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Abstract— A new synthetic approach towards 1-alkoxy-2-aminoimidazolines that uses N-alkoxy-N-(2-aminoethyl)-2-
nitrobenzenesulfonamides as nucleophile reagents for the reaction with isothiocyanates is reported. Hence, the synthesis of 1-alkoxy-2-
aminoimidazolines was performed in high yield with a one pot procedure involving thiourea formation, nosyl group removal and 
spontaneous cyclization (42–77% overall yield).  
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 Our continuous effort in the search of new 
antitrypanosomal agents potentially useful against T. brucei 
rhodesiense,

1-3
 the protozoan parasite responsible for the 

acute form of sleeping sickness in sub-saharian Africa, led 
us to envisage the synthesis of compounds bearing 1-
alkoxy-2-aminoimidazolyl groups as potential prodrugs for 
the 2-aminoimidazoline cation. We previously showed that 
the ip administration of a bis(2-aminoimidazoline) 
derivative was able to cure two models of acute infection in 
mice i.e., T. b. brucei STIB 795 and T. b. rhodesiense 
STIB900.

3
  However, our lead compound (X = NH, Chart 

1) could not cure the late stage disease (i.e., with CNS 
involvement) probably due to a poor blood brain barrier 
(BBB) penetration caused by its dicationic nature.  
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In fact, this kind of guanidine compounds has very basic 

nitrogen atoms  (pKa = 9.9 for our lead compound)
4
 that 

are charged at physiological pH and as such potentially 

poorly liposoluble, leading to poor diffusion across the 

BBB. 
 Among the existing strategies to improve the 
pharmacokinetics of cationic compounds such as amidines 
or guanidines, the substitution of the basic N-atom with 
hydroxyl (or alkoxy group) or ester groups, affording less 
basic molecules that are not protonated at physiological pH, 
has been successfully applied to antimicrobials. In 
particular, the amidoxime prodrug strategy developed by 
Clement and co-workers

5
 and used by the group of Boykin 

and Tidwell to improve the oral bioavailablity of a series of 
2,5-bis(4-amidinophenyl)furan derivatives is a very 
promising approach

6-9
 that proved also useful for the CNS 

delivery of the diamidine antitrypanosomal agents DB844 
and DB289.

10-12
  

 Encouraged by this data, we considered the preparation 
of 1-alkoxy-2-aminoimidazoline derivatives that could 
work as potential prodrugs for the 2-aminoimidazoline 
group. Since our lead compounds (Chart 1) are easily 
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accessible via their Boc-protected precursors, obtained by 
reaction between primary diamines and N,N’-bis(tert-
butoxycarbonyl)imidazoline-2-thione/HgCl2/Et3N,

13
 we 

were especially interested in a methodology using the same 
commercially available aromatic amines as starting 
materials. However, and contrary to N-
hydroxyguanidines,

14-16
 only a few procedures for the 

preparation of 1-hydroxy-2-aminoimidazolines and their O-
alkyl derivatives could be found, mainly in the patent 
literature where no yields were reported (Equation 1).
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Results and discussion 

 None of the methods mentioned above resulted 
convenient for the preparation of our target compounds due 
in part to the difficulty to get the N-alkoxyethylenediamine 
precursors (2) easily and in high yields. For instance, 4a 
was obtained satisfactorily from 2-
bromoethylphthalimide/O-benzylhydroxylamine following 
the reported procedure,

20
 but several attempts to synthesise 

the corresponding methyl (4b) and ethyl (4c) analogues 
[RONH2.HCl (2 equiv)/ DIPEA (2 equiv)/ CH3CN, 80 ºC, 
2 days] resulted only in low yields (20%) of the product 
together with a major dione by-product (4d and 4e, 
respectively). This result is probably due to the unstability 
of 4b and 4c in the basic reaction medium, resulting in the 
intramolecular nucleophilic attack of the N-alkoxyamine at 
the phthalimide carbonyl group.
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 The fact that this rearrangement was not observed with 
4a is possibly due to steric factors with the bulkier benzyl 
group. The use of a base to deprotonate the hydrochloride 
salt of the alkoxylamine reagent in the reaction medium 
may also favour the rearrangement.

