enzyme containing membrane, Anal. Chem. 84 
(2012) 1220–1223. doi:10.1021/ac203056m. 

[3] O. Prakash, M. Talat, S.H. Hasan, R.K. Pandey, Enzymatic detection of 
mercuric ions in ground-water from vegetable wastes by immobilizing 
pumpkin (Cucumis melo) urease in calcium alginate beads, Bioresour. 
Technol. 99 (2008) 4524–4528. doi:10.1016/j.biortech.2007.08.073. 

[4] P. Luo, Y. Liu, G. Xie, X. Xiong, S. Deng, F. Song, Determination of serum 
alcohol using a disposable biosensor, Forensic Sci. Int. 179 (2008) 192–198. 
doi:10.1016/j.forsciint.2008.06.002. 

[5] S. Lin, X. Jiang, L. Wang, G. Li, L. Guo, Adsorption Orientation of Horse Heart 
Cytochrome c on a Bare Gold Electrode Hampers Its Electron Transfer, J. 
Phys. Chem. C. (2012) 637–642. doi:10.1021/jp2063782. 

[6] M.K. Beissenhirtz, F.W. Scheller, M.S. Viezzoli, F. Lisdat, Engineered 
superoxide dismutase monomers for superoxide biosensor applications., 
Anal. Chem. 78 (2006) 928–35. doi:10.1021/ac051465g. 

[7] F. Schröper, A. Baumann, A. Offenhäusser, D. Mayer, Bidirectional 
immobilization of affinity-tagged cytochrome c on electrode surfaces., Chem. 
Commun. 46 (2010) 5295–5297. doi:10.1039/c0cc00850h. 

[8] J.J. Davis, H.A.O. Hill, The scanning probe microscopy of metalloproteins and 
metalloenzymes., Chem. Commun. (2002) 393–401. doi:10.1039/b108128b. 

[9] C. Loechel, A. Basran, J. Basran, N.S. Scrutton, E. A. H. Hall, Using 
trimethylamine dehydrogenase in an enzyme linked amperometric electrode, 
Analyst. 128 (2003) 166–172. doi:10.1039/b211895e. 

[10] B. Huang, N. Jia, L. Chen, L. Tan, S. Yao, Electrochemical Impedance 
Spectroscopy Study on Polymerization of L-Lysine on Electrode Surface and 
Its Application for Immobilization and Detection of Suspension Cells, Anal. 
Chem. 86 (2014) 6940–6947. doi:10.1021/ac500753f. 

[11] L. Zhang, X.Q. Lin, A novel gamma-aminobutyric acid monolayer modified 
glassy carbon electrode for simultaneous determination of dopamine, uric acid 
and ascorbic acid, Chem. J. Chinese Univ. 24 (2003) 591–594.  

[12] X. Lin, Y. Li, Monolayer covalent modification of 5-hydroxytryptophan on 
glassy carbon electrodes for simultaneous determination of uric acid and 
ascorbic acid, Electrochim. Acta. 51 (2006) 5794–5801. 
doi:10.1016/j.electacta.2006.03.014. 



[13] W. Sun, Y. Zhang, X. Ju, G. Li, H. Gao, Z. Sun, Electrochemical 
deoxyribonucleic acid biosensor based on carboxyl functionalized graphene 
oxide and poly-l-lysine modified electrode for the detection of tlh gene 
sequence related to vibrio parahaemolyticus, Anal. Chim. Acta. 752 (2012) 
39–44. doi:10.1016/j.aca.2012.09.009. 

[14] J. Wang, S. Zhang, Y. Zhang, Fabrication of chronocoulometric DNA sensor 
based on gold nanoparticles/poly(l-lysine) modified glassy carbon electrode, 
Anal. Biochem. 396 (2010) 304–309. doi:10.1016/j.ab.2009.10.004. 

[15] L. Hua, X. Wu, R. Wang, Glucose sensor based on an electrochemical 
reduced graphene oxide-poly(l-lysine) composite film modified GC electrode, 
Analyst. 137 (2012) 5716. doi:10.1039/c2an35612k. 

[16] C. Shan, H. Yang, D. Han, Q. Zhang, A. Ivaska, L. Niu, Water-Soluble 
Graphene Covalently Functionalized by Biocompatible Poly- l -lysine, 
Langmuir. 25 (2009) 12030–12033. doi:10.1021/la903265p. 

[17] F. Schröper, A. Baumann, A. Offenhäusser, D. Mayer, Direct electrochemistry 
of novel affinity-tag immobilized recombinant horse heart cytochrome c, 
Biosens. Bioelectron. 34 (2012) 171–177. doi:10.1016/j.bios.2012.01.039. 

