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Abstract 

 

 In this paper we address the problem of the distinction between diapiric, salt-driven and 

compressional structures, using the outstanding example of the Central High Atlas (Morocco). A 

remagnetized component carried by magnetite has been isolated in 32 new paleomagnetic sites. It is 

characterized by: maximum unblocking temperatures around 450ºC, syn-folding behavior and 

normal polarity.  

 These 33 mean paleomagnetic directions were analyzed together with other 68 from 

published works around the study area to construct a robust paleomagnetic dataset along a cross-

section perpendicular to the main structures. The remagnetization direction (n: 100, Dec: 332.2º, 

Inc: 34.5º, η: 6.2º, ξ: 2.0º, A/n: 6.427º) and the paleo-dip of beds (the attitude of the beds at the 

remagnetization occurrence) were calculated through small circle methods. The remagnetization can 
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be dated as ca. 100 Ma. Because of its occurrence between the extensional and compressional 

periods, this remagnetization offers the possibility of restore the basin to its pre-inversion geometry. 

 Comparison between present-day and pre-inversion structure allows discriminating three 

different evolutionary patterns: (i) thrusted and welded salt-walls mainly structured during the 

extensional stage (Ikkou ridge) with steep limbs close to the salt-wall core. (ii) Jurassic salt-walls 

with weaker deformation, restricted to the areas adjacent to the structure (Tadaghmamt and 

Timedouine); in this case, Cenozoic compression is limited to welding of the salt-walls and 

buttressing of the sedimentary sequences against faults. (iii) salt-rollers gently initiated during the 

Jurassic (Toumliline diapir), thrusted during the Cenozoic compression. Results show the 

importance of salt tectonics both during extension and compression, as well as the control of the 

compressional features by the inherited extensional structures. The performed restorations prove 

that paleomagnetism is a useful, independent tool to obtain palinspastic restorations and to separate, 

and quantify, the imprint generated during the basinal stage from the inversional features. 

 

Key words: Chemical remagnetization; Central High Atlas; Small Circle methods; salt-wall; diapir; 

paleomagnetic restoration. 

 

1. Introduction 

 

 Halokinetic processes are one of the main deformation mechanisms in inverted basins 

having basal or intermediate thick salt layers. Diapir-related structures (salt-walls, diapirs, salt-

cored anticlines, etc.) can develop either associated with extension during the basinal stage (e.g. 

Vendeville and Jackson, 1992; Ferrer et al., 2012; Jackson and Lewis, 2016) or with compression 

during subsequent basin inversion (Davis and Engelder, 1985; Costa and Vendeville, 2002; 

Santolaria et al., 2015). The triggering mechanism is commonly differential loading, easily 
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generated as a consequence of extensional or compressional activity. At the same time, presence of 

salt levels and related halokinetic processes interact with regional tectonism, controlling basic 

aspects such as subsidence the location of depocenters (Jackson and Lewis, 2016, and references 

therein), or the style of folding or thrusting in the case of compression (e.g. Davis and Engelder, 

1985). Furthermore, structures generated during extension are usually reactivated and squeezed 

during inversion and therefore their present-day geometry is a consequence of the contribution from 

both stages. The study of the geometry of strata adjacent to salt-bodies gives clues about the 

relationships between tectonic, halokinetic and sedimentation processes (e.g. Giles and Lawton, 

2002). However, quantifying the deformation related to extension or compression is not 

straightforward and chronological constrains, provided that they are reliably placed within the 

frame of geological events, are necessary to address this issue. 

 Paleomagnetic works applied to diapirs are scarce, but they have been successful in 

unraveling different topics regarding diapir emplacement and evolution. A pioneering work in this 

sense was carried by Weinberger et al. (1997) who distinguished two main stages of evolution of the 

Sedom Diapir (Dead Sea Rift). Henry et al. (2000) and Roca et al. (2013) shed light in the evolution 

of Triassic diapiric bodies in Tunisia and the Prebetic Zone (SE Spain), respectively, allowing to 

substantiate emplacement hypotheses. Finally, Torres-López et al. (2016) separated in the Central 

High Atlas (CHA) the Jurassic deformation directly caused by salt tectonics and igneous intrusions 

from the deformation due to the Cenozoic compression.  

The exceptional outcrops of the CHA have been exploited in the development of several research 

works focused on the tectono-stratigraphic relationships in extensional setting in which halokinetic 

activity plays a major role (Bouchouata et al., 1995; Ettaki et al, 2007; Michard et al., 2011; Saura 

et al., 2014; Joussiane, 2016; Malaval, 2016; Martín-Martín et al., 2017; Teixell et al., 2017; Vergés 

et al., 2017). These works evidence the presence of an intense halokinetic activity during the Early 

and Middle Jurassic that, together with the activity of the extensional faults, controlled the 
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sedimentation through ENE-WSW trending salt-walls (called ‘ridges’ in the literature), that limited 

sedimentary depocenters. During the subsequent Cenozoic inversion of the basin (Mattauer et al., 

1977; Michard et al., 1976), these structures were squeezed, modifying their syn-extensional 

original geometry (Teixell et al., 2017; Vergés et al., 2017). 

Nevertheless, the contribution of extensional (or diapiric) and compressional deformation to the 

final development of structures is still unknown. We even ignore whether similar structures have the 

same or different origins. The main objective of this paper is focused on deciphering the origin of 

structures by means of the quantification of their chronological development by means of 

paleomagnetic tools. We use the ca. 100 Ma remagnetization found in the CHA (Torres-López et al. 

2014), which separates the basinal and the inversional stages, to quantify the deformation related to 

each process. We demonstrate that compressional features, and specially fold separation and 

wavelength, are beyond the laws of buckling (e.g. Fletcher, 1974; Kocher et al., 2006) and that 

other constraints, namely inherited heterogeneities and previous, diapiric folding are key in the 

process of fold growth. Consequently, folds formerly considered as compressional must be 

explained by growth during prevailing extensional tectonic regimes. In this way, paleomagnetism 

has revealed itself as a powerful to approach, from a quantitative point of view, to the original 

geometry resulting from the basinal stage and the subsequent development of folding during basin 

inversion. 

 

 

2. Geological framework 

 

 The Atlas system is a set of intracontinental chains (Mattauer et al., 1977) located in the 

southwestern foreland of the Mediterranean Alpine System (Fig. 1). It extends from the Atlantic 

coast of Morocco to the Mediterranean coast of Tunisia, conforming a 100 km wide, 2000 km long 
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mountain belt. The Atlas is the result of the tectonic inversion during the Cenozoic of extensional 

Mesozoic basins, due to the convergence between African and European plates (e.g. Mattauer et al., 

1977; Gomez et al., 2000). The Central High Atlas (CHA) is located in the mid-western sector of 

the mountain chain and is characterized by thick Lower-Middle Jurassic sedimentary sequences, 

folded according to long, tight ENE-WSW anticlines that limit open, gentle synclines (Fig. 2). 

 A synthesis of the Mesozoic evolution of the CHA can be found in Frizon de Lamotte et al., 

(2008). Summarizing, this evolution shows a first rifting event during the Triassic (Fig. 1c), 

characterized by deposit of red beds which crop out towards the western part of the chain, in the 

Marrakech High Atlas (e.g. Domènech et al., 2015), and evaporites and shales to the top of the 

sequence, capped by basaltic rocks related to the CAMP event (e.g. Knight et al., 2004). Shales and 

salts are the regional décollement for many tectonic structures. It played a major role during the 

Mesozoic extension (and dominant in diapiric processes) and during the Cenozoic inversion (as the 

basal detachment that favors the decoupling between the basement and the cover) as well.  

