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Abstract

Forming complexes with cyclodextrins can enhance the dissolution rate, the stability,

the solubility and the bioavailability of a drug. In this work, piroxicam/β-cyclodextrin

complexes were prepared at solid state by means of supercritical carbon dioxide. The

influence of temperature, residence time, water content and a ternary agent, L-lysine, were

studied. The complex was characterized by Differential Scanning Calorimetry, Scanning

Electronic Microscope and dissolution profile in water. Finally, a complete inclusion was

achieved for a piroxicam/β-cyclodextrin/L-lysine mixture by keeping a physical mixture of

the three compounds (1:2:1.5 molar ratio) for 2 hours in contact with CO2 at 150°C and

15 MPa.
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1. Introduction

Novel pharmaceutical molecules often exhibit a limited solubility in water, the major

component of biological fluids. Thus, a difficult challenge is to make these molecules

available for their biological targets. Various methods have been used to increase their

dissolution rate, including micronisation, modification of the physico-chemical properties of

the drug and complexation with cyclodextrins (CD).
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Micronisation may lead to the enhancement of powders dissolution rate by increasing

their specific surface area. The classical processes, crushing/milling and liquid crystallisation

are still the most used [1]. However, supercritical fluid (SCF) technology presents a new and

interesting route, which avoids most of the drawbacks of the traditional ones [1, 2]. A SCF is

a fluid used at temperatures and pressures above its critical values. The interest in using this

technology is due to the special properties that are inherent to this class of fluid, including the

ability to vary solvent density and properties by changing either the pressure or the

temperature. Moreover, additional advantages lie in the use of carbon dioxide (CO2) which

properties of non-toxicity and mild critical conditions make it an ideal substitute to organic

solvents. CO2 is gaseous at ambient conditions, which simplifies the problem of solvent

residues. Classical particle generation processes using SCF, mainly RESS (Rapid Expansion

of a Supercritical Solution), SAS (Supercritical Anti-Solvent) and PGSS (Particles from Gas-

Saturated Solution), can lead to the enhancement of powder dissolution rate by increasing the

specific surface area. However, other properties like wettability of the powder could be an

important parameter to consider and, in addition, the increase due to higher surface area could

be insufficient [3].

Another way to increase powder dissolution consists in complexation with CD. CD are

tronconic shaped cyclic oligosaccharides consisting of D-glucopyranose units linked by

glycosidic bonds (Figure 1). Commercially available CD consist of six, seven or eight

D–glucose units and are referred as α-, β- and γ-CD respectively. As the outside surface of

these molecules is hydrophilic and the inside surface hydrophobic, they are able to include,

fully or partially, in their cavity large organic molecules by non-covalent interaction forces

(hydrogen bonds, Van der Waals forces). Physical and chemical properties of the included

molecules may thus be favourably modified, and in particular the physical stability and the

aqueous solubility can be improved [4, 5].

However, due to various reasons including cost, toxicology and dosage, the amount of

CD that can be used in most formulations should be restricted [6]. Therefore, different

methods have been undertaken to improve their performance. Among the possible different

approaches, recent works showed that the addition of suitable auxiliary substances can

significantly increase the CD solubilising and complexing abilities by multicomponent
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complex formation [6]. For instance, it has been shown that the addition of hydroxy- or

amino-acids can lead to the improvement of CD performance, which can be seen as a result of

the combined effects of salt formation and inclusion complexation [7, 8, 9, 10].

Several techniques have been used to prepare an inclusion complex, including kneading,

grinding, freeze drying or crystallization. However, the disadvantages of using some of these

methods lie in the poor aqueous solubility of many non polar drugs. In addition, they are time

and energy consuming, necessitate multistage processing and often result in residual solvent

in the product.

One of the techniques developed to overcome these drawbacks uses SCF [11]. In 1990,

Kamihira et al. used CD for the entrapment of volatile aromatic compounds after extraction

with pressurized CO2 at 10 MPa and 20°C [12]. In 1996, Giordano et al. studied the

interaction of supercritical (SC) CO2 with a drug/cyclodextrin inclusion compound and the

possibility of extracting the drug from the inclusion compound by supercritical extraction

[13]. In 1999, Van Hees et al. prepared a piroxicam/β-CD inclusion compound by

pressurising in a static mode a physical mixture of the two compounds with SC CO2 up to

45 MPa and 150°C [14]. More recently, drug/CD complexes were successfully prepared in

SC media by dynamic or static methods for several molecules (Table 1 [12-57]). Complexes

of miconazole and piroxicam have also been prepared with the addition of ternary compounds

[15-18]. In 2003, a three-step process has allowed the bioavailability enhancement of

eflucimibe [21] and the scaling up of the technology has been successfully studied [22].

