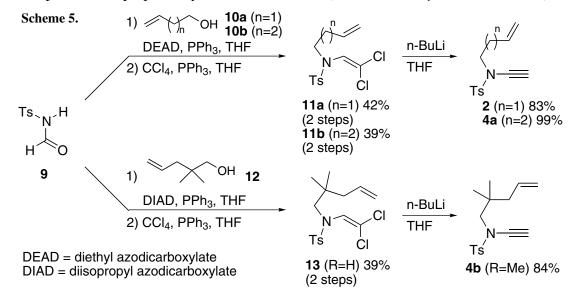
Supporting Information

Synthesis of Cyclic Dienamide Using Ruthenium-Catalyzed Ring-Closing Metathesis of Ene-Ynamide

Nozomi Saito, Yukako Sato, and Miwako Mori*


Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan

General

The metathesis reactions were carried out under an ethylene atmosphere (1 atm) unless otherwise mentioned, and all the reaction solutions were degassed through freeze-pump-thaw cycle. Ethylene gas was purified by passing through the aqueous CuCl solution (2 g of CuCl in 180 ml of sat. NH_4Cl aq.) and conc. H_2SO_4 and then KOH tube. Solvents were distilled under an argon atmosphere from sodium benzophenone ketyl (toluene) or CaH₂ (CH₂Cl₂).

Procedure for the Synthesis of $\underline{2}$ and $\underline{4}$ (Scheme 5)

These coumpouds were prepared by Brückner's method (Brückner, D. Synlett 2000, 1402.).

Ene-Enamide (<u>11a</u>). To a solution of **9** (2.9 g, 14 mmol) in THF (29 ml) were added PPh₃ (4.9 g, 19 mmol), **10a** (1.5 ml, 17 mmol) and DEAD (2.7 ml, 17 mmol) at 0 °C, and the mixture was stirred at rt for 14 h. After the solvent was evaporated, the residue was purified by short column chromatography on silica gel (hexane/AcOEt=10/1) to give inseparable mixture of *N*-alkylated product and *O*-alkylated product (2.9 g, in the ratio of 1.3:1). To a solution of the above mixture (2.9 g) in THF (38 ml) were added PPh₃ (9.0 g, 35 mmol) and CCl₄ (11 ml, 115 mmol) at rt, and the mixture was stirred at 60 °C for 6 h. To the mixture was added saturated NaHCO₃ aq., and the aqueous layer was extracted with Et₂O. The organic layer was washed with saturated NaCl aq., dried over Na₂SO₄, and concentrated. The residue was purified by flash column chromatography on silica gel (hexan/AcOEt-20/1) to give **11a** (1.9 g, 42 %, 2 steps) as a colorless solid. mp. 53~55 °C;

IR (nujol) 1642, 1597, 1357, 1165 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.28 (dt, *J* = 6.8, 7.3 Hz, 2 H), 2.44 (s, 3 H), 3.41 (t, *J* = 7.3 Hz, 2 H), 5.05 (d, *J* = 10.2 Hz, 1 H), 5.08 (d, *J* = 17.0 Hz, 1 H), 5.70 (ddt, *J* = 17.0, 10.2, 6.8 Hz, 1 H), 6.31 (s, 1 H), 7.32 (d, *J* = 8.1 Hz, 2 H), 7.68 (d, *J* = 8.1 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 21.6, 32.9, 48.5, 117.4, 124.1, 124.7, 127.1, 129.7, 133.9, 135.3, 144.0; EI-LRMS *m*/*z* 319 (M⁺), 278, 223, 164, 155, 91; EI-HRMS calcd for C₁₃H₁₅NO₂S³⁵Cl₂ 319.0200, found 319.0190.