[18] J. Madoz-Gúrpide, J.M. Abad, J. Fernández-Recio, M. Vélez, L. Vázquez, C. 
Gómez-Moreno, et al., Modulation of electroenzymatic NADPH oxidation 
through oriented immobilization of ferredoxin:NADP+ reductase onto modified 
gold electrodes, J. Am. Chem. Soc. 122 (2000) 9808–9817. 
doi:10.1021/ja001365m. 

[19] S. Demin, E. A. H. Hall, Breaking the barrier to fast electron transfer, 
Bioelectrochemistry. 76 (2009) 19–27. doi:10.1016/j.bioelechem.2009.03.006. 

[20] E. Mikuła, M. Sulima, I. Marszałek, A. Wysłouch-Cieszyńska, P. Verwilst, W. 
Dehaen, et al., Oriented Immobilization of His-Tagged Protein on a Redox 
Active Thiol Derivative of DPTA-Cu(II) Layer Deposited on a Gold Electrode—
The Base of Electrochemical Biosensors, Sensors. 13 (2013) 11586–11602. 
doi:10.3390/s130911586. 

[21] M. Mielecki, J. Wojtasik, M. Zborowska, K. Kurzątkowska, K. Grzelak, W. 
Dehaen, et al., Oriented immobilization of His-tagged kinase RIO1 protein on 
redox active N-(IDA-like)-Cu(II) monolayer deposited on gold electrode—The 
base of electrochemical biosensor, Electrochim. Acta. 96 (2013) 147–154. 
doi:10.1016/j.electacta.2013.02.085. 

[22] Y. Tang, R. Mernaugh, X. Zeng, Nonregeneration protocol for surface 
plasmon resonance: study of high-affinity interaction with high-density 
biosensors, Anal Chem. 78 (2006) 1841–1848. doi:10.1021/ac051868g. 

[23] X. Duan, Y. Li, N.K. Rajan, D. Routenberg, Y. Modis, M. Reed, Quantification 
of the affinities and kinetics of protein interactions using silicon nanowire 
biosensors, Nat. Nanotechnol. 7 (2012) 401–407. doi:10.1038/nnano.2012.82. 

[24] S. Hutsell, R. Kimple, D. Siderovski, F. Willard, A. Kimple, High-Affinity 
Immobilization of Proteins Using Biotin- and GST-Based Coupling Strategies, 



in: N.J. Mol, M.J.E. Fischer (Eds.), Surf. Plasmon Reson. SE  - 4, Humana 
Press, 2010: pp. 75–90. doi:10.1007/978-1-60761-670-2_4. 

[25] S. Sueda, H. Tanaka, M. Yamagishi, A biotin-based protein tagging system, 
Anal. Biochem. 393 (2009) 189–195. doi:10.1016/j.ab.2009.06.027. 

[26] B.A. Skerra, T.O.M. Schmidt, Use of the Strep-Tag and Streptavidin for 
Detection and Purification of Recombinant Proteins, Methods Enzymol. 326 
(1999) 271–304. doi:10.1016/S0076-6879(00)26060-6. 

[27] P. Sehr, K. Zumbach, M. Pawlita, A generic capture ELISA for recombinant 
proteins fused to glutathione S-transferase: validation for HPV serology., J. 
Immunol. Methods. 253 (2001) 153–62. doi:10.1016/S0022-1759(01)00376-3. 

[28] V.G. Praig, E. A.H. Hall, Seeking connectivity between engineered proteins 
and transducers: connection for glutathione S-transferase fusion proteins on 
surface plasmon resonance devices, Anal. Chim. Acta. 500 (2003) 323–336. 
doi:10.1016/S0003-2670(03)00567-1. 

[29] M. Fehr, W.B. Frommer, S. Lalonde, Visualization of maltose uptake in living 
yeast cells by fluorescent nanosensors., Proc. Natl. Acad. Sci. U. S. A. 99 
(2002) 9846–51. doi:10.1073/pnas.142089199. 

[30] D.E. Benson, D.W. Conrad, R.M. de Lorimier, S. Trammell, H.W. Hellinga, 
Design of bioelectronic interfaces by exploiting hinge-bending motions in 
proteins., Science. 293 (2001) 1641–1644. doi:10.1126/science.1062461. 

[31] X. Duan, F. Quiocho, Structural Evidence for a Dominant Role of Nonpolar 
Interactions in the Binding of a Transport/Chemosensory Receptor to Its 
Highly Polar Ligands, Biochemistry. 41 (2002) 706–712. 
doi:10.1021/bi015784n. 