Piroxicam (PI) is a non-steroidal anti-inflammatory drug (NSAID) that also possesses

analgesic and antipyretic properties (Figure 2). Its major indications are inflammatory and

degenerative rheumatism, acute post-traumatic musculoskeletal disorders, and the

symptomatic treatment of acute arthritis [58]. Literature already describes an inclusion

complex of PI with β-CD in a molar ratio of 1:2.5 which, in comparison with neat PI, shows

improved wettability and water solubility, higher plasma concentration (Cmax), takes less time

to reach the peak concentration (Tmax) and reduces gastrointestinal side effects [59, 60].
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The aim of this work is to prepare inclusion complexes between PI and β-CD by using

SC CO2 and to study the influence on the inclusion yield of operating parameters as

temperature, duration or composition. As an ammonium hydroxide solution is added for the

preparation of the spray-dried inclusion complex [61], the influence of a ternary alkaline

compound on inclusion is also investigated. However, supercritical ammoniac is highly

corrosive and would deteriorate the high pressure stainless steel vessel. Therefore, a weaker

alkaline agent, the L-lysine (LL), is used [15].

2. Materials and methods

2.1. Materials

CO2 was purchased from Air Liquide S. A. (purity 99.995%), PI and LL from Sigma

Aldrich (purity 99.99 and 98% respectively) and β-CD from Acros Organics (purity 99%).

Distilled water was used.

2.2. Complex preparation

The process was carried out by means of a polyvalent pilot plant (Separex, France),

equipped with two 2-liter vessels by following an operating mode already described [56].

Approximately 10 g of a physical mixture of each different compound was prepared. It has to

be noted that the water is always added in last. Then, the physical mixture was put in a

cylindrical 1.5-liter stainless steel cartridge closed at its extremities with stainless steel

sintered disks. The vessel, inside which the cartridge has been placed, is heated and

pressurized at the required temperature and pressure and left in a static mode. At the end of

the process, the vessel was depressurized to atmospheric pressure and the content of the

vessel was ground and homogenized in a mortar.

2.3. Thermal analysis

Thermal analysis was performed on about 5 mg sample by using a Differential Scanning

Calorimetry (DSC, Model 7, Perkin Elmer, France) between 50 and 250°C at a heating rate of

10°C.mn-1 under a N2 gas stream.
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Redenti at al. [62] successfully used thermal analysis for differentiating a PI/β-CD true

inclusion complex and a physical mixture of the two amorphous components. As PI exhibits a

high tendency to crystallize, the measurement of the melting peak area allows evaluation of

the free PI content, irrespective of its amorphous or crystalline state.

In Figure 3, typical curves of both physical mixture and SCF processed sample are

depicted. The DSC curve of the physical mixture shows two peaks: a broad endotherm

between 50 and 100°C corresponding to the water loss of the β-CD, followed by an

endothermal peak at about 200°C characteristic of the crystalline piroxicam melting. When

working with SCF, the disappearance of the endothermic peak is considered as an evidence of

the inclusion phenomenon. Thus, an inclusion yield, 

€ 

TCX
PI , was calculated with the following

expression:

€ 

T
CX

PI = 1− ΔHex
PI

ΔHth
PI

 

 
 

 

 
 *100 ( 1 )

€ 

ΔHex
PI  is the enthalpy corresponding to the melting peak of PI measured for the sample

and 

€ 

ΔHth
PI  is the theoretical enthalpy if no inclusion occurs. 

€ 

ΔHth
PI  is calculated from enthalpy

measured for pure PI, proportionally to the weight concentration of PI in the sample.

The relevance of this procedure has been confirmed by Van Hees et al., who have

obtained the same results with this method and the differential solubility method [63].

2.4. Visualisation

The samples were observed using an Environmental Scanning Electronic Microscope

XL30 ESEM FEG (Philips, Netherlands).