 During the Early Jurassic, a new, intense rift stage took place, resulting in the deposit of 

thick sedimentary sequences: more than 5000 m of Jurassic rocks accumulated in the depocenters 

until the end of Bajocian times (Frizon de Lamotte et al., 2008, and references therein). During this 

stage, diapiric processes also played an important role in the configuration of the basin (Ettaki et al., 

2007; Michard et al., 2011), partly controlling the subsidence rate and localization of depocenters 

(Moragas et al., 2016), that were bounded by large salt-walls (Saura et al., 2014). The NE-SW to 

ENE-WSW trend of these structures is strongly conditioned by basement faults (Mattauer et al., 

1977; Schaer, 1987; Charrière, 1990), what suggest that normal faulting was one of the main factors 

triggering halokinetic activity. 

 At the end of this extensional stage, a new alkaline to transitional magmatic event took 

place. It was characterized in the study area by mafic intrusions (mainly gabbros) dated as Upper 

Jurassic (Hailwood and Mitchell, 1971; Armando, 1999). These rocks crop out at the core of the 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

6 

anticlines, mixed in different proportions (in each particular structure) with Triassic rocks (Calvín et 

al., 2017a). 

 Absence of Upper Jurassic-Lower Cretaceous sedimentary rocks limit the precise bracketing 

of the evolution of the CHA during this time, and a general uplift during the Late Jurassic has been 

invoked (Laville and Piqué, 1992; Beauchamp et al., 1999; Frizon de Lamotte et al., 2008). 

However, a compressional uplift is in disagreement both with the fission tracks paths (Barbero et 

al., 2007) and with the ca. 100 Ma widespread remagnetization (see next section for discussion). 

Besides, new geological evidences contradict the arguments upon which this uplift event was based: 

for example, the dating as Paleocene (Charrière et al., 2009) of the red-beds that overlie some of the 

gabbro outcrops, previously considered as Jurassic, or the clear attribution of the regional cleavage 

to the Cenozoic compression instead of to a Mesozoic stage (Calvín et al., 2017b). Towards the 

north, a Jurassic-Cretaceous continental series, topped by Cretaceous marine sediments, crop out in 

several basins (e.g. Bensalah et al., 2013). Moragas et al. (2016), combining new data of vitrinite 

reflectance, stratigraphic relationships, and subsidence curves, found that it is necessary to consider 

an extra burial of 1200 m corresponding to Upper Jurassic and Cretaceous sediments in the CHA. 

 The Cenozoic Alpine basin inversion shortened the High Atlas in a N-S direction between 

15 and 24% (Teixell et al., 2003), without considering internal deformation associated with tectonic 

cleavage (e.g. Laville and Piqué, 1992; Calvín et al., 2017b) or the interference with Mesozoic 

structures (Torres-López et al. 2016). In the central sector of the CHA, the geological structure is 

strongly conditioned by the presence of a thick décollement level, tectonic inheritance from the 

Jurassic extensional stage, and the thickness variations of the Jurassic series (Fig. 2b). Therefore, 

tightening of Jurassic diapirs favored the accommodation of shortening; the absence of evaporites in 

the cores of some anticlines (being replaced by Triassic and Jurassic competent igneous rocks; Fig. 

2b) can be related to extrusion and squeezing during shortening. In areas lacking salt-walls and/or 
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extensional structures the deformation is accommodated by minor thrusts rooted within the Jurassic 

sequence and folds associated with axial-plane cleavage (e.g. Calvín et al., 2017b). 

 

3. The ca. 100 Ma remagnetization in the CHA 

 

 Torres-López et al. (2014) evidenced the presence of a widespread remagnetization in the 

CHA affecting the Jurassic carbonates. This remagnetization is characterized by its syn-tectonic 

behavior, systematic normal polarity with northwestern declination and positive inclination, and 

Albian-Cenomanian age (ca. 100 Ma), that has been established according to comparison with the 

apparent global wander path. Magnetic properties point to a chemical remagnetization, under which 

a population of fine magnetite grains (from superparamagnetic -SP- to stable single domain -SSD-) 

grew, giving a typical signature characterized by wasp-waisted hysteresis and maximum unblocking 

temperatures around 450-500ºC (see Elmore et al., 2012; Jackson and Swanson-Hysell, 2012; 

Torres-López et al., 2014). This kind of remagnetization has been related to the growth of magnetite 

at the expense of pyrite in presence of organic matter (Katz et al., 2000) and associated with 

temperature increase in the basins (e.g. Aubourg et al., 2012). In the case of the CHA, the 

remagnetized carbonates are located in areas with a minimum preserved thickness of 3-4 km of the 

syn-tectonic basin filling (Torres-López et al., 2014), which corresponds with areas where at least 2 

km sediments have been eroded. 

 The triggering mechanism for the remagnetization is still a matter of debate: it should be 

related to cooling below a critical temperature at basinal scale, because no differences in magnetic 

properties or paleomagnetic directions can be found along the Jurassic sequence (e.g. Torres-López 

et al., 2014; Moussaid et al., 2015). Therefore, this quick decrease (at the geological scale) of 

temperature could be related either with the decay of a mantle anomaly (in case of considering a 

regional, plate-scale origin of remagnetization) or with partial inversion, exhumation and erosion of 
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the basin (when a local origin is considered). In any case, the triggering mechanism does not affect 

the use of the remagnetization for restoration purposes. 

 Similar chemical remagnetizations, both regarding magnetic behavior and age, have been 

recognized in other inverted intracontinental basins of the western sector of the Mediterranean 

Alpine System (Villalaín et al., 2003; Soto et al., 2008). A common point shared by these basins and 

the CHA is that they were affected by an extensional deformation during the Mesozoic (pre-

remagnetization stage) and subsequently inverted by the Cenozoic, Alpine compression (post-

remagnetization stage). In all of these basins, remagnetizations have been used to reconstruct the 

attitude of beds at the moment of the remagnetizations and to resolve geological issues, such as 

restoring the general geometry of the basins at the pre-compressional stage (Casas et al., 2009; Soto 

et al., 2011), determining the structuring age of the ridges of the CHA (Torres-López et al., 2016), 

restoring the geometry of pre-remagnetization folds (García-Lasanta et al., 2017) or dating the 

tectonic cleavage, controversial in age, in the CHA (Calvín et al., 2017b). All these issues 

demonstrate the applicability of remagnetizations in intracontinental basins as chronological 

markers to separate pre- and post-remagnetization deformation. 

 

4. Methodology of paleomagnetic analysis 

 

4.1. Sampling and paleomagnetic procedures 

 

 Thirty-three new sites were sampled in Jurassic carbonatic rocks using a gasoline-powered 

machine; twenty-one of these sites are located around the Toumliline diapir (Fig. 2). Between six 

and eight samples per site were thermally demagnetized by means of thermal demagnetizers TD48-

DC (ASC Scientific) (TM and DP sites) and MMTD80A (Magnetic Measurements) (ILA and ILB 

sites) following a stepwise procedure, with 6-15 steps from room temperature up to the total 
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demagnetization of the specimens (usually 500-550ºC). Magnetic measurements were conducted 

using a 755 Superconducting Rock Magnetometer (2G). Several rock magnetic experiments 

(hysteresis loops, backfield curves, magnetization thermomagnetic curves, etc.) were performed 

using a variable field translation balance MMVFTB (Magnetic Measurements). All these 

experiments were carried out at the Paleomagnetic Laboratory of Burgos University (Spain). 