23
 

 We found that protecting the secondary amine with the 
2-nitrobenzenesulfonamide (Ns) group

24,25
 was a very 

convenient way to avoid the problem of rearrangement of 
4a and 4b through intramolecular cyclization. Thus, O-
alkyl-N-nosyl hydroxylamines 5a–8a were prepared easily, 
in good yields, by sulfonylation (NsCl/ pyridine/ CH2Cl2) 
of hydroxylamines 5, 6, 7

26
 and 8, respectively, followed 

by acidic workup and crystallization from acetone/hexane
27

 
(Scheme 1). 
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 The 2-nitrobenzenesulfonamides 5a–8a were alkylated 
at room temperature with 2-bromoethylphthalimide to give 
high yield of the corresponding 2-
nitrobenzenesulfonamides 5b–8b as colorless solids.

28
 In 

most cases, the products were obtained in sufficient purity 
(> 95 % by HPLC) by water-mediated precipitation from 
the reaction mixture.

29
 The phthalimide protecting group 

was removed easily by treatment with an excess of 
hydrazine monohydrate in EtOH affording 5c–8c.

30
 The 

non-optimized overall yield for the three step synthesis of 
the N-alkoxy-N-nosyl-2-aminoethane derivatives was pretty 
satisfying (ca. 60 %).  

 It should be noted that, upon storage as free base, these 
primary amines tend to rearrange to cyclic secondary 
amines (5d–8d) via an intramolecular process. This 
reaction presumably occurs either by direct intramolecular 
aromatic nucleophilic substitution of the nitro group or 
possibly through Smiles rearrangement followed by an 
annulation process with concomitant loss of nitrous 
acid.

31,32
 This drawback can be overcome simply if the 

reagent is stored as its phthalimide precursor 5b–8b and the 
amino group is deprotected immediately before use.  
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 Phenylisothiocyanate was chosen as a model compound 
to test this synthetic approach (Scheme 2). A screening of 
the reaction conditions for the condensation of 5c with 
phenylisothiocyanate showed that 1.5 equiv. of amine 5c 
were necessary whereas the addition of base (DIPEA), 
heating of the reaction or changing the solvent (THF, 
CH3CN, toluene) did not modify significantly the yield of 
the formation of 9. On the contrary, the dropwise addition 
of a dilute solution of the isothiocyanate to the amine was 
critical to avoid the formation of large amounts of 1,3-
diphenylthiourea by-product. 
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We were pleased to verify that there is no need to isolate 
the thiourea intermediate in order to complete this synthetic 
route. Indeed, after checking the complete formation of 9 
by HPLC–MS, the crude reaction mixture was treated with 
PhSH (5 equiv)/ K2CO3 (10 equiv)

33
 following Fukayamas’ 

protocol.
24

 In this way, 9 was converted directly to the 1-
methoxy-2-phenylaminoimidazoline product 11 via 
formation of the amine intermediate 10 (77% for 3 steps). 
This new protocol was validated with the synthesis of the 
target compounds 12–15 (scheme 3) in moderate to high 
yield (42

34
–74%).

35
 It should be noted that in this case, i.e. 

synthesis of symmetric bis-imidazolines, the last step 
required longer reaction time (ca. 3 days) in order to 
complete the cyclization of the amino-thiourea 
intermediate. Alternatively, heating the reaction vessel at 
65 ºC allowed the cyclization to occur in approximately 
4h.

36
 

12: R = Bn (74%)
13: R = Me (48%)
14: R = Et (42%)
15: R= THP (56%)
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 In summary, we have reported a new methodology that 
is very convenient for the synthesis of 1-alkoxy-2-
aminoimidazoline derivatives starting from N-alkoxy-N-(2-
aminoethyl)-2-nitrobenzenesulfonamides that are easily 
obtained in high yield in three steps from commercial 
hydroxylamines. This method proved practical for the one 
pot synthesis of mono- and bis(1-alkoxy-2-
arylamino)imidazolines in good yield (42–77% total yield 
from the starting isothiocyanate). 