Ene-Ynamide (2). To a solution of **11a** (150 mg, 0.47 mmol) in THF (2.3 ml) was added BuLi (1.66 M solution in hexane, 0.62 ml, 1.0 mmol) at -78 °C, and the mixture was warmed to -40 °C over 1 h. To the mixture was added MeOH (95 μ l), and the mixture was diluted with Et₂O. The organic layer was washed with saturated NaCl aq., dried over Na₂SO₄, and concentrated. The residue was purified by flash column chromatography on silica gel (hexane/Et₂O/Et₃N=100/5/1) to give 2 (97 mg, 83 %) as a colorless oil. IR (nujol) 3260, 2150, 1374, 1167 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 2.40 (dt, *J* = 7.3, 7.6 Hz, 2 H), 2.46 (s, 3 H), 2.75 (s, 1 H), 3.38 (t, *J* = 7.6 Hz, 2 H), 5.05 (d, *J* = 10.2 Hz, 1 H), 5.10 (d, *J* = 17.3 Hz, 1 H), 5.71 (ddt, *J* = 17.3, 10.2, 7.6 Hz, 1 H), 7.35 (d, *J* = 8.4 Hz, 2 H), 7.81 (d, *J* = 8.4 Hz, 2 H); ¹³C NMR (67.5 MHz, CDCl₃) δ 21.6, 32.0, 50.5, 59.4, 75.9, 117.8, 127.6, 129.8, 133.4, 134.6, 144.7; EI-LRMS *m/z* 248 (M⁺-H), 184, 155, 96, 55; EI-HRMS calcd for C₁₃H₁₄O₂NS (M⁺-H) 248.0745, found 248.0736.

Ene-Enamide (<u>11b</u>). A crude product, which was obtained from **9** (3.0 g, 14 mmol), PPh₃ (5.1 g, 20 mmol), **10b** (2.0 ml, 19 mmol) and DEAD (2.8 ml, 18 mmol), was purified by short column chromatography on silica gel (hexane/AcOEt=10/1) to give inseparable mixture of *N*-alkylated product and *O*-alkylated product (3.0 g, in the ratio of 1.8:1). To a solution of the above mixture (3.0 g) in THF (38 ml) were added PPh₃ (8.9 g, 34 mmol) and CCl₄ (11 ml, 115 mmol) at rt, and the mixture was stirred at 60 °C for 22 h. To the mixture was added saturated NaHCO₃ aq., and the aqueous layer was extracted with Et₂O. The organic layer was washed with saturated NaCl aq., dried over Na₂SO₄, and concentrated. The residue was purified by flash column chromatography on silica gel (hexan/AcOEt-20/1) to give **11b** (2.0 g, 39 %, 2 steps) as a colorless solid. mp. 73~75 °C; IR (nujol) 1638, 1597, 1351, 1161 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.62 (tt, *J* = 7.4, 7.4 Hz, 2 H), 2.08 (dt, *J* = 6.8, 7.4 Hz, 2 H), 2.44 (s, 3 H), 3.32 (t, *J* = 7.4 Hz, 2 H), 4.99 (d, *J* = 10.2 Hz, 1 H), 5.02 (d, *J* = 16.9 Hz, 1 H), 5.75 (ddt, *J* = 16.9, 10.2, 6.8 Hz, 1 H), 6.26 (s, 3 H), 7.32 (d, *J* = 8.1 Hz, 2 H), 7.68 (d, *J* = 8.1 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 21.5, 27.5, 30.5, 48.6, 115.3, 124.6, 124.7, 127.0, 129.7, 135.0, 136.9, 144.0; EI-LRMS *m/z* 333 (M⁺), 318, 298, 278, 237, 178, 91; EI-HRMS calcd for C₁₄H₁₇NO₂S³⁵Cl₂ 333.0357, found 333.0354.

Ene-Ynamide (<u>4a</u>). In a similar manner to that for the synthesis of **2** from **11a**, **4a** (262 mg, 99%) was synthesized from **11b** (347 mg, 1.0 mmol) and BuLi (1.66 M solution in hexane, 1.4 ml, 2.3 mmol). IR (neat) 3297, 2132, 1641, 1597, 1364, 1169 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.75 (tt, J = 7.2, 7.2 Hz, 2 H), 2.09 (dt, J = 6.6, 7.2 Hz, 2 H), 2.45 (s, 3 H), 2.73 (s, 1 H), 3.31 (t, J = 7.2 Hz, 2 H), 4.99 (d, J = 10.1 Hz, 1 H), 5.02 (d, J = 16.9 Hz, 1 H), 5.75 (ddt, J = 16.9, 10.1, 6.6 Hz, 1 H), 7.35 (d, J = 8.3 Hz, 2 H), 7.80 (d, J = 8.3 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 21.6, 26.8, 30.2, 50.6, 59.1, 75.9, 115.5, 127.4, 129.6, 134.3, 136.8, 144.6; FAB-LRMS m/z 264 (M⁺+H),237, 198, 155, 108, 91; FAB-HRMS calcd for C₁₄H₁₈NO₂S 264.1058 (M⁺+H), found 264.1034