 

4.2. Data processing: paleomagnetic directions, small circle analysis and structural restoration 

 

 Paleomagnetic directions were calculated using Remasoft 3.0 software (Chadima and 

Hrouda, 2006) by principal component analysis (Kirschvink, 1980) on orthogonal demagnetization 

diagrams. Mean site directions and related statistical parameters were calculated (Fisher, 1953). 

Rock magnetic data were analyzed with Analyzer 1.0 software (Leonhardt, 2006). Bootstrap fold- 

tests (Tauxe and Watson, 1994) were performed by using Pmagpy software (Tauxe et al., 2016). 

 Synfolding remagnetizations acquired between two deformational events can be used to 

reconstruct basin geometry if we assume that (i) the remagnetization was acquired at the same 

moment (at geological scale) within the whole basin, (ii) each bed was rotated according to a 

horizontal axis that coincides with its present-day strike, both during the pre- and the post-

remagnetization stages and accordingly (iii) beds have not been affected either by vertical axis 

rotations or successive non-coaxial deformations. If these conditions are met, it is possible to 

calculate the remagnetization direction using the Small Circle Intersection (SCI) method (Shipunov, 

1997; Henry et al., 2004; Waldhör and Appel, 2006). This method is based on the principle that the 

paleomagnetic direction for each site must be the same, and all possible deviations are due to tilting 

of the paleomagnetic directions around the bedding strike. It is then possible to find the common 

direction to all sites (i.e. the remagnetization direction) analyzing the small circles intersections. 

These small circles (SCs) are the paths followed by the paleomagnetic direction during bedding 
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restoration. Therefore, the small circles must intersect in a common direction that coincides with the 

remagnetization direction. The remagnetization direction is given with an uncertainty ellipse 

obtained from a population of 500 solutions beginning with a parametric bootstrap allowing 

propagation of errors of the in situ paleomagnetic directions and bedding (Calvín et al., 2017c). 

 The calculated paleomagnetic direction is used as the reference for restoring the attitude of 

beds at the moment of the remagnetization event, following the methodology explained in Villalaín 

et al. (2015). It consists in applying partial bedding corrections in order to identify the 

paleomagnetic direction for each site (i.e. within each small circle) in the closest orientation to the 

reference (i.e. the best fit direction, BFD), and in this way the paleo-dip of the bed can be easily 

calculated. For the case of remagnetization post-dating diapiric deformation, once the paleo-dip at 

ca. 100 Ma has been calculated, it is possible to restore the geometry of the sedimentary cover 

around the diapir at its pre-inversion stage. SCs methods were applied using pySCu software 

(Calvín et al., 2017c). 

 Graphical inspection of the SCs distribution gives an idea about the degree to which initial 

assumptions are fulfilled (Calvín et al., 2017c and references therein). However, regional tilts or 

vertical axis rotations that presumably involve all sites as an only block cannot be appreciated in the 

SC distribution. These processes can lead to erroneous interpretations of the remagnetization 

direction and therefore of its age (usually established by comparison with the apparent polar wander 

path, APWP). All in all, however, large-scale horizontal or vertical axis rotations are not crucial for 

the structural restoration because the selected reference for paleo-dip calculations is the same for all 

sites, and therefore the angular relationships between sites are preserved. In any case, fulfillment of 

the previous requirements in the CHA has been positively assessed in previous works (Torres-López 

et al., 2016; Calvín et al., 2017b). 

 

5. Paleomagnetic results 
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5.1. Natural remanent magnetization (NRM) and paleomagnetic directions 

 

 NRM demagnetization diagrams (Fig. 3) show a heterogeneous behavior, characterized by 

intensities of 0.5-30 mA/m and several paleomagnetic components. The most common behavior 

(Fig. 3a) is the presence of a stable paleomagnetic component with an unblocking temperature 

spectrum comprised between 300 and 450ºC and intermediate coercivities (20-100 mT), hereinafter 

called A component (Fig. 3). This component shows systematically northwestwards declination and 

positive inclinations (normal polarity). In most samples, it appears together with a viscous 

component (Vs in figure 3) with unblocking temperatures between 100ºC and 250ºC. In some cases, 

in addition to components A and Vs, a low temperature (<100 ºC), high coercivity (not destroyed at 

100 mT) component, called G, is also observed (fig. 3b). It is probably due to the presence of 

goethite. In 14 samples a high temperature component (component B; see supplementary material) 

that shows a direction clearly different from that of component A (fig. 3c and d) has been isolated. 

In some cases, as in site TM09, component B shows normal and reverse polarities coexisting with 

the normal component A (fig. 3c). However, in other cases such as sites LB12 and LB13, 

component B is patent but component A is absent (fig. 3d). The B component shows variable 

maximum unblocking temperatures, in most cases over 625ºC (fig 3d) and presents high 

coercivities (>100 mT) pointing to hematite as the mineral carrier.  

 A regional bootstrap fold-test (Tauxe and Watson, 1994) was performed considering 

components A and B (fig 4a). Component B shows an almost negative result with a range of 

confidence between 3% and 27% of unfolding thus pointing to a secondary origin. This is an 

interesting example of a secondary magnetization showing, however, normal and reverse polarities. 

B component was properly isolated in 14 samples and can be interpreted as syn-folding (almost 
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post-folding) magnetization, suggesting that it was acquired most probably after the Cenozoic 

compression. 

On the other hand, component A shows a clear syn-folding acquisition with a maximum grouping at 

about 50% of unfolding (fig. 4a). This result reveals that it is a syn-folding remagnetization.  

 In spite of this heterogeneous behavior (even at site scale), A component was isolated in 

almost all sites (see supplementary material) and was therefore considered as the Characteristic 

Remanent Magnetization (ChRM). It shows similar features to the remagnetization observed in the 

surrounding areas both in terms of magnetic properties and distribution of directions (Torres-López 

et al., 2014; Calvín et al., 2017b): (i) Its carrier is magnetite according to rock magnetic experiments 

(Fig. 3e) and NRM demagnetization behavior; parameters of the hysteresis loops (Fig. 3f) 

correspond to a mixture of SSD and SP magnetite (Dunlop 2002), which is a typical behavior of 

chemical remagnetized limestones (Channel and McCabe, 1994; Jackson and Swanson-Hysell, 

2012). (ii) The directions of A component show normal polarity and scattered directions before and 

after total bedding correction (BBC and ATBC respectively). Therefore we conclude that 

component A is the remagnetization described in the area by the mentioned authors and dated at ca. 

100 Ma. 

 

5.2 Remagnetization direction 

 

 The 32 paleomagnetic site-mean directions of the ChRM obtained in this work were 

analyzed together with other 68 previously published paleomagnetic directions (Torres-López et al., 

2014; Calvín et al., 2017b) (Table 1) from Jurassic rocks of the neighboring area. These data have 

been filtered in order to use only reliable directions (directions far from the calculated reference, 

and therefore suspicious of not fulfilling the requirements for the SC methods, were excluded). 

Using the 100 paleomagnetic directions, the SCI solution was calculated with its Kent’s (1982) 95% 
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confidence ellipse (n: 100, Dec: 332.2º, Inc: 34.5º, η: 6.2º, ξ: 2.0º, A/n: 6.427º). This direction 

coincides with paleomagnetic vectors obtained from two horizontal sites of the study area (AG02 

and SK12, Table 1; Fig. 4), and cuts the APWP in ca. 100 Ma; this direction is therefore used as 

reference for the best fit direction (BFD) and paleo-dip calculations (Table 1). These paleo-dips 

have been determined for the 32 sites of this study and 16 sites of previous works (Table 1) and  

they are used in the next section to restore the geometry of the structures to their pre-compressional 

stage (ca. 100 Ma). 