Acknowledgments 

This work was supported by the “Proyecto Intramural 
Especial” grant 200680I121 from the CSIC (LN and AM) 
and the “Programa Nacional de Biomedicina” grant 

SAF2006–04698 from the Spanish “Ministerio de 
Educación y Ciencia”. 

References 

1. C. Dardonville and R. Brun, J. Med. Chem. 2004, 47, 2296-
2307. 

2. C. Dardonville, L. Nieto, F. Rodriguez, I. Rozas, M. Kaiser, 
R. Brun, B. Nguyen, W. D. Wilson and R. N. García, COST 
B22 Annual Congress on Drug Development for Parasitic 
Diseases, Dundee, 2007. 

3. C. Dardonville, M. P. Barrett, R. Brun, M. Kaiser, F. Tanious 
and W. D. Wilson, J. Med. Chem. 2006, 49, 3748-3752. 

4. G. K. Kinsella, F. Rodriguez, G. W. Watson and I. Rozas, 
Bioorg. Med. Chem. 2007, 15, 2850-2855. 

5. B. Clement, Drug Metab. Rev. 2002, 34, 565-579. 
6. M. A. Ismail, R. Brun, T. Wenzler, F. A. Tanious, W. D. 

Wilson and D. W. Boykin, Bioorg. Med. Chem. 2004, 12, 
5405-5413. 

7. M. A. Ismail, R. Brun, T. Wenzler, F. A. Tanious, W. D. 
Wilson and D. W. Boykin, J. Med. Chem. 2004, 47, 3658-
3664. 

8. S. M. Rahmathullah, J. E. Hall, B. C. Bender, D. R. 
McCurdy, R. R. Tidwell and D. W. Boykin, J. Med. Chem. 
1999, 42, 3994-4000. 

9. D. W. Boykin, A. Kumar, J. E. Hall, B. C. Bender and R. R. 
Tidwell, Bioorg. Med. Chem. Lett. 1996, 6, 3017-3020. 

10. L. M. Sturk, J. L. Brock, C. R. Bagnell, J. E. Hall and R. R. 
Tidwell, Acta Trop. 2004, 91, 131-143. 

11. L. Sturk, J. E. Hall, J. A. Holman, C. Kalvass and R. R. 
Tidwell, Drug Metab. Rev., 2003, 35, 39-39. 

12. M. N. C. Soeiro, E. M. De Souza, C. E. Stephens and D. W. 
Boykin, Expert Opin. Investig. Drugs 2005, 14, 957-972. 

13. C. Dardonville, P. Goya, I. Rozas, A. Alsasua, M. I. Martin 
and M. J. Borrego, Bioorg. Med. Chem. 2000, 8, 1567-1577. 

14. A. R. Katritzky, N. M. Khashab, S. Bobrov and M. Yoshioka, 
J. Org. Chem. 2006, 71, 6753-6758. 

15. N. I. Martin, J. J. Woodward and M. A. Marletta, Org. Lett. 
2006, 8, 4035-4038. 

16. P. G. Wang, M. Xian, X. Tang, X. Wu, Z. Wen, T. Cai and A. 
J. Janczuk, Chem. Rev. 2002, 102, 1091-1134. 

17. F. Jung, C. Delvare, D. Boucherot and A. Hamon, 
Tetrahedron Lett. 1989, 30, 2375-2378. 

18. Germany Pat., 2709720, 1978. 
19. S. B. Jonnalagadda, V. Choudary and A. K. Bhattacharya, J. 

Chem. Soc., Perkin Trans. 2 1983, 849 - 853. 
20. US Pat., 4244957, 1978. 
21. Brit. Pat., 2083475, 1981. 
22. A. Alanine, A. Bourson, B. Buttelmann, R. Gill, M. P. Heitz, 

V. Mutel, E. Pinard, G. Trube and R. Wyler, Bioorg. Med. 
Chem. Lett. 2003, 13, 3155-3159. 

23. O. Núñez, J. Rodríguez and L. Angulo, J. Phys. Org. Chem. 
1993, 7, 80-89. 

24. T. Fukuyama, C.-K. Jow and M. Cheung, Tetrahedron Lett. 
1995, 36, 6373-6374. 

25. T. Kan and T. Fukuyama, J. Syn. Org. Chem. Jpn 2001, 59, 
779-789. 

26. US Pat., US4604407, 1986. 
27. P. A. Reddy, O. F. Schall, J. R. Wheatley, L. O. Rosik, J. P. 

McClurg, G. R. Marshall and U. Slomczynska, Synthesis 
2001, 1086-1092. 