2.4. Drug content and dissolution kinetics studies

In vitro dissolution studies were performed in the same conditions for all samples. A

quantity of powder equivalent to 50 mg of PI was introduced in 50 ml of water at 37°C and

stirred with a magnetic stick. To determine the corresponding sample weight to be introduced,

and thus to check that no PI was extracted or deteriorated during SCF process, PI content was

measured by HPLC for all samples. During dissolution, samples were collected at different

intervals, filtered (0.45 µm) and the PI content in the filtrates was analysed by HPLC.
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3. Results

The operating conditions of the experiments are presented in Table 2. The

corresponding inclusion yield 

€ 

TCX
PI , calculated according to Eq. (1), is also reported in this

table. A previous study showed that pressure had little influence in the range 15-45 MPa [14].

In the beginning of this study, the pressure of CO2 was fixed at 15 MPa. As in some cases a

complete inclusion could be obtained, the influence of pressure was no more deeply

investigated.

To check the reproducibility of the experiments, four of them have been carried out

twice (experiments # 6-# 21, # 7-# 12-# 18, # 10-# 15 and # 22-# 23). As can be seen in Table

2, results are similar with a standard relative deviation less than 2 %.

The first experiments have been carried out with a molar ratio of PI:β-CD:LL equal to

1:2.5:1 and a water content of 27.5 % to observe the influence of temperature for a two hours

duration (# 1 to # 5). These data suggest that there is a shift in the equilibrium toward the

complexed form with an increase in the temperature. For the following experiments, the

temperature was fixed at 150°C.

The influence of water content has been examined, with or without the addition of LL in

the mixture (# 6 to # 8 and # 9 to # 11 respectively). A water content of 9 % corresponds to

the natural hydration of β-CD and a content of 27.5 % to a maximum before obtaining a paste.

On the basis on these results, it is clear that the additional water is essential for complexation.

The experiment # 6 shows that a PI:β-CD molar ratio of 1:2 provides the same inclusion

rate than a 1:2.5 ratio. It also confirms previous results of Van Hees et al. [15]. These authors

have studied the influence of the PI:β-CD molar ratio between 1:0.5 and 1:2.5 and have

observed the highest inclusion yield with a 1:2 molar ratio.

The experiments # 12 to # 17 have investigated the exposure time to SC CO2 at 15 MPa

and 150°C at an intermediate water content, with and without LL. In the presence of LL, the

duration had a positive influence on inclusion yield by increasing the contact time. Without

LL, inclusion yield was also improved for lower contact times but remained more or less

constant for higher duration. In these operating conditions, we can finally conclude that a too
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high duration is required to obtain a sufficiently high inclusion yield. It also appears from the

former experiments that LL does have a dramatic positive effect on the inclusion efficiency.

Thus, the LL effect has been deeply investigated in experiments # 18 to # 22.

All the results for two hours duration at 15 MPa and 150°C are summarized on Figure 4.

This figure shows the inclusion yield as a function of LL molar ratio for the three water

content levels tested. Finally, a combination of a high water content (27.5 %) and a molar

excess of LL in comparison with PI allows to obtain a complete inclusion (# 22).

The γ-CD has also been tested in the operating conditions that have provided an almost

complete inclusion with β-CD (the yield was 94 %). A lower inclusion was obtained with this

γ-CD, with a yield equal to 76 %.

The Figure 5 presents the SEM pictures of raw materials. We can observed large well-

formed crystals of PI and large plate particles of CD. A visual observation of the processed

powders has shown two main aspects in the materials obtained: either yellow clusters or

slightly browned powders, the higher the inclusion yield the higher proportion of clusters.

Both were separated, submitted to thermal analysis and observed with SEM (Figure 6). The

inclusion yield measured for browned powder and yellow clusters are 33 and 99 %

respectively. Thus, the powder corresponds to partially complexed PI whereas clusters are

completely complexed PI. On Figure 6, we can see that a homogeneous cubic structure

appears in yellow clusters when complex formation is achieved. In browned powder, this

cubic structure coexists with large particles on which some fibers are deposited. Large

particles correspond to pure CD and PI crystals are no more distinguishable. Fibers are

probably PI which crystallized during the pressure drop at the end of the process. This

evolution of structure was already observed in previous works during complex formation [21,

56]. Finally, the visual observation of the material provides a means to control the

advancement of the process.