 From the dispersion pattern (Fig. 4), it can be observed that all SCs have their paths close to 

the calculated direction, giving BFDs close to it (Table 1). This is indicative of (i) absence of 

differential vertical axis rotation between sites and (ii) coaxiality between pre- and post-

remagnetization deformation, at least as a general rule. The angle between the reference and the 

BFD (Table 1) is a good indicator of the reliability for each site and of the absence of local 

problems that could preclude the use of some particular site for structural considerations. For 

example, TM07 or ILA08 have values of this angle higher than 20º. 

 

6. Present-day and restored structure 

 

 Four ENE-WSW diapiric structures can be observed in the study area (Fig. 2), following the 

general structural trend. In the next subsections we present a combination of field observations, 

cross-sections showing the structure at present and restored at ca. 100 Ma through the analysis of 

the remagnetization (Figs. 5 to 9), and a general cross-section (with the present day and ca. 100 Ma 

attitude) merging data from individual cross-sections (Fig. 9). 

  

6.1 The Ikkou ridge 
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The Ikkou structure (Figs. 2 and 5) is a tight (<1 Km wide), long salt-wall extending for several tens 

of kilometers along trend. In its core, Triassic basalts are dominant and in its northern outcrop there 

are fragments of a hook in Lower Jurassic rocks. Its present-day structure (Figs. 2 and 5a) shows 

that the overburden strikes sub-parallel to the salt-wall, with moderate to high dips, steeper when 

approaching the salt-wall. Although the presence of compressive structures is not prevalent in its S 

limb, its N limb shows north-verging chevron folds related to intra-Jurassic detachments (Fig. 5d). 

A detailed reconstruction of these folds (Fig. 5e) at ca. 100 Ma shows that they post-date the 

remagnetization, and are therefore related to the Cenozoic compression. In the restoration of the 

Ikkou ridge (Fig. 5b) it can be observed that most of the tilting of the limbs was already developed 

during the extensional stage (with the exception of chevrons folds), with moderate dips of beds 

close to the ridge and showing a rapid decrease of dip with increasing distance from the ridge 

(compare DP10 and 11 with ILA sites, Fig. 5b). According to previous works (Torres-López et al., 

2016; Calvín et al., 2017b) in the Ikkou syncline it was already developed during the extensional 

stage and was tightened during the Cenozoic, developing a N-verging thrust and subvertical 

cleavage. We interpret that, as it occurs in the cross-sections across the Ikkou syncline (Calvín et al., 

2017b), the squeezing of the salt-wall was associated with north-verging thrusting (Fig. 5a). This is 

in agreement with the rotation path recorded by gabbros (Calvín et al., 2017a) that crop out in the 

core of some of these ridges (i.e. Tasraft, Tassent, Tirrhist and Anefgou ridges). Although it is not 

possible to estimate the original width of the salt-wall during the pre-compressional stage, the 

almost absence of shales and salt in its core indicates that it was wider and was totally welded 

during the Cenozoic compression.  

 Differences in thickness can be observed between the Bajocian levels at both limbs of the 

ridge, being thicker in its N limb. However, the opposite happens regarding the Bathonian-

Callovian redbeds, which are thicker in the S limb. An unconformity at the base of the redbeds is 
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especially evident close to the southern limb of the Ikkou ridge, indicating a change in the 

diapiric/subsidence activity.  

 

6.2 The Tadaghmamt ridge 

 

 The Tadaghmamt salt-wall (Figs. 2 and 6) is elongated in an ENE-WSW direction and about 

10 km long and 1-2 km wide. Its core consists of both sedimentary and volcanic Triassic rocks. The 

Jurassic series shows low to moderate dips, and is strongly folded towards the NE, where the Tissila 

anticline is located (Fig. 2). The overall structure can be followed more than 100 km along trend, 

relaying with other folds towards the SW. For example, the Tadaghmamt ridge connects with the 

Azourki Ridge (Vergés et al. 2017), through a N-dipping normal fault system and small diapirs. 

Towards the NE, the Tadaghmamt anticline ends without evidence of continuity or relay with other 

structures. 

 The N limb of the Tadaghmamt ridge is generally subhorizontal, although it shows 

decametric-scale south-verging folds and increasing dips close to the ridge axis. In the core of the 

ridge, Triassic basalts (mainly in the NE sector) and shales (along all the salt-wall), both capped by 

Bajocian limestones (Fig. 6d, e), crop out. The latter have been differentially folded, showing both 

gentle and tight folds. The S limb is characterized by the presence of a kilometer-scale, north-

verging asymmetric anticline; its N limb presents moderate dips (Fig. 6f) whereas its S limb shows 

low-to moderate dips that become sub-horizontal a few kilometers from the ridge (Fig. 6a). It is 

curious that both DP13 and ILB06 (dipping away from the ridge axis during the basinal stage), 

changed their sense of dip during compression (Fig. 6b) and show moderate dips towards the ridge 

rapidly changing near the thrust (DP13) or defining a secondary anticline (ILB06). 
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6.3 The Timedouine ridge 

  

 The Timedouine salt-wall (Figs. 2 and 7) is the NE end of a 50 Km NE-SW to NNE-SSW 

striking, S-dipping normal fault system. The Ikerzi and Moussa diapirs (Fig. 1) and the Msemrir 

Bathonian-Callovian basin (Ettaki et al., 2007) are also associated with this fault system. The 

Timedouine structure is 13 km long, 1 km wide, and shows a NE-SW trend; it is cored by Triassic 

shales and basalts, and scarce outcrops of Jurassic gabbros. The presence of gabbros probably 

evidences its connection with a basement fault. The Mesozoic sedimentary cover is gently folded 

close to the ridge with low to moderate dips and folds in both limbs verging towards the ridge (Fig. 

7a), and becoming subhorizontal at around 1 km from the salt-wall. In the eastern end of the ridge, 

compressional structures are more pervasive, and hectometer-scale monoclines verging towards the 

ridge (Fig. 2b) and recumbent folds associated with detachments from the core of the ridge appear. 

In this area, slumps and local sedimentary unconformities in the Aalenian-Bajocian marls can be 

observed (Fig. 7e). 

 When the geometry of the overburden is restored (Fig. 7b) the structure is similar to the one 

observed in the Tadaghmamt ridge, with steep to moderate dips close to the ridge that rapidly 

become subhorizontal away from it. 

 

6.4 The Toumliline ridge 

 

 Finally, Toumliline (Figs. 2 and 8) is a 5 x 1 km diapiric structure, elongated along the main 

structural trend, and related to a north-dipping basement normal fault (Fig.  2) (Teixell et al., 2003). 

Large amounts of salt, which has been the object of traditional exploitation (the name ‘Toumliline’ 

refers in the tamazight autochthonous language to the white color of the salt), crop out in its core. 

Besides, Triassic basalt and Jurassic gabbros can be recognized in the center of the diapir, 
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suggesting a synformal structure. The Jurassic cover shows moderate to steep dips when 

approaching the core in the northern limb of the diapiric structure and shallow to moderate dips in 

its southern limb (Fig. 8a). Towards the WSW and ENE, the diapir ends and a north verging thrust 

can be observed superposing the Lower Jurassic over the Middle Jurassic rocks (Fig. 8d). The ca. 