28. General procedure for the synthesis of 5b–8b. K2CO3 (709 
mg, 5.1 mmol, 2 equiv.) was added to a stirred solution of 
sulfonamide 5a–8a27 (2.57 mmol, 1 equiv.) and 2-
bromoethylphthalimide (718 mg, 2.8 mmol, 1.1 equiv.) in dry 



   4 

DMF (4 mL). The reaction was stirred 24h at room 
temperature and diluted with water (45 mL). The precipitate 
was collected by filtration, rinsed thoroughly with water and 
dried under high vacuum, affording the 5b–8b as colorless 
solids. Compound 5b: colourless solid (92%); mp 175.1–
176.7 ºC; δH(300 MHz; CDCl3) 8.0 (1H, dd, J 1.5 and 7.5 
Hz), 7.89–7.68 (6H, m), 7.56 (1H, dd, J 1.1 and 7.9), 3.99 
(3H, s), 3.93 (2H, t, J 5.6), 3.42 (2H, br); δC(75 MHz; CDCl3) 
168.0, 149.9, 135.1, 134.2, 132.3, 131.9, 130.9, 125.6, 123.8, 
123.5, 65.8, 51.1, 35.2; m/z 406.21 (M+H, 100%); Found: C, 
50.54; H, 3.80; N, 10.27; S, 8.02. C17H15N3O7S requires C, 
50.37; H, 3.73; N, 10.37; S, 7.91%. Compound 6b: colourless 
solid (95%); mp 141.5–142.1 ºC; δH(300 MHz; CDCl3) 8.02 
(1H, dd, J 1.5 and 7.5 Hz), 7.87–7.83 (2H, m), 7.78–7.71 (4H, 
m), 7.57 (1H, dd, 1.5 and 7.9), 4.26 (2H, q, J 7.2), 3.93 (2H, t, 
J 5.6), 3.46 (2H, br s), 1.28 (3H, t, J 7.2); δC(75 MHz; CDCl3) 
168.1, 149.8, 134.9, 134.1, 132.5, 131.9, 131.0, 125.8, 123.9, 
123.5, 74.2, 51.1, 35.4, 13.6; m/z 420.3 (M+H); Found: C, 
51.84; H, 4.31; N, 10.27; S, 7.86. C18H17N3O7S requires C, 
51.55; H, 4.09; N, 10.02; S, 7.65%. Compound 7b: colourless 
solid (98%); mp 122.1–123.9 ºC; δH(300 MHz; CDCl3) 8.05 
(1H, dd, J 1.3 and 7.7 Hz), 7.86–7.83 (2H, m), 7.77–7.69 (4H, 
m), 7.58 (1H, dd, J 1.3 and 7.7), 5.1 (1H, m), 4.20–3.65 (4H, 
m), 3.45 (1H, m, ½ AA’BB’), 3.25 (1H, m, ½ AA’BB’), 1.9–
1.3 (6H m); δC(75 MHz; CDCl3) 168.1 (2×CO), 149.4 (C-
NO2), 134.8 (CH), 133.9 (CH), 132.3 (CH), 132.1 (CH), 
127.3 (C-SO2), 123.9 (CH), 123.2 (CH), 106.1 (OCH), 63.8 
(OCH2), 51.4 (NCH2), 36.0 (NCH2), 28.8 (CH2), 24.8 (CH2), 
19.7 (CH2); m/z 476.34 (M+H); Found: C, 51.90; H, 4.32; N, 
9.06; S, 6.84. C21H21N3O8S·0.5 H2O requires C, 52.06; H, 
4.58; N, 8.67; S, 6.62%. Compound 8b: colourless solid 
(97%); mp 118.5–119.8 ºC; two conformers were observed by 
1H and 13C NMR in CDCl3 and DMSO–d6: δH(300 MHz; 
CDCl3) 8.01 (1H, dd, J 1.5 and 7.9 Hz), 7.89–7.83 (2H, m), 
7.78–7.72 (3H, m), 7.65 (1H, td, J 1.1 and 7.9), 7.57–7.53 
(3H, m), 7.43 (3H, m), 5.23 (2H, s), 4.11 (0.1 H, t, J 6.8, 
conformer A, minor), 3.86 (0.9 H, br t, J 5.3, conformer B, 
major), 3.62 (0.1 H, t, J 6.8, conformer A), 3.47 (0.9 H, br, 
conformer B); δC(75 MHz; CDCl3) 168.0 (CO), 149.8 (C-
NO2), 134.96 (C), 134.7 (CH), 134.1 (CH), 132.5 (CH), 131.9 
(C), 131.1 (CH), 129.9 (CH), 128.9 (CH), 128.6 (CH), 125.6 
(C), 123.8 (CH), 123.4 (CH), 80.5 (OCH2), 51.3 (CH2, 
conformer B), 39.1 (CH2, conformer A), 35.1 (CH2, 
conformer B), 28.0 (CH2, conformer A); m/z 482.28  (M+H); 
Found: C, 57.08; H, 4.06; N, 8.71; S, 6.47. C23H19N3O7S 
requires C, 57.37; H, 3.98; N, 8.73; S, 6.66%.  