Ene-Ynamide (<u>13</u>). To a solution of **9** (1.6 g, 8.0 mmol) in THF (26 ml) were added PPh₃ (2.5 g, 20 mmol), **12** (1.1 g, 9.6 mmol) and DIAD (1.9 ml, 9.7 mmol) at 0 °C, and the mixture was stirred at 50 °C for 16 h. After the solvent was evaporated, the residue was purified by short column chromatography on silica gel (hexane/AcOEt=10/1) to give inseparable mixture of *N*-alkylated product and *O*-alkylated product (1.5 g, in the ratio of 1:1.4). To a solution of the above mixture (1.5 g) in THF (17 ml) were added PPh₃ (1.0 g, 15 mmol) and CCl₄ (4.9 ml, 51 mmol) at rt, and the mixture was stirred at 60 °C for 24 h. To the mixture was added saturated NaHCO₃ aq., and the aqueous layer was extracted with Et₂O. The organic layer was washed with saturated NaCl aq., dried over Na₂SO₄, and concentrated. The residue was purified by flash column chromatography on silica gel (hexan/AcOEt-20/1) to give **13** (675 mg, 23 %, 2 steps) as a colorless oil. IR (nujol) 1638, 1598, 1358, 1168 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.94 (s, 6 H), 2.03 (d, *J* = 7.3 Hz, 2 H), 2.44 (s, 3 H), 3.02 (s, 2 H), 5.02 (d, *J* = 16.9 Hz, 1 H), 5.05 (d, *J* = 9.2 Hz, 1 H), 5.77 (ddt, *J* = 16.9, 9.2, 7.3 Hz, 1 H), 7.32 (d, *J* = 8.1 Hz, 2 H), 7.65 (d, *J* = 8.1 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 21.5, 25.3, 35.4, 44.6, 59.8, 117.7, 127.2, 127.3, 127.7, 129.7, 134.1, 135.1, 143.9.

Ene-Ynamide (<u>4b</u>): In a similar manner to that for the synthesis of 2 from 11a, 4b (247 mg, 84%)

was synthesized from **13** (366 mg, 1.0 mmol) and BuLi (1.66 M solution in hexane, 1.4 ml, 2.3 mmol). IR (neat) 3302, 2134, 1638, 1597, 1367, 1170 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.01 (s, 6 H), 2.10 (d, *J* = 7.5 Hz, 2 H), 2.23 (s, 3 H), 2.68 (s, 1 H), 3.13 (s, 2 H), 5.03 (d, *J* = 10.3 Hz, 1 H), 5.04 (d, *J* = 16.9 Hz, 1 H), 5.81 (ddt, *J* = 16.9, 10.3, 7.5 Hz, 1 H), 7.35 (d, *J* = 8.2 Hz, 2 H), 7.79 (d, *J* = 8.2 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 21.7, 25.1, 35.9, 44.4, 58.3, 61.6, 78.6, 117.9, 127.6, 129.5, 135.1, 134.2, 144.6; EI-LRMS *m*/*z* 291 (M⁺), 290, 276, 262, 250, 155, 136, 91; EI-HRMS calcd for C₁₆H₂₁NO₂S 291.1293, found 291.1287.

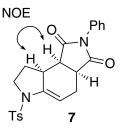
Typical Procedure for the RCM of <u>2</u> in the presence of <u>1b</u> under Ethylene Gas (Table 1, run 3).