Figure 7 shows the results of dissolution tests for unprocessed PI and three physical

mixtures with β-CD and LL, two binary and one ternary. In the case of physical mixtures, PI

dissolution is practically not modified by the presence of β-CD but is largely enhanced by LL,
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irrespective of the presence of β-CD. This observation seems to be in contradiction with the

high effect of the LL on the inclusion yield previously noted.

Dissolution profiles for four SCF processed samples are presented on Figure 8 (samples

# 19, # 20, # 22 and # 24). Sample # 19 exhibits a dissolution profile similar to that of the

physical mixture, but is completely dissolved after 60 min. This can be explained by the high

LL content of this sample. Sample # 20 presents an instantaneous dissolution that remains

constant at a lower level than that of # 19 (about 500 µg.ml-1), in spite of its higher inclusion

yield (73 % instead of 52 %). The instantaneous dissolution is probably due to the included

fraction of PI, but the low LL content (0.5) does not allow a higher dissolution. The sample #

24, with an inclusion yield similar to # 20, exhibits the same dissolution profile at however a

higher level. This can be explained both by the higher aqueous solubility of γ-CD in

comparison to β-CD (233 and 18.5 g.mol-1 at 25°C respectively) and by the higher LL

content. Finally, the dissolution of sample # 22, entirely included, is complete and

instantaneous.

4. Discussion

It is clear that the additional water is essential for complexation to occur and that the

higher the water content the higher the inclusion level. This added water acts in two ways:

solubilization of the surface of CD promoting surface cracking (Figure 6) and increasing the

surface of contact and destabilization of water present in the CD cavities. This internal water

may become unstable with a higher energy state, supporting its replacement by PI molecules

[56].

It has also been observed that the way physical mixture is prepared could also influence

the complex formation of ketoprofen, an active substance [56]. Indeed, the addition of water

in the physical mixture before active substance seems to make more difficult the association
of CD with active substance. It has been explained by the stabilization of the water structured
into the CD cavities and the inhomogeneous distribution onto CD surface of hydrophobic
active substance. On the contrary, the addition of water after the active substance has

exhibited an important positive effect on complexation of ketoprofen. The second procedure
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has been used in this work.

In the experimental conditions used, a minimum temperature of 140°C is necessary to

obtain the higher inclusion. This is in agreement with the PI results of Van Hees et al. [14],

who have observed at 15 MPa for 3 h an increase of the inclusion yield from 4 % at 100°C to

85 % at 150°C. The inclusion yield seems to be controlled rather by transfer and association

phenomena than PI solubility in supercritical CO2, as observed by Rodier et al. [21]. Indeed,

in SC CO2, CD were found to be insoluble [30] and PI solubility decreases with temperature

at 15 MPa [14, 64]. On the contrary, the CO2 viscosity decreases with temperature and thus,

the CO2 diffusivity and the diffusion coefficient of a solute in SC CO2 increases [65].
Moreover, at higher temperatures, water in the cavities becomes less stable, and thus more
likely leaves the cavities to be replaced by PI [56].

The addition of LL, in presence of added water, shows a dramatic positive effect on the

inclusion efficiency. Others kinds of studies like NMR spectroscopy or molecular dynamics

are necessary to conclude if L-lysine reinforces the formation of the inclusion complex.

However, during dissolution tests, no synergistic effect on PI solubility enhancement is

observed in ternary system. This observation seems to indicate on contrary no specific

involvement of LL in the molecular assembly of a ternary complex [9, 10]. Another way of

explanation is thus based on the wetting ability of the LL, which would allow a better water

distribution on the powder and an increase of the association.

Finally, a combination of a high water content (27.5 %) and a molar excess of LL in

comparison with PI allows to obtain a complete inclusion. The dissolution of this entirely

included sample is complete and instantaneous. This confirms the relevance of DSC to control

the effectiveness of the SC treatment, as it is easier to implement than dissolution test.