29. In some experiments, a minor by-product (Scheme 1, 5b–8b: 

R1 = H) resulting from the cleavage of the alkoxyl group was 

observed. H.-G. H. Pablo Wessig, Liebigs Ann. Chem. 1991, 

1991, 983-986. 
30. Procedure for the deprotection of the Pht group: Excess 

(10 equiv) hydrazine monohydrate (25% in H2O) was added 
to a stirred suspension of the phthalimide derivative (1.4 
mmol) in EtOH (5 mL). The reaction, which became clear 
after ca. 20 min, was stirred at room temperature overnight. 
The precipitate was filtered off and rinsed with EtOH. The 
filtrate was concentrated to dryness and the resulting solid 
was taken up in CH2Cl2. The unsoluble white floculent solid 
(2,3-dihydrophthalazine-1,4-dione) was filtered off and the 
filtrate evaporated under vacuum to afford the crude amine as 
a yellowish oil that solidified on standing. The amine was 
dried under vacuum and used directly in the reaction with 
isothiocyanates in order to avoid the formation of the cyclic 
dione by-product upon standing. Compound 5c: yellowish 
oil (97 %); δH (300 MHz, CDCl3) 8.03 (1H, dd, J 1.5 and 7.9 
Hz, Ar, o-NO2), 7.79 (1H, td, J 1.5 and 7.9, Ar, p-NO2), 7.71 
(1H, td, J 1.5 and 7.9, Ar, p-SO2), 7.57 (1H, dd, J 1.5 and 7.9, 