100 Ma structure shows a similar attitude but shallower dips. In the hanging wall, the paleo-dips 

obtained in the marls (Fig. 8b) change very quickly and this can be probably related to growth strata 

in this unit, although a section perpendicular to the fault would be needed to confirm this issue. In 

the footwall, the paleomagnetic sites close to the core show low dips towards the S (Fig. 8b, sites 

TM05, 07, 08, 09) whereas the farthest paleomagnetic site (IC54) presents a shallow northwards 

dip, defining a gentle syncline. This is consistent with salt migration during the extensional stage 

and the development of a salt-roller. The cross-section made towards the NE (Fig. 8e) cuts across a 

non-diapiric zone, and shows the lower part of the thrust that can be observed towards the SW; in 

the restored cross-section this thrust shows shallow dips. The restored structure shows that the folds 

associated with the north-verging thrust were developed during the Cenozoic, because they do not 

appear in the ca. 100 Ma structure, which in turn is similar to the section that cuts across the diapir 

(Fig. 8a). 

 

7. Interpretation 

 

 Recent research works (Saura et al., 2014; Moragas et al., 2016; Martín-Martín et al., 2017, 

Teixell et al. 2017; Vergés at al., 2017) evidence the major role of salt tectonics in the development 

of sedimentary basins during the Early-Middle Jurassic in the CHA. Jurassic subsidence was 

conditioned mainly by extensional tectonics, but with a significant contribution of salt migration 

(Moragas et al., 2016). During the Cenozoic compression these salt-walls accommodated the 

shortening and some of them were strongly tightened (e.g. Teixell et al., 2017), erasing the evidence 
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of salt-tectonics and extension-related processes. Exceptions are the salt-walls that contain more 

competent rocks (Jurassic hooks, Triassic basalts and Jurassic gabbros) or structures having a post-

compressional halokinetic activity. Following this line, the ridge linked to the Toumliline diapir (its 

prolongation towards the NE) could be a priori interpreted as a welded Jurassic salt-wall, since its 

present shape shows upright limbs limited by a tectonic contact (Fig. 8e). Although its present-day 

geometry is similar to the Ikkou ridge (in this case without Triassic basalt between both limbs), the 

ca. 100 Ma restoration indicates that most of the tilting associated with the Toumliline ridge is 

Cenozoic in age. This is an example of how paleomagnetic results and quantification of the paleo-

dips can help to achieve a more accurate interpretation about the evolution of this kind of structures. 

 The comparison between the pre- and post- compressional structure (ca. 100 Ma restored 

and present day, respectively) sheds light into the meaning of diapiric processes as generators of the 

CHA ridges and into the mechanisms by which the inherited extensional structures conditioned their 

compressional geometry. The analyzed structures show differences regarding the two stages of 

development related to their evolution (Fig. 9).  

 

7.1 Implications for ridges development  

 

 Although in a simplistic view the ridges found in the CHA can be interpreted as welded salt-

walls limiting minibasins, a detailed analysis of the four structures that crop out between the 

localities of Imilchil and Toumliline indicates strong differences regarding both their present-day 

geometry and their pre-compressional structure. This indicates contrasting evolutions during the 

extensional and compressional stages. 

 The Ikkou ridge shows similar geometry of the Jurassic sedimentary cover before and after 

the Cenozoic compression, with steeply-dipping Jurassic beds at both stages. The Cenozoic 

deformation in this ridge is restricted to tightening of the salt-wall (as much as allowed by the 
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presence of competent rocks, such as basalts or gabbros in its core) together with north-verging 

thrusting, development of cleavage in both limbs (especially in the southern one) and minor, north-

verging folds in the footwall of the thrust (Figs. 5 and 9). The Mesozoic deformation (Fig. 9b) 

consisted in the uplift of the core and outwards, centrifuges tilting in the first 1-2 km away from it at 

the limbs, with a quick decrease of the paleo-dip towards the synclines. This scenario agrees with 

the presence of a salt-wall limiting sedimentary depocenters during the Jurassic. The Mesozoic salt-

wall cuts the sedimentary pile up to the Bathonian-Callovian redbeds, whose shallow dips in the 

NW limb of the Ikkou syncline and their basal unconformity point to a decreasing rate of salt 

migration in the salt-wall during the sedimentation of the redbeds. This can suggest that this unit 

could have fossilized the salt-wall. On the other hand, the Tadaghmamt and Timedouine salt-walls 

share similar features that differ from the Ikkou and Toumliline structures. In this central sector, the 

structure is characterized by flat-lying beds of Bajocian limestones that top the Triassic basalts and 

shales in the core of the Tadaghmamt ridge. Close to the ridge axes, the limbs are complicated by 

minor, decameter- to hectometer-scale folds as a consequence of buttresing towards the ridge during 

the Cenozoic compression. Conversely, their Mesozoic attitude was characterized by tilting of the 

limbs away from the ridge affecting only the area adjacent to the salt-walls (Fig. 9). This small 

tilting and the fact that the salt-walls do not completely cut through the Bajocian limestones seem to 

indicate lower extensional activity and consequently lower salt migration in the Tadaghmamt and 

Timedouine ridges.  

 The Jurassic cover of the Toumliline ridge shows shallow dips  in the restored section, with 

exception of sites located in the hanging wall of the normal fault (Figs. 8 and 9). Furthermore, 

shortening of the Toumliline diapir during the Cenozoic was important, generating thrust-related 

folds. The cross-section of the ridge towards the W of the diapir depicts similar features, showing 

shallow dips in the pre-compressional restoration. Therefore, this structure can be interpreted as a 

Mesozoic salt-roller related to the normal fault, without imposing major controls on the sedimentary 
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conditions with exception of the accommodation space generated by migration of salt from the 

hanging wall to the footwall. During the Cenozoic, both the presence of the normal fault and salt 

accumulation along the structure would favor the nucleation of deformation, generating folds and 

thrusts and the partial extrusion of salts forming the Toumliline diapir. Otherwise, the weaker 

development of Jurassic halokinetic processes in this structure can be responsible for the presence, 

at present, of a large amount of salt below the diapir, almost absent in other structures (e.g. the 

Ikkou salt-wall). 

 

 According to the comparison between the pre- and post-compressional structure, it is 

remarkable how the overburden and the salt-bodies themselves responded differently to the 

Cenozoic compression, a behavior that depends in its turn on the geometries inherited from the 

extensional stage, that we can summarize in three categories: (i) The Ikkou salt-wall is a well-

developed Mesozoic structure whose limbs tend to show moderate to steep dips; during shortening, 

accommodation of the deformation occurred mainly by squeezing of the salt core accompanied by 

north-directed thrusting and secondary steepening of its limbs (Fig. 9). (ii) When Mesozoic 

deformation was gentler (as in the case of the Tadaghmamt and Timedouine structures) and only 

consisted in the development of a salt-wall with minor vertical movements between limbs, the 

development of major compressional structures during the Cenozoic stage could be difficult due to 

the thickness of the sedimentary series. In this case, deformation was limited to the squeezing of 

salt-walls and development of folds close to the ridge by buttresing (Fig. 9). (iii) Finally, the 

Toumliline diapir shows a different compressional style in which the development of a main thrust 

was favored by the pre-compressional geometry, consisting of (a) a normal fault imposing a strong 

throw between the future fold limbs (note that this is the only sector where the Hettangian beds crop 

out) and (b) a significant accumulation of salts below the hanging wall of the Cenozoic thrust. Both 

conditioners are related to the existence of a Mesozoic salt-roller. 
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7.2. Subsidence implications 

 

 Another interesting issue concerns the differences in thickness of the sedimentary pile 

observed between the limbs of the Ikkou and the Toumliline ridges, both related to north-dipping 

basement normal faults (Fig. 9). This favored higher subsidence and accumulation of sediments in 

the hanging wall during the Early-Middle Jurassic, evident in the Toarcian-Aalenian beds of the 

Toumliline ridge and the Aalenian-Bajocian beds of the Ikkou structure (Figs. 5, 8 and 9). Tectonic 

subsidence during this early stage, according to Moragas et al. (2016), would be complemented by 

salt migration from the hanging wall to the footwall. 