A solution of **2** (91.5 mg, 0.37 mmol) and **1b** (15.6 mg, 0.018 mmol) in degassed-toluene was refluxed for 15 min under ethylene gas (1 atm). After the reaction mixture was cooled to room temperature, a few drops of ethyl vinyl ether was added to the mixture. After the solvent was removed under reduced pressure, the residue was purified by flash column chromatography on silica gel (hexane/Et₂O/Et₃N=100/5/1) to give **3** (76.2 mg, 83% yield) as a colorless oil.

Spectral Data of RCM products

<u>3</u>: IR (neat) 1647, 1589, 1343, 1147 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 2.10 (ddd, J = 8.4, 8.4, 3.0 Hz, 2 H), 2.40 (s, 3 H), 3.77 (dd, J = 8.4, 8.4 Hz, 2 H), 5.20 (d, J = 10.8 Hz, 1 H), 5.35 (dd, J = 3.0, 3.0 Hz, 1 H), 5.53 (d, J = 17.6 Hz, 1 H), 6.60 (dd, J = 17.6, 10.8 Hz, 1 H), 7.26 (d, J = 8.4 Hz, 2 H), 7.64 (d, J = 8.4 Hz, 2 H); ¹³C NMR (67.5 MHz, CDCl₃) δ 21.5, 27.5, 50.5, 103.9, 113.5, 117.0, 127.9, 128.8, 129.5, 133.9, 143.6; EI-LRMS m/z 249 (M⁺), 184, 155, 91, 55; EI-HRMS calcd for C₁₃H₁₅NO₂S 249.0823, found 149.0831.

<u>5a</u>: IR (neat) 1654, 1343, 1161 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.20-1.30 (m, 2 H), 1.90-1.97 (m, 2 H), 2.42 (s, 3 H), 3.58-3.63 (m, 2 H), 5.04 (d, J = 10.7 Hz, 1 H), 5.39 (d, J = 17.2 Hz, 1 H), 5.50 (dd, J = 4.0, 4.0 Hz, 1 H), 6.51 (dd, J = 17.2, 10.6 Hz, 1 Hz), 7.27 (d, J = 8.5 Hz, 2 H), 7.63 (d, J = 8.5 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 19.9, 21.6, 22.8, 46.4, 112.8, 116.0, 127.2, 129.4, 136.4, 136.5, 137.6, 143.3; EI-LRMS *m/z* 263 (M⁺), 198, 155, 108, 91; EI-HRMS calcd for C₁₄H₁₇NO₂S 263.0980, found 263.0965.


<u>5b</u>: IR (neat) 1635, 1598, 1349, 1163 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.93 (s, 6 H), 1.83 (d, J = 3.8 Hz, 2 H), 2,41 (s, 3 H), 3.34 (s, 2 H), 4.98 (d, J = 10.6 Hz, 1 H), 5.13 (t, J = 3.8 Hz, 1 H), 5.32 (d, J = 16.9 Hz, 1 H), 6.47 (dd, J = 16.9, 10.6 Hz, 1 H), 7.26 (d, J = 8.0 Hz, 2 H), 7.68 (d, J = 8.0 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 21.5, 26.4, 29.5, 37.5, 56.9, 110.0, 114.3, 127.0, 129.4, 134.3, 136.4, 138.2, 143.0; EI-LRMS *m/z* 291 (M⁺), 276, 262, 248, 155, 136, 91; EI-HRMS calcd for C₁₆H₂₁NO₂S 291.1293, found 291.1289.

Spectral Data of Diels-Alder Products

<u>6a</u>: IR (neat) 1733, 1646, 1597, 1359, 1163 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.65 (dddd, J = 11.8, 11.8, 11.3, 8.2 Hz, 1 H), 2.15 (ddd, J = 11.8, 6.0, 6.0 Hz, 1 H), 2.43 (s, 3 H), 2.94 (m, 1 H), 3.08 (ddd, J = 22.5, 11.3, 2.2 Hz, 1 H), 3.24 (ddd, J = 22.5, 7.0, 5.6 Hz, 1 H), 3.35 (ddd, J = 10.0, 6.0, 6.0 Hz, 1 H), 3.75 (s, 3 H), 3.76 (s, 3 H), 3.79 (dd, J = 9.9, 8.2 Hz, 1 H), 5.79 (dd, J = 5.1, 2.5, 2.5 Hz, 1 H), 7.29 (d, J = 8.2 Hz, 2 H), 7.69 (d, J = 8.2 Hz, 2 H); ¹³C NMR (67.5 Hz, CDCl₃) δ 21.6, 27.3, 28.8, 39.5, 48.9, 52.3, 52.4, 101.4, 127.2, 133.4, 134.3, 134.7, 136.4, 144.1, 167.3, 167.4; EI-LRMS m/z 391, 236, 159, 91; EI-HRMS calcd for C₁₉H₂₁NO₆S 391.1080, found 391.1089.