Ar, o-SO2), 3.87 (3H, s, OCH3), 3.14 (2H, t, J 5.6, NCH2), 
2.95 (2H, t, J 5.6, CH2NH2), 1.60 (2H, br, NH2); δC(75 MHz, 
CDCl3) 149.8 (C-NO2), 134.9 (CH, p-NO2), 132.4 (CH, o-
NO2), 130.9 (CH, p-SO2), 125.7 (C-SO2), 123.6 (CH, o-SO2), 
65.6 (CH3), 56.3 (NCH2), 39.1 (CH2NH2); m/z 276.19 (M+H, 
100%). Compound 6c: yellowish oil (81%); δH(300 MHz; 
CDCl3) 8.04 (1H, dd, J 1.1 and 7.9 Hz, Ar), 7.77 (1H, ddd, J 
1.5, 7.9 and 7.5, Ar), 7.72 (1H, ddd, J 1.5, 7.9 and 7.5, Ar), 
7.57 (1H, dd, J 1.1 and 7.9, Ar), 4.15 (2H, t, J 7.2, OCH2), 
4.10 (2H, m, NCH2), 3.2 (2H, br, NH2), 2.93 (2H, t, J 5.7, 
CH2NH2), 1.23 (3H, t, J 7.2, CH3); δC(75 MH; CDCl3) 149.8, 
146.6, 134.9, 132.5, 130.9, 123.7, 73.9, 56.5, 39.2, 13.5; m/z 
(ES+) 290.2 (M+H, 100%). Compound 7c: yellowish oil (84 
%); δH (300 MHz, CDCl3) 8.02 (1H, dd, J 1.3 and 7.7 Hz, 
Ar), 7.79 (1H, td, J 1.3 and 7.7, Ar), 7.71 (1H, td, J 1.3 and 
7.7, Ar), 7.58 ( 1H, dd, J 1.3 and 7.7, Ar), 5.29 (2H, s, NH2), 
5.16–5.13 (1H, br s, OCH), 3.93 (1H, ½ AA’BB’), 3.64–3.46 
(2H, m), 3.1–3.0 (1H, m), 2.88–2.79 (2H, m), 1.91–1.53 (6H, 
m) ; δC(75 MHz, CDCl3) 150.0 (C-NO2), 135.4 (CH, p-NO2), 
132.9 (CH, o-NO2), 131.4 (CH, p-SO2), 126.8 (C-SO2), 124.2 
(CH, o-SO2), 106.0 (OCH), 65.1 (OCH2), 57.0 (NCH2), 39.2 
(CH2NH2), 29.3 (OCHCH2), 25.4 (OCH2CH2), 20.8 
(CH2CH2CH2); m/z 346.11 (M+H, 100%). Compound 8c: 
yellowish oil (76%); δH (300 MHz, CDCl3) 8. 03 (1H, d, J 7.8 
Hz), 7.76 (1H, dd, J 1.9 and 7.8), 7.66 (1H, t, J 7.8), 7.60–
7.51 (1H, m), 7.46–7.38 (5H, m), 5.09 (2H, s), 3.15 (2H, br 
m), 2.75 (2H, t, J 5.9), 1.48 (2H, br, NH2); δC(125 MHz, 
CDCl3) 149.8 (C-NO2), 134.9 (C, Ar), 134.6 (C-SO2), 132.6 
(CH, Ar, p-NO2), 130.9 (CH, Ar, o-NO2), 130.1 (CH, Ar, p-
SO2), 129.2 (CH, Ar), 128.7 (CH, Ar), 123.7 (CH, Ar, o-
SO2), 80.1 (OCH2), 56.6 (NCH2), 39.0 (CH2NH2); m/z 352.31  
(M+H, 100%). 

31. J. F. Burnett and R. E. Zahler, Chem. Rev. 1951, 49, 273-412. 
32. C. Ma, Q. Zhang, K. Ding, L. Xin and D. Zhang, Tetrahedron 

Lett. 2007, 48, 7476-7479. 
33. S. L. Hussey and B. R. Peterson, J. Am. Chem. Soc. 2002, 

124, 6265-6273. 
34. The lower yield obtained with 14 was due in part to handling 

problems during the work up of the reaction.  
35. General method for the one-pot synthesis of 1-alkoxy-2-