[32] X. Duan, J. Hall, H. Nikaido, F. Quiocho, Crystal structures of the 
maltodextrin/maltose-binding protein complexed with reduced 
oligosaccharides: flexibility of tertiary structure and ligand binding, J. Mol. Biol. 
306 (2001) 1115–1126. doi:10.1006/jmbi.2001.4456. 

[33] V.M. Hernandez-Rocamora, B. Maestro, Molla-Morales, J.M. Sanz, Rational 
stabilization of the C-LytA affinity tag by protein engineering, Protein Eng. 
Des. Sel. 21 (2008) 709–720. doi:10.1093/protein/gzn046. 

[34] J. Madoz, B. Kuznetzov, F.J. Medrano, J.L. Garcia, V.M. Fernandez, 
Functionalization of Gold Surfaces for Specific and Reversible Attachment of 
a Fused β-Galactosidase and Choline-Receptor Protein, J. Am. Chem. Soc. 
119 (1997) 1043–1051. doi:10.1021/ja963465r. 

[35] D. Bello-Gil, B. Maestro, J. Fonseca, J.M. Feliu, V. Climent, J.M. Sanz, 
Specific and Reversible Immobilization of Proteins Tagged to the Affinity 
Polypeptide C-LytA on Functionalized Graphite Electrodes, PLoS One. 9 
(2014) e87995. doi:10.1371/journal.pone.0087995. 

[36] H.J. Jin, S.H. Lee, T.H. Kim, J. Park, H.S. Song, T.H. Park, et al., 
Nanovesicle-based bioelectronic nose platform mimicking human olfactory 



signal transduction, Biosens. Bioelectron. 35 (2012) 335–341. 
doi:10.1016/j.bios.2012.03.012. 

[37] B. Zakeri, J.O. Fierer, E. Celik, E.C. Chittock, U. Schwarz-linek, V.T. Moy, 
Peptide tag forming a rapid covalent bond to a protein , through engineering a 
bacterial adhesin, 109 (2012). doi:10.1073/pnas.1115485109/-
/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1115485109. 

[38] L. Li, J.O. Fierer, T. A. Rapoport, M. Howarth, Structural Analysis and 
Optimization of the Covalent Association between SpyCatcher and a Peptide 
Tag, J. Mol. Biol. 426 (2014) 309–317. doi:10.1016/j.jmb.2013.10.021. 

[39] F. Sun, W.-B. Zhang, A. Mahdavi, F.H. Arnold, D. A. Tirrell, Synthesis of 
bioactive protein hydrogels by genetically encoded SpyTag-SpyCatcher 
chemistry, Proc. Natl. Acad. Sci. 111 (2014) 11269–11274. 
doi:10.1073/pnas.1401291111. 

[40] A.Y. Chen, Z. Deng, A.N. Billings, U.O.S. Seker, M.Y. Lu, R.J. Citorik, et al., 
Synthesis and patterning of tunable multiscale materials with engineered 
cells., Nat. Mater. 13 (2014) 515–23. doi:10.1038/nmat3912. 

[41] P.Q. Nguyen, Z. Botyanszki, P.K.R. Tay, N.S. Joshi, Programmable biofilm-
based materials from engineered curli nanofibres, Nat. Commun. 5 (2014) 
4945. doi:10.1038/ncomms5945. 

[42] S.R. Whaley, D.S. English, E.L. Hu, P.F. Barbara, A M. Belcher, Selection of 
peptides with semiconductor binding specificity for directed nanocrystal 
assembly., Nature. 405 (2000) 665–668. doi:10.1038/35015043. 

[43] R.R. Naik, S.J. Stringer, G. Agarwal, S.E. Jones, M.O. Stone, Biomimetic 
synthesis and patterning of silver nanoparticles., Nat. Mater. 1 (2002) 169–
172. doi:10.1038/nmat758. 

[44] S. Brown, Metal-recognition by repeating polypeptides., Nat. Biotechnol. 15 
(1997) 269–272. doi:10.1038/nbt0397-269. 

[45] M. Hnilova, E.E. Oren, U.O.S. Seker, B.R. Wilson, S. Collino, J.S. Evans, et 
al., Effect of molecular conformations on the adsorption behavior of gold-
binding peptides., Langmuir. 24 (2008) 12440–5. doi:10.1021/la801468c. 

