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Abstract 26 

There is evidence that microbial populations play an important role in altering soil pore 27 

geometry, but a full understanding of how this affects subsequent soil behaviour and 28 

function is still unclear. In particular the role of microorganisms in soil structural 29 

evolution and its consequence for pore morphological development is lacking. Using a 30 

combination of bio-chemical measurements and X-ray Computed Tomography (CT) 31 

imaging, a temporal comparison of microscale soil structural development in 32 

contrasting soil environments was made. The aim was to quantify the effect of microbial 33 

activity in the absence of other features likely to cause soil deformation (e.g. 34 

earthworms, roots etc.) on soil structural development in wet soils, defined by changes 35 

in the soil porous architecture i.e. pore connectivity, pore shape and pore volume during 36 

a 24 week period. Three contrasting soil textures were examined and changes compared 37 

between field soil, sterilised soil and a glucose enhanced soil treatment. Our results 38 

indicate that soil biota can significantly alter their microhabitat by changing soil pore 39 

geometry and connectivity, primarily through localised gaseous release. This 40 

demonstrates the ability of microorganisms to modify soil structure, and may help 41 

reveal the scope by which the microbial-rich rhizosphere can locally influence water 42 

and nutrient delivery to plant roots. 43 

44 



1. Introduction 45 

Our understanding of the spatiotemporal nature of soil structure remains limited, despite 46 

its importance for nutrient availability to plant roots, gaseous exchange through the soil 47 

profile and movement of solutes through pore networks (Hinsinger et al., 2009). It has 48 

long been acknowledged that soil microbial activity and function are closely linked to 49 

structure (Crawford et al., 2012; Oades, 1984; Six et al., 2004), with processes related to 50 

soil biological activity such as: i) the microbial exudation of secondary metabolites and 51 

binding agents (Bossuyt et al., 2001; Six et al., 2006); and ii) particle enmeshment by 52 

fungal communities (Moreno-Espíndola et al., 2007; Tisdall, 1994) both increasing 53 

adhesion between soil particles and generating particle aggregation. However, the rate, 54 

nature and scale by which changes occur remains uncertain.  55 

 56 

Soil microstructure is known to regulate microbial function (Young and Ritz, 2000), 57 

largely through influencing the spatial distribution of soil biota (Nunan et al., 2006). 58 

Distinct local microenvironments associated with microbial communities cause highly 59 

variable biological activity throughout the soil matrix (Fenchel, 2003), with evidence 60 

for microorganism patchiness confined to specific niches recorded at hundred µm scales 61 

(e.g. Nunan et al. (2003)). The consequence of microorganism patchiness in altering the 62 

functional response of soil systems has helped to elucidate driving factors responsible 63 

for ecological community development (Parkin, 1993). For example, enrichment of 64 

substrate through organic matter at the soil surface enables microbial proliferation of the 65 

upper soil horizons, inducing enhanced soil aggregate size and stability (Bossuyt et al., 66 

2001; De Gryze et al., 2006a). However, knowledge regarding the degree and 67 

timescales over which soil structural development takes place in terms of aggregation 68 

and pore evolution is still unclear, mainly due to the issue of scale and access to 69 

appropriate technology to probe this. The majority of previous work in this area has 70 



focused on soil structural development at the macroscale (>150 µm) largely due to the 71 

resolution of the equipment available at the time (e.g. Atkinson et al. (2009)). 72 

Macroaggregate formation and re-stabilisation rates have been correlated with microbial 73 

activity, increasing with the addition of microbial substrate and decreasing rapidly as 74 

the substrate is utilised (De Gryze et al., 2006b). More recent investigations have 75 

successfully quantified the influence of microbial activity on soil aggregate formation 76 

for various mycorrhizal fungal treatments (Hallett et al., 2009), roots (Martin et al., 77 

2012) and clay mineralogy (Barré and Hallett, 2009), demonstrating the diverse nature 78 

of microbe-soil-plant interactions. However, macroscale quantification of soil structure 79 

is perhaps not the most relevant scale for investigations of the soil microbial 80 

community. It follows that when investigating soil aggregate and subsequent pore 81 

formation, quantification at the microscale can provide a more rigorous assessment of 82 

microbial-induced aggregation due to the microscopic changes to structure anticipated, 83 

that may be missed at coarser resolutions. At this smaller scale, changes to pore size 84 

distributions within individual aggregates  (Feeney et al., 2006) and aggregate formation 85 

under wheat residue addition (De Gryze et al., 2005) indicate the potential for microbial 86 

driven structural changes that can occur in just a few weeks. Likewise Crawford et al. 87 

(2012) demonstrated an increase in porosity and surface connectivity in samples 88 

harbouring fungal activity over a 25 day incubation, but no significant effect of bacterial 89 

activity in isolation or bacteria and fungi combined on soil structure at a resolution of 53 90 