<u>7</u>: IR (nujol) 1707, 1348, 1162 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.18 (m, 1 H), 2.26 (m, 1 H), 2.35 (s, 3 H), 2.60 (m, 1 H), 2.82 (m, 1 H), 2.89 (ddd, J = 15.6, 7.8, 1.5 Hz, 1 H), 3.20 (ddd, J = 10.7, 7.3, 1.5 Hz, 1 H), 3.29 (dd, J = 9.3, 7.3 Hz, 1 H), 3.61-3.71 (m, 2 H), 5.65 (ddd, J = 7.8, 2.0, 2.0 Hz, 1 H), 6.95 (d, J = 8.3 Hz, 2 H), 7.21 (br d, J = 8.3 Hz, 2 H), 7.34-7.42 (m, 3 H), 7.68 (br d, J = 8.3 Hz, 2 H); ¹³C NMR (67.5 Hz, CDCl₃) δ 21.3, 21.5, 21.6, 29.4, 39.5, 42.1, 49.0, 115.1, 126.2, 127.3, 128.6, 129.1, 129.9, 131.6, 134.2, 138.8, 143.9, 174.5, 177.1; EI-LRMS *m/z* 422 (M⁺), 267, 155, 120, 91; EI-HRMS calcd for C₂₃H₂₂N₂O₄S 422.1300, found 422.1301.

The stereochemistry of 7 was determined by NOE experiment.

<u>8a</u>: mp. 129 °C (decomp.); IR (nujol) 1724, 1594, 1346, 1156 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.30-1.55 (m, 2 H), 1.75 (br d, J = 13.3 Hz, 1 H), 1.87 m, 1 H), 2.43 (s, 3 H), 2.77 (m, 1 H), 3.03 (m, 1 H), 3.05 (ddd, J = 23.7, 8.3, 3.7 Hz, 1 H), 3.20 (ddd, J = 23.7, 8.1, 3.8 Hz, 1 H), 3.75 (s, 6 H), 4.17 (br d, J = 13.4 Hz, 1 H), 5.83 (ddd, J = 3.6, 3.6, 1.4 Hz, 1 H), 7.29 (d, J = 8.4 Hz, 2 H); ¹³C NMR (400 MHz, CDCl₃) δ 21.5, 24.0, 27.7, 30.5, 36.6, 47.8, 52.1, 52.3, 119.5, 126.9, 127.8, 129.6, 133.2, 137.8, 138.4, 143.4, 166.6, 168.0; EI-LRMS *m/z* 405 (M⁺), 374, 282, 218, 131, 91; EI-HRMS calcd for C₂₀H₂₃NO₆S 405.1246, found 405.1226.

<u>8b</u>: IR (neat) 1734, 1708, 1635, 1596, 1343, 1162 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.45-1.54 (m, 2 H), 1.96-2.02 (m, 2 H), 2.44 (s, 3 H), 2.48-2.55 (m, 2 H), 2.75-2.85 (m, 2 H), 3.63-3.68 (m, 2 H), 3.78 (s, 3 H), 3.81 (s, 3 H), 7.31 (d, *J* = 8.3 Hz, 2 H), 7.65 (d, *J* = 8. 3 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ _20.8, 21,6, 22.8 (2C), 26.6, 46.5, 52.0, 52.3, 115.3, 120.8, 128.9, 129.8, 136.7, 139.2, 142.0, 144.0, 166.0, 168.8; EI-LRMS *m/z* 405 (M⁺), 374, 250, 218, 190, 158; EI-HRMS calcd for C₂₀H₂₃NO₆S 405.1246, found 405.1234.