5. Conclusion

Complexation with CD is an interesting method to improve aqueous dissolution of

poorly water-soluble drugs. In this work, inclusion complexes of PI with β-CD and γ-CD have

been prepared by using SC CO2. The process consists in a static step during which the powder

is submitted to pressurized SC CO2. A combination of a high water content, the use of
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L–lysine as ternary agent and a temperature higher than 140°C allows to reach high inclusion

yield. Finally, a complete inclusion was achieved for 2 hours at 15 MPa and 150°C with a

molar excess of LL and 27.5 % of water. The SEM pictures of processed powders shows that

a homogeneous cubic structure appears when complex formation is achieved.

The aqueous dissolution rate of the complex formed by SC CO2 was found to be

significantly higher than that of the physical mixture of the components. This study

demonstrates that a supercritical process can be efficient to form an inclusion complex in

solid state. This method is attractive since CO2 leads to powders free of organic solvent. It can

also limits drug degradation, although it could imply a too high temperature.
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Drug References

geraniol, mustard oil [12]

acetaminophen [13]

piroxicam [14, 15]

miconazole [15, 16, 17, 18, 19, 20]

Eflucimibe [21, 22]

ibuprofen [23, 24, 25, 26, 27, 28, 29]

naproxen [28, 30, 31, 32]

flurbiprofen [28]

citral, thymol, carvacrol [33]

imazalil [34]

salicylic acid [35]

azobenzene [36]

budesonide [37, 38, 39]

indomethacin [40]

polyaniline [41]

cholesterol [42]

arylphosphines [43]

itraconazole [44, 45, 46]

2 sodium salts [47]

hydroxyflavone [48]

benzocaine [50, 49,]

bupivacaine, and mepivacaine [50]

simvastatin [51]

several triphenyl phosphine derivatives [52]

all-trans-lycopene [53]

15 carbohydrates [54]

human serum immunoglobulin G [55]

ketoprofen [56]

econazole [57]

Table 1. Drug/CD complexes prepared in SC media by dynamic or static
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58 59 60 61 62 63 64 65

Sample Mixture Supercritical process

€ 

TCX
PI

CD Molar ratio
PI:CD:LL

H2O
(% mass.)

P
(MPa) T (°C) t (h) (%)

# 1 β 1:2.5:1 27.5 15 150 2 92

# 2 β 1:2.5:1 27.5 15 140 2 91

# 3 β 1:2.5:1 27.5 15 130 2 63

# 4 β 1:2.5:1 27.5 15 120 2 66

# 5 β 1:2.5:1 27.5 15 110 2 57

# 6 β 1:2:1 27.5 15 150 2 94

# 7 β 1:2:1 20 15 150 2 48

# 8 β 1:2:1 9 15 150 2 0

# 9 β 1:2:0 27.5 15 150 2 20

 # 10 β 1:2:0 20 15 150 2 0

# 11 β 1:2:0 9 15 150 2 0

# 12 (~# 7) β 1:2:1 20 15 150 2 47

# 13 β 1:2:1 20 15 150 5 49

# 14 β 1:2:1 20 15 150 16 60

# 15 (~# 10) β 1:2:0 20 15 150 2 0

# 16 β 1:2:0 20 15 150 5 15

# 17 β 1:2:0 20 15 150 16 11

# 18 (~# 7) β 1:2:1 20 15 150 2 50

# 19 β 1:2:1.5 20 15 150 2 52

# 20 β 1:2:0.5 27.5 15 150 2 73

# 21 (~# 6) β 1:2:1 27.5 15 150 2 94

# 22 β 1:2:1.5 27.5 15 150 2 100

# 23 (~# 22) β 1:2:1.5 27.5 15 150 2 100

# 24 γ 1:2:1 27.5 15 150 2 76

Table 2. Operating conditions of the experiments and inclusion yield obtained
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Legend to Figures

Figure 1. Formula of β-cyclodextrin

Figure 2. Formula of piroxicam

Figure 3. Typical DSC curves: physical mixture (solid line) and SCF processed sample

(dashed line)

Figure 4. Inclusion yield 

€ 

TCX
PI  vs. LL molar ratio for different water contents

Figure 5. SEM pictures of raw materials: PI (a) and CD (b)

Figure 6. SEM pictures of partially (a) and completely (b) complexed powders

Figure 7. Dissolution rate profiles for unprocessed PI and its physical mixtures

Figure 8. Dissolution rate profiles for different SCF processed samples
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Figure 2
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Figure 3
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Figure 4
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Figure 7
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Figure 8
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