[46] Y. Huang, C.Y. Chiang, S.K. Lee, Y. Gao, E.L. Hu, J. De Yoreo, et al., 
Programmable assembly of nanoarchitectures using genetically engineered 
viruses, Nano Lett. 5 (2005) 1429–1434. doi:10.1021/nl050795d. 

[47] U.O.S. Seker, B. Wilson, S. Dincer, I.W. Kim, E.E. Oren, J.S. Evans, et al., 
Adsorption behavior of linear and cyclic genetically engineered platinum 
binding peptides, Langmuir. 23 (2007) 7895–7900. doi:10.1021/la700446g. 

[48] C.K. Thai, H. Dai, M.S.R. Sastry, M. Sarikaya, D.T. Schwartz, F. Baneyx, 
Identification and characterization of Cu2O- and ZnO-binding polypeptides by 
Escherichia coli cell surface display: toward an understanding of metal oxide 
binding, Biotechnol. Bioeng. 87 (2004) 129–137. doi:10.1002/bit.20149. 



[49] E.E. Oren, C. Tamerler, D. Sahin, M. Hnilova, U.O.S. Seker, M. Sarikaya, et 
al., A novel knowledge-based approach to design inorganic-binding peptides, 
Bioinformatics. 23 (2007) 2816–2822. doi:10.1093/bioinformatics/btm436. 

[50] G. Borghei, E. A. H. Hall, BRET-linked ATP assay with luciferase, Analyst. 
139 (2014) 4185. doi:10.1039/C4AN00436A. 

[51] N. Yokoo, T. Togashi, M. Umetsu, K. Tsumoto, T. Hattori, T. Nakanishi, et al., 
Direct and selective immobilization of proteins by means of an inorganic 
material-binding peptide: Discussion on functionalization in the elongation to 
material-binding peptide, J. Phys. Chem. B. 114 (2010) 480–486. 
doi:10.1021/jp907731b. 

[52] M. Umetsu, M. Mizuta, K. Tsumoto, S. Ohara, S. Takami, H. Watanabe, et al., 
Bioassisted Room-Temperature Immobilization and Mineralization of Zinc 
Oxide—The Structural Ordering of ZnO Nanoparticles into a Flower-Type 
Morphology, Adv. Mater. 17 (2005) 2571–2575. 
doi:10.1002/adma.200500863. 

[53] K.-I. Sano, K. Shiba, A Hexapeptide Motif that Electrostatically Binds to the 
Surface of Titanium, J. Am. Chem. Soc. 125 (2003) 14234–14235. 
doi:10.1021/ja038414q. 

[54] H. Nishida, T. Kajisa, Y. Miyazawa, Y. Tabuse, T. Yoda, H. Takeyama, et al., 
Self-Oriented Immobilization of DNA Polymerase Tagged by Titanium-Binding 
Peptide Motif, Langmuir. 31 (2015) 732–740. doi:10.1021/la503094k. 

[55] K.I. Sano, H. Sasaki, K. Shiba, Specificity and biomineralization activities of 
Ti-binding peptide-1 (TBP-1), Langmuir. 21 (2005) 3090–3095. 
doi:10.1021/la047428m. 

[56] N. Soh, T. Tokuda, T. Watanabe, K. Mishima, T. Imato, T. Masadome, et al., 
A surface plasmon resonance immunosensor for detecting a dioxin precursor 
using a gold binding polypeptide, Talanta. 60 (2003) 733–745. 
doi:10.1016/S0039-9140(03)00139-5. 

[57] S. Ko, T.J. Park, H.S. Kim, J.H. Kim, Y.J. Cho, Directed self-assembly of gold 
binding polypeptide-protein A fusion proteins for development of gold 
nanoparticle-based SPR immunosensors, Biosens. Bioelectron. 24 (2009) 
2592–2597. doi:10.1016/j.bios.2009.01.030. 

[58] C. Tamerler, E.E. Oren, M. Duman, E. Venkatasubramanian, M. Sarikaya, 
Adsorption kinetics of an engineered gold binding Peptide by surface plasmon 
resonance spectroscopy and a quartz crystal microbalance., Langmuir. 22 
(2006) 7712–7718. doi:10.1021/la0606897. 

[59] C. Shan, H. Yang, D. Han, Q. Zhang, A. Ivaska, L. Niu, 
Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing, 
Biosens. Bioelectron. 25 (2010) 1070–1074. doi:10.1016/j.bios.2009.09.024. 

[60] M. Yang, B.G. Choi, T.J. Park, N.S. Heo, W.H. Hong, S.Y. Lee, Site-specific 
immobilization of gold binding polypeptide on gold nanoparticle-coated 
graphene sheet for biosensor application, Nanoscale. 3 (2011) 2950. 
doi:10.1039/c1nr10197h. 