arylaminoimidazolines. A solution of phenylisothiocyanate 
(0.4 mmol, 1 equiv) in dry DMF (2 mL) was added dropwise 
to a stirred solution of amine (1.25 equiv/0.5 mmol, or 2.5 
equiv/1 mmol for the reaction with diamines) in dry DMF (5 
mL) under an argon atmosphere. The resulting solution was 
stirred at room temperature until the starting material was 
consumed. Formation of the thiourea intermediate was 
checked by TLC and HPLC-MS. The deprotection-
cyclization step was carried out by adding successively PhSH 
(5 equiv / nosyl group) and K2CO3 (10 equiv. / nosyl group) 
to the crude reaction. The resulting mixture was stirred at 
room temperature (typically 36h) checking the total 
disappearance of the starting material and the cyclization of 
the thiourea intermediate to the 1-alkoxy-2-imidazoline 
product by HPLC. In some cases, the cyclization step 
required mild heating (65ºC) during a few hours to go to 
completion. The solvent was removed in vacuo and the crude 
residue was dissolved in CH2Cl2 and washed successively 
with saturated NaHCO3 solution (2×) and brine. The organic 
extracts were dried (MgSO4) and evaporated in vacuo. The 
crude product was purified by silica chromatography with 
CH2Cl2/MeOH–NH3sat Compound 12: brownish amorphous 
solid (148 mg, 74%); mp > 93 ºC; δH (300 MHz, CDCl3) 
7.47–7.30 (10H, m, Ar), 7.09 (4H, d, J 8.5 Hz, Ar), 6.92 (4H, 
d, J 8.5, Ar), 6.57 (1H, s, NH), 5.29 (2H, br s, NH), 4.94 (4H, 
s, OCH2), 3.45 (4H, br t, J 7.2), 3.25 (4H, br t, J 7.2); δC(75 
MHz, CDCl3) 159.5 (C=N), 140.3 (C), 136.3 (C), 129.6 (CH), 
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128.8 (CH), 128.7 (CH), 122.3 (CH), 118.2 (CH), 78.2 
(OCH2), 52.7 (NCH2), 45.8 (NCH2); m/z 548.52 (M+H); 
HPLC: 93%; Found: C, 65.21; H, 6.38; N, 
16.21.C32H33N7O2·2.3 H2O requires C, 65.18; H, 6.44; N, 
16.63. Compound 13: brownish amorphous solid (174 mg, 
48%); mp 103–105 ºC; δH (300 MHz, CD3OD) 7.01 (4H, d, J 
8.7 Hz, Ar), 6.88 (4H, d, J 8.7, Ar), 3.67 (6H, s, OCH3), 3.32 
(4H, m), 3.2 (4H, M); δC(75 MHz, CD3OD) 160.4 (C=N), 
140.5 (C), 135.3 (C), 122.5 (CH), 117.9 (CH), 62.2 (CH3), 
51.1 (CH2), 43.7 (CH2); m/z 396.4 (M+H); HPLC: 98%. 
Compound 14: brownish solid (83 mg, 42%); mp 78–82 ºC; 
δH (300 MHz, DMSO–d6) 7.99 (1H, br s, NH), 7.34 (4H, d, J 
8.7 Hz, Ar), 6.96 (4H, d, J 8.7, Ar), 3.98 (4H, q, J 7), 3.5–3.4 
(8H, m), 1.23 (6H, t, J 7); δC(75 MHz, DMSO–d6) 159.1 
(C=N), 139.8 (C), 133.0 (C), 122.3 (CH), 117.2 (CH), 70.4 

(CH2), 52.0 (CH2), 44.5 (br, CH2), 13.8 (CH3); m/z 424 
(M+H); HPLC: 97%. Compound 15: brownish amorphous 
solid (47 mg, 56%); mp > 80 ºC; δH (300 MHz, CDCl3) 7.33 
(4H, d, J 8.7 Hz, Ar), 6.94 (4H, d, J 8.7, Ar), 5.55 (1H, br s, 
NH), 5.28 (2H, s, NH), 4.86 (2H, br m, OCH), 4.13 (2H, m, 
OCH2), 3.75–3.55 (8H, m, NCH2CH2N+OCH2), 3.30 (2H, d, 
J 8.3, CH2N), 1.89–1.81 (4H, m), 1.57 (8H, br m); δC(75 
MHz, CDCl3) 159.6 (C=N), 138.6 (C), 133.6 (C), 119.8 (CH), 
118.4 (CH), 104.6 (OCH), 65.8 (OCH2), 53.9 (NCH2), 49.2 
(NCH2), 29.3 (CH2), 24.8 (CH2), 21.4 (CH2); m/z 536.51 
(M+H); HPLC: 93%. 

36. In this case, the reaction should be carefully monitored (i.e., 
avoid high temperature and prolonged reaction times) to 
avoid the formation of dealkylation products. 

 

 