 This scenario changed during the Bathonian-Callovian redbeds deposition, contemporary 

with decreasing extensional activity and salt migration from the hanging wall. At this moment, the 

beginning of migration of the salt in the footwall favored a stronger subsidence in the S limb of the 

Ikkou ridge, with the generation of syncline which acted as depocenter for the redbeds (Fig. 9b). 

The unconformity below the redbeds could be conditioned by this change in the subsidence 

behavior. Furthermore, the first stage of subsidence, controlled by basement normal faults, is more 

continuous along strike, whereas the second stage is restricted to small areas (e.g. the Ikkou 

syncline), because they depended on the amount of salt (or salt migration) below the ridge, which 

could be heterogeneously distributed. This is evident in the western end of the Ikkou syncline; 

towards the W, the Jurassic shows a subhorizontal attitude, indicating the pinchout of the 

depocenter. Although there are not outcrops of red-beds in the Toumliline diapir to confirm this 

issue, following the observations of the Ikkou ridge, the syncline located in the footwall of the 

Toumliline ridge could have been structured during the same time. 

 

7.3. General structure 
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 The minimum width that ridges must have had before the compressional stage is related to 

the dip of the limbs in each structure: the higher the extensional tilting and the distance of affection 

to the limbs, the greater must be the minimum original width of the ridges. This allows to estimate 

the minimum shortening recorded by each individual structure during the Cenozoic compression 

(Fig. 9). 

 Tadaghmamt and Timedouine salt-walls show the lowest shortening values, around 15 % 

that agree with the shallow dips observed around these structures.  This is also consistent with the 

interpretation of ridge squeezing and the development of folds in the areas adjacent to the core. The 

Toumliline structure shows about 20 % of minimum shortening but this figure strongly depends on 

the amount of displacement accommodated by the thrust, which is poorly constrained and could be 

higher than interpreted in this cross-section. Finally, the minimum width is greater for the Ikkou 

salt-wall than for the other structures and therefore it shows the highest shortening value, which is 

mainly accommodated by the squeezing of the salt-wall. In an overall view, the mean estimated 

shortening is around 19 %, what agrees with average shortening values proposed for the entire chain 

along this cross-section (Teixell et al., 2003). 

 An interesting issue is the accommodation of deformation at deeper levels, within the 

Paleozoic basement. Although geometry of structures at this level is conjectural, its present-day 

envelope agrees with the one adjusted by means of a gravimetric section (Ayarza et al. 2005). This 

envelope is characterized in the study area by two well differentiated structural highs, whose limit is 

the monocline south of the Ikkou syncline. Considering only the present-day dips, it is reasonable to 

interpret this geometry as a consequence of a north-verging basement thrust, with an associated 

hanging wall fold represented by the observed monocline. In fact, these variations in structural 

depth of the top of the basement have been previously interpreted as an evidence of the involvement 

of the basement in the compressional structure (Teixell et al., 2003). However, the restored cross-
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section shows that these variations are inherited from the basinal stage. This implies that vertical 

movements of the basement were important during the extension, whereas during the inversion the 

shortening would be probably limited to folding and steepening of previous normal faults and/or 

cleavage development. 

 

8. Conclusions 

 

 The carbonate rocks that crop out between the Imilchil and Toumliline villages (Central 

High Atlas) show a chemical remagnetization, carried by magnetite. This paleomagnetic signal 

shows features similar to those observed in close areas of the CHA (Torres-López et al., 2014; 

Calvín et al., 2017b): maximum unblocking temperatures around 450-500ºC, site-mean 

paleomagnetic directions with systematically northwestwards, positive inclinations, and scattering 

both before and after total bedding correction. This remagnetization was dated as ca. 100 Ma 

(Torres-López et al., 2014) from comparison with the apparent polar wander path of North Africa 

(Torsvik et al., 2012). 

 By means of the small circle method, the geometry of the overburden of four salt-related 

structures has been quantitatively restored to the moment of the acquisition of the remagnetization 

(ca. 100 Ma, i.e. a tectonic quiescence period predating the Cenozoic compression). This 

methodology appears to be promisingly useful in the study of diapiric salt structures because allows 

to analyze the structure derived directly from the halokinetic processes generated during the basinal 

stage, without the subsequent compressional imprint. 

 Specifically, the application of paleomagnetic methodology in four structures of the CHA 

returns the following conclusions: 

- Most of the paleomagnetic directions, once they are restored at the remagnetization time, are close 

to the reference direction. This is indicative of the absence of significant and generalized vertical 
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axis rotations and/or non-coaxial deformation during the pre- and post-remagnetization deformation 

stages. 

- The Ikkou salt-wall was almost totally developed during the extensional stage; the ca. 100 Ma 

restored geometry shows moderate to steep dips of the cover rocks, subparallel to the salt-wall, and 

similar attitude to the present-day structure. Cenozoic compression resulted in the squeezing and 

extrusion of its saline core (only Triassic basalts remain at present) together with north-directed 

thrusting, cleavage development and folding. 

- In the Timedouine and Tadaghmamt ridges only Bajocian limestones crop out; in the case of the 

Timedouine ridge, they do not allow to reconstruct the pre-compressional evolution of the salt-

walls. However, the extensional geometries of both ridges show moderate dips away from their 

cores, indicating that the salt-walls were already developed before the remagnetization acquisition. 

In these ridges, the Jurassic deformation was minor, confined to the areas adjacent to the structure; 

the Cenozoic compression only generated the welding of the salt-walls and buttressing of the 

overburden towards the structures, with the generation of folds verging towards the ridges. 

- The ca. 100 Ma structure of the Toumliline diapir was mainly conditioned by normal faulting; the 

hanging wall is deformed close to the fault, showing growth strata or a drag fold, whereas the rocks 

of the footwall are deformed by a salt-roller. Most of the present-day structure developed during the 

Cenozoic compression, whit the development of a north-verging thrust and associated folds. 
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Table 1. Remanent magnetization parameters of the ChRM. n/N: number of samples used to calculate the site-mean paleomagnetic direction / 

number of demagnetized samples. DipDir: Dip direction. BBC: before bedding correction. ATBC: after total bedding correction. BFD: best fit 

direction. BFD-Ref. angle: angle between the BFD and the calculated remagnetization direction. 