[61] D. Otzen, The role of proteins in biosilicification., Scientifica (Cairo). 2012 
(2012) 867562. doi:10.6064/2012/867562. 

[62] I. Pamirsky, K. Golokhvast, Silaffins of Diatoms: From Applied Biotechnology 
to Biomedicine, Mar. Drugs. 11 (2013) 3155–3167. doi:10.3390/md11093155. 

[63] C.C. Lechner, C.F.W. Becker, A sequence-function analysis of the silica 
precipitating silaffin R5 peptide, J. Pept. Sci. 20 (2014) 152–158. 
doi:10.1002/psc.2577. 

[64] H.R. Luckarift, J.C. Spain, R.R. Naik, M.O. Stone, Enzyme immobilization in a 
biomimetic silica support, Nat. Biotechnol. 22 (2004) 211–213. 
doi:10.1038/nbt931. 

[65] D. Ivnitski, K. Artyushkova, R.A. Rincón, P. Atanassov, H.R. Luckarift, G.R. 
Johnson, Entrapment of Enzymes and Carbon Nanotubes in Biologically 
Synthesized Silica: Glucose Oxidase-Catalyzed Direct Electron Transfer, 
Small. 4 (2008) 357–364. doi:10.1002/smll.200700725. 

[66] W.D. Marner, A.S. Shaikh, S.J. Muller, J.D. Keasling, Enzyme Immobilization 
via Silaffin-Mediated Autoencapsulation in a Biosilica Support, (2009) 417–
423. doi:10.1002/bp.136. 

[67] K.E. Marshall, E.W. Robinson, S.M. Hengel, L. Paša-Tolić, G. Roesijadi, 
FRET Imaging of Diatoms Expressing a Biosilica-Localized Ribose Sensor, 
PLoS One. 7 (2012) e33771. doi:10.1371/journal.pone.0033771. 

[68] D.H. Nam, J.-O. Lee, B.-I. Sang, K. Won, Y.H. Kim, Silaffin Peptides as a 
Novel Signal Enhancer for Gravimetric Biosensors, Appl. Biochem. 
Biotechnol. 170 (2013) 25–31. doi:10.1007/s12010-013-0161-y. 

[69] Z. Xu, Y. Peng, Y. Wantai, C. Jinchun, The bio-inspired approach to 
controllable biomimetic synthesis of silver nanoparticles in organic matrix of 
chitosan and silver-binding peptide (NPSSLFRYLPSD), Mater. Sci. Eng. C. 28 
(2008) 237–242. doi:10.1016/j.msec.2006.12.007. 

[70] J. Yu, S.A. Patel, R.M. Dickson, In Vitro and Intracellular Production of 
Peptide-Encapsulated Fluorescent Silver Nanoclusters, Angew. Chemie. 119 
(2007) 2074–2076. doi:10.1002/ange.200604253. 

[71] H. Dai, W.S. Choe, C.K. Thai, M. Sarikaya, B. a. Traxler, F. Baneyx, et al., 
Nonequilibrium synthesis and assembly of hybrid inorganic-protein 
nanostructures using an engineered DNA binding protein, J. Am. Chem. Soc. 
127 (2005) 15637–15643. doi:10.1021/ja055499h. 

[72] S. Wang, E.S. Humphreys, S.-Y. Chung, D.F. Delduco, S.R. Lustig, H. Wang, 
et al., Peptides with selective affinity for carbon nanotubes., Nat. Mater. 2 
(2003) 196–200. doi:10.1038/nmat833. 

[73] M. Hnilova, D. Khatayevich, A. Carlson, E.E. Oren, C. Gresswell, S. Zheng, et 
al., Single-step fabrication of patterned gold film array by an engineered multi-
functional peptide, J. Colloid Interface Sci. 365 (2012) 97–102. 
doi:10.1016/j.jcis.2011.09.006. 



[74] R. Nochomovitz, M. Amit, M. Matmor, N. Ashkenasy, Bioassisted multi-
nanoparticle patterning using single-layer peptide templates., 
Nanotechnology. 21 (2010) 145305. doi:10.1088/0957-4484/21/14/145305. 

[75] Y. Cui, S.N. Kim, S.E. Jones, L.L. Wissler, R.R. Naik, M.C. McAlpine, 
Chemical functionalization of graphene enabled by phage displayed peptides, 
Nano Lett. 10 (2010) 4559–4565. doi:10.1021/nl102564d. 

 