SITE 

Coordinates (WGS84) 

Age 

Bedding 
Paleo-

Bedding  
BBC 

Fisher 

parameters 
ATBC BFD 

BFD-

Ref. 

angular 

distance 

Reference 

Longitude Latitude 
Dip

Dir 
Dip 

Dip

Dir 
Dip n/N Dec Inc α95 k Dec Inc Dec Inc 

DP01 -5.665333 32.127467 Aal.-Baj. 355 71 175 8 8/8 194.8 62.5 6.4 75.5 342.4 44.4 343.8 36.2 9.6 Calvín et al., 2017b 

DP02 -5.666252 32.128031 Aal.-Baj. 350 60 350 3 8/8 253.3 70.2 4.3 166.7 327.1 30.3 326.2 33.5 5.1 Calvín et al., 2017b 

DP03 -5.666942 32.128857 Aal.-Baj. 001 25 181 5 7/8 314.7 60.3 5 144.4 333.1 40 335 35.2 2.4 Calvín et al., 2017b 

DP04 -5.667967 32.129517 Baj.-Bath. 355 14 175 6 8/8 320.5 52.0 6.8 68.1 328 39.9 330.1 34.1 1.8 Calvín et al., 2017b 

DP05 -5.587417 32.142367 Toar.-Aal. 293 87 293 79 8/8 325.0 45.1 5.6 99.2 319.9 -34.1 321.3 38 9.4 Calvín et al., 2017b 

DP06 -5.588833 32.142842 Toar.-Aal. 303 59 303 46 8/8 328.0 48.4 6.6 70.4 319.4 -7.5 323.4 36.4 7.4 Calvín et al., 2017b 

DP07 -5.590900 32.153424 Aal.-Baj. 325 70 325 8 8/8 090.7 79.2 1.6 1178.8 334.7 26 335.6 34.3 2.8 Calvín et al., 2017b 

DP08 -5.590217 32.125674 Aal.-Baj. 138 82 138 74 7/8 345.1 24.6 8.7 48.8 83.9 59.3 347.2 31.8 12.8 Calvín et al., 2017b 

DP09 -5.594883 32.125183 Aal.-Baj. 124 78 124 58 8/8 332.1 16.4 4.1 185.7 46.5 62.4 336.7 33.3 4 Calvín et al., 2017b 

DP10 -5.598700 32.128833 Aal.-Baj. 333 71 333 74 7/8 321.9 31.2 5.7 115.1 320.8 -38.7 321.5 34 8.8 Calvín et al., 2017b 

DP11 -5.601567 32.128941 Aal.-Baj. 305 51 305 51 8/8 323.4 36.1 3.7 219.5 320.2 -13 323.4 36.3 7.3 Calvín et al., 2017b 

DP12 -5.588783 32.125612 Bath. 060 25 60 41 5/8 343.1 33.4 7.9 94.1 356.4 24.8 332.3 35.5 1 Calvín et al., 2017b 

DP13 -5.600567 32.061133 Baj. 175 27 355 4 6/8 328.1 05.0 9.6 49.29 324.1 28.7 322.8 32.3 8.2 This work 

DP14 -5.601109 32.058163 Baj. 333 58 333 49 7/8 346.6 42.4 6.6 84.4 343.3 -14.6 345.1 33.9 10.7 This work 

IC04 -5.629883 32.161967 Bath. 348 22 348 11 8/8 336.4 46.6 12.2 21.6 335.3 23.8 333.8 34.7 1.3 
Torres-López et al., 

2014 

IC46 -5.560222 32.135609 Bath. 324 49 324 4 7/8 31.6 65.8 19.1 10.9 349.6 28.7 350.5 31.9 15.5 
Torres-López et al., 

2014 

IC47 -5.550108 32.118278 Bath. 342 85 342 70 8/8 31.6 65.8 13.2 18.6 327.1 -33.8 327.1 34 4.3 
Torres-López et al., 

2014 

IC52 -5.476490 31.870688 Sinem. 313 10 313 11 7/8 344.7 31.3 24.3 7.1 342.1 22.7 344.9 31.7 11 
Torres-López et al., 

2014 

IC53 -5.465222 31.856627 Sinem. 105 39 105 3 9/10 308.8 08.8 7.1 53.9 318.3 43.5 316.7 40.7 13.7 
Torres-López et al., 

2014 

IC54 -5.468583 31.804349 Aal.-Baj. 154 11 334 6 8/7 331.9 17.5 13.7 20.3 331.7 28.5 331.6 34.5 0.5 
Torres-López et al., 

2014 

ILA06 -5.609032 32.136854 Baj. 315 46 315 13 6/6 341.2 66.5 4.6 215.4 326 22.3 327.4 35.1 4 This work 

ILA07 -5.608960 32.136928 Aal.-Baj. 308 25 308 15 5/6 347.8 39.2 6.3 148.7 339.6 18.7 343.6 31.5 10 This work 

ILA08 -5.609935 32.138198 Aal.-Baj. 238 81 148 3 5/5 100.1 51.1 6.9 123.7 1.5 32.5 0.6 30.2 24.3 This work 
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ILA09 -5.616795 32.145754 Aal.-Baj. 326 44 326 7 5/6 304.6 70.2 15 27 318 27.2 317.4 34.4 12.2 This work 

ILA20 -5.597218 31.945817 Baj. 158 19 158 26 5/7 334.8 42.0 5.4 153.5 333.1 61 335.1 34.6 2.4 This work 

ILA21 -5.600967 31.952781 Baj. 148 56 148 57 6/7 337.5 35.2 15.2 20.3 69.4 82.1 337.4 34.2 4.3 This work 

ILB06 -5.605602 32.029138 Baj. 339 45 159 26 7/8 174.2 73.6 7.6 64.5 330.3 60.6 333.8 34.6 1.4 This work 

ILB11 -5.610734 31.972227 Baj. 164 28 344 12 4/8 323.5 
-

05.0 
10.8 72.8 322 21.2 319.5 32.6 10.7 This work 

ILB12 -5.613047 31.960845 Baj. 323 59 323 41 4/8 346.5 50.1 23.5 16.2 337.9 -6.3 340.9 33.6 7.3 This work 

ILB13 -5.611863 31.959237 Baj. 340 60 340 65 5/8 342.4 29.5 9.5 65.3 342.4 -30.5 342.5 34.7 8.5 This work 

SK03 -5.552833 32.123864 Bath. 339 75 339 48 7/8 352 61.4 7.9 49.6 345.3 -12.9 346.5 34.5 11.8 Calvín et al., 2017b 

TM01 -5.520719 31.840945 Hett. 178 25 178 25 8/8 336.4 35.0 6.6 72.4 324 57.3 336.3 35.4 3.5 This work 

TM02 -5.500862 31.845844 Hett. 180 38 180 22 8/8 334.2 20.1 4.5 149.5 318 52.3 330.4 34.1 1.5 This work 

TM04 -5.489845 31.844744 Hett. 172 79 172 19 8/8 346.5 
-

23.9 
3.9 

204.9

8 
343.3 54.7 345.8 36 11.2 This work 

TM05 -5.480297 31.830942 
Pliens.-

Toar. 
152 27 152 16 7/8 324.9 23.4 10.7 33.07 321.8 50.1 324.1 34.3 6.7 This work 

TM06 -5.481719 31.835901 
Hett.-

Sinem. 
182 12 2 11 5/6 312.9 10.8 15.3 20.2 310.5 18.5 307.5 24.7 23.5 This work 

TM07 -5.481719 31.835901 
Hett.-

Sinem. 
138 37 138 8 5/6 323.0 06.4 9.8 62.1 324.8 43.2 324.1 35.2 6.7 This work 

TM08 -5.482122 31.840737 Hett.-Sin. 156 40 156 19 8/8 326.8 13.0 5.7 94.24 321.3 52.2 325.2 34.1 5.8 This work 

TM09 -5.484549 31.843696 Hett. 158 50 158 19 5/8 336.4 03.8 4.4 
300.7

7 
335.3 53.8 336.1 34.6 3.2 This work 

TM11 -5.511277 31.821042 
Pliens.-

Toar. 
178 40 178 20 7/8 336.6 16.5 8.2 54.87 323.1 52.3 332.8 34.7 0.5 This work 

TM12 -5.540931 31.813803 
Pliens.-

Toar. 
158 30 158 3 4/8 332.7 07.4 11.2 68.66 331.4 37.2 331.6 34.5 0.5 This work 

TM13 -5.470787 31.868641 Toar.-Aal. 314 78 314 14 5/8 061.2 60.2 17.5 20.16 344.1 18.9 347.7 31.1 13.4 This work 

TM14 -5.470827 31.869095 Toar.-Aal. 146 12 326 5 6/8 340.1 16.8 4.1 
272.5

5 
341.4 28.4 342.3 33.6 8.4 This work 

TM15 -5.470659 31.866227 Hett. 175 88 175 21 8/8 322.5 
-

26.6 
5.7 95.6 309.6 47.6 320.6 31.6 10.1 This work 

TM16 -5.479769 31.884229 Baj.-Aal. 007 65 - - 0/8 - - - - - - - - - This work 

TM17 -5.505608 31.854215 Toar.-Aal. 304 47 304 23 7/8 345.2 54.7 10.3 35.48 327.1 13.8 331.6 34.7 0.5 This work 

TM18 -5.505320 31.853987 Toar.-Aal. 304 75 304 38 7/8 005.5 60.4 6.5 87.66 329.7 -0.1 335.4 33.7 2.8 This work 

TM19 -5.506541 31.855322 Toar.-Aal. 325 24 325 22 8/8 333.7 36.3 6.3 77.73 332.2 12.5 333.5 34.4 1.1 This work 

TM20 -5.499786 31.856561 Toar.-Aal. 327 78 327 56 8/8 333.9 56.0 5.5 
104.0

2 
331.1 -21.8 331.7 34.5 0.4 This work 
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TM21 -5.497711 31.860331 Toar.-Aal. 337 60 337 36 7/8 330.2 58.6 5.3 
150.5

8 
333.5 -1.2 332.7 34.5 0.4 This work 

TM22 -5.490631 31.865333 Toar.-Aal. 348 27 348 33 7/7 334.4 28.7 2 
879.5

5 
336.1 2.3 333.5 34.7 1.1 This work 

TM23 -5.530925 31.844204 Toar.-Aal. 342 31 162 0 8/8 298.5 58.9 7.8 51.25 317 32.8 317.1 32.3 12.8 This work 
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Figure 1. (a) The Altlas Chain in the context of the Western Mediterranean 
framework. (b) Geological map of the Central High Altas (CHA) and location of the 
study area (Fig. 2). (c) Simplified temporal evolution of the main geological events 
occurred in the CHA. (a) and (b) modified after Teixell et al.(2003). 
Figure 2. Geological map (a) and A-A’ cross-section showing the four ridges 
analyzed in this work, as well as the paleomagnetic sites. A *.kml !le with the same 
information can be  obtained  in  the supplementary material. The  geological  
cartography  is  based  in previous works  (Heitzmann  and  Stüder,  1990; Hadri,  
1997; Milhi,  1997;  Fadile,  2003; Michard et al., 2011; Saura et al., 2014; Calvín et 
al., 2017). 
Figure 3. Orthogonal plots of NRM of representative samples, plotted in in situ 
coordinates. (a) Typical  signature  of  the  samples,  showing  the  component  A  with  
unblocking  temperatures between 250 and 450ºC, going to the origin. (b) Presence of 
goethite. (c) In some samples, the component A does not go to the origin because of 
the presence of the high temperature (up to 500ºC) and high coercivity component B, 
which shows either normal and reverse polarities. (d) Samples  with  absence  of  
component  A.  Calculated  A  and  B  component  are  in  the supplemetary.  (e)  
Hysteresis  loops  back!eld  cycle  and  thermomagnetic  curves  of  one representative 
sample. (f ) Hysteresis parameters plot and mixing curves for magnetite (Dunlop, 2002) 
showing a mixture between SP and SSD in the measured samples. 
Figure  4.  (a-b)  Bootstrap  fold-test  (Tauxe  and Watson,  1994)  of  the  components  A  and  
B  using  sample directions. Both components are interpreted as remagnetizations: component 
A can be clearly interpreted as a syn-folding remagnetization, whereas component B is almost 
post-folding. (a) Equal area projection of the site mean paleomagnetic directions of the ChRM 
(component A) and the corresponding small circles used to calculate the remagnetization 
direction. Mean directions of component A are in the Supplementary. BBC and ATBC: Before 
and after total tectonic correction respectively. BFD: Best !t direction. A/n matrix (Waldhör and 
Appel,  2006),  calculated  remagnetization  direction  (reference  direction  for  restoration)  
and  Kent’s  95% con!dence ellipse (Calvín et al., 2017c). 

Figure  5.  Present-day  (a)  and  ca.  100  Ma  (b)  B-B’  cross-sections  across  the  Ikkou  
ridge,  showing  the paleomagnetic sites used in the restoration. (c) Paleomagnetic 
directions with their respective small circles used in this work. (d) Chevron north-verging 
folds of the northern limb of the ridge. (e) Restoration of the northern limb of the Ikkou 
structure. SK03, IC46, IC47 and IC48 sites are extrapolated from the East. 

Figure 6. Present-day (a) and ca. 100 Ma (b) C-C’ cross-sections across the 
Tadaghmamt ridge and paleomagnetic sites used in the restoration. (c) 
Paleomagnetic directions with their respective small circles used in this work. (d) 
Core of the ridge showing the large amount of Triassic basalts, capped by Bajocian 
limestones. (e) Picture taken towards the W showing the core of the ridge, with 
Triassic red-shales capped by Bajocian limestones. (f ) Core of the Ridge and fold 
in its southern limb. 

Figure  7.  Present-day  (a)  and  ca.  100 Ma  (b) D-D’  cross-sections  across  
the Timedouine  ridge  showing  the paleomagnetic  sites  used  in  the 
restoration.  (c) Paleomagnetic  directions  with  their  respective  small  circles 
used  in  this  work.  (d)  Easternmost  end  of  the Timedouine  ridge,  showing 
Triassic  red-shales  and  Jurassic gabbros in the core, and Bajocian limestones 
as the overburden. (e) Local sedimentary unconformities in the Aalenian-
Bajocian marls. 
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Figure  8. Present-day  (a) and ca. 100 Ma (b) E-E’ cross-sections across the Toumliline ridge showing 
the paleomagnetic sites used in the restoration. (c) Paleomagnetic directions with their respective small 
circles used  in  this  work.  (d)  The  Toumliline  diapir,  showing  Triassic  shales  and  basalts  in  its  
core,  and  the Hettangian in its southern limb thrusting over the Aalenian-Bajocian in its northern limb. 
(e) Present-day and  ca.  100 Ma  F-F’  cross-section showing that most part  of  the  present-day  
deformation  is  related  to Cenozoic thrusting. 
Figure 9. Present-day and ca. 100 Ma cross sections along the study area. The cross-section is composed by the B-B’, 
C-C’, D-D’ AND E-E’ cross-sections. 
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Highlights 

 

Pre-compression restoration of salt-related structures in the Central High Atlas 

Differentiation between extensional salt-walls and upright thrust anticlines 

 Widespread ca. 100 Ma remagnetization affecting Jurassic carbonates 

Use of remagnetization to restore paleo-attitude of the beds in sedimentary basins 
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