µm. However, quantification of the microbial impact on soil morphological 91 

development at smaller pore scales, its impact over longer timeframes, and subsequent 92 

consequences for the overall connectivity of pore systems, remains unknown. 93 

 94 

Previous research exploring the impact of microorganisms in the evolution of soil 95 

structure has been limited by our inability to non-invasively visualise the soil 96 



environment. Advances in industrial X-ray micro CT (Computed Tomography) in the 97 

last five years, in particular, provide a higher image quality and resolution, with shorter 98 

scan times resulting in more samples analysed in a given time period. In this paper, we 99 

present a fully replicated experiment with multiple time points from three contrasting 100 

microbial treatments.  Three different soil types per microbial treatment were each held 101 

at a water content higher than the air entry potential, simulating soil water contents 102 

found in moist field soils. The aims were to quantify the temporal influence of microbial 103 

activity on soil structure and pore morphology development (defined by changes in 104 

porosity, pore connectivity, volume, and shape during the incubation period), by 105 

selectively inhibiting and promoting microbial growth. We examined the potential for 106 

soil microorganisms to i) alter the physical architecture of soil over time in the absence 107 

of other biotic features liable to cause soil deformation (e.g. earthworms, roots); ii) 108 

influence the surface connected pore architecture of initially unconnected pore space in 109 

homogenised soil; iii) alter the size, shape and nature of pore space; and iv) alter soil 110 

structure in the absence of abiotic factors e.g. localised wetting and drying cycles. We 111 

hypothesise that microbial populations in carbon enhanced soils will have significantly 112 

higher biomass  (Joergensen and Raubuch, 2002) and activities (Bossuyt et al., 2001; 113 

Steinbeiss et al., 2009) than those in field soil, which will alter the physical soil matrix 114 

to a more porous state. 115 

 116 

2. Methods 117 

2.1. Soil Column Preparation and Sampling 118 

A loamy sand soil from the Newport series (sand 83.2%, silt 4.7%, and clay 12.1%; pH 119 

6.35; organic matter 2.93%; FAO Brown Soil) taken from the University of Nottingham 120 

farm at Bunny, Nottinghamshire, UK (52.8586°, -1.1280°), a silty clay loam soil from 121 

the Batcome series (sand 18.3%, silt 49.0%, and clay 32.7%; pH 5.76; organic matter 122 



7.02%; FAO Chromic Luvisol) taken from Rothamsted Highfield Arable plot, UK 123 

(51.8047°, -0.3628°), and a clay loam soil from the Worcester series (sand 35.6%, silt 124 

31.5%, and clay 32.9%; pH 6.50; organic matter 5.19%; FAO Argillic Pelosol) also 125 

taken from the University of Nottingham farm at Bunny, were sieved at field moisture 126 

to <2 mm. A sub-section of each soil texture was γ-irradiated at 27 kGy (Isotron, 127 

Daventry, UK) to sterilise the soil. Irradiation at this level is reported to eliminate all 128 

fungi, actinomycetes, algae, invertebrates and bacteria from the soil (McNamara et al., 129 

2003). Four sterile replicate columns (25 mm diameter x 70 mm height) for each soil 130 

texture were uniformly packed to a bulk density of 1.2 Mg m-3 for three microbial 131 

treatments: i) Unaltered ‘field’ soil; ii) γ-irradiated ‘sterile’ soil; and iii) Glucose 132 

amended ‘enhanced activity’ soil . Columns were packed in four layers, and the surface 133 

of each layer scarified prior to additional layers being added, in order to prevent 134 

compaction layers being produced (confirmed later by X-ray imaging). All columns 135 

were saturated with sterilised (autoclaved) deionised water and left to drain for three 136 

days to reach a notional field capacity (confirmed with water release curve data, Figure 137 

S1). Micropore tape was placed over the macrocosms to reduce water loss and prevent 138 

sample contamination, whilst still enabling gaseous exchange. Macrocosms were 139 

incubated for 24 weeks in a glass fronted incubator at 16°C. The water status of the 140 

columns was maintained (determined by weight) by addition of sterile deionised water 141 

every 1-2 days in equal amounts to the top and bottom of the columns. To the glucose 142 

enhanced soil, glucose was added in equal measures to the top and bottom of the 143 

macrocosm every 2 days totalling 0.05 mg C g-1 soil day-1, a rate which is reported to be 144 

similar to rhizodeposition (Preston et al., 2001). A sterile control was used solely to 145 

ascertain the influence of the watering regime on the resultant temporal changes to soil 146 

porosity.  147 

 148 



2.2. X-ray Computed Tomography (CT) 149 

CT scanning was conducted using a Phoenix Nanotom 180NF scanner (GE Sensing and 150 

Inspection Technologies, Wunstorf, Germany) set at 120 kV and 100 µA, with a 0.1 151 

mm Cu filter. The voxel size was set at 12.38 µm, with the centre of the macrocosm 55 152 

mm from the X-ray source and each scan taking 33 minutes to complete. The total 153 

number of projection images for each column was 720 per scan at a detector size of 154 

2304 x 2304 pixels, creating ca. 5 GB file sizes when reconstructed as 8-bit volumes. 155 

Four replicate columns per soil texture per microbial treatment (36 in total) were 156 

repeatedly scanned at weeks 0, 2, 4, 8, 16 and 24 of incubation, generating a total of 180 157 

scans over the course of the investigation (the scanner was unavaliable for week 16 of 158 

the glucose treatment). The precise positioning of the scanner manipulator stage and 159 

reconstructed region in all subsequent scans ensured that each column was repeatedly 160 

scanned and analysed in exactly the same location throughout the investigation, 161 

enabling direct comparisons of porosity and pore characteristics to be made over time. 162 

Samples were scanned in a random order at each sampling interval to minimise the 163 

influence of short-term diurnal changes in pore development. The dose to the centre of 164 

each macrocosm was calculated at 3.9 Gy for each scan, equating to a total of 23.1 Gy 165 

over the course of the 24 week investigation. This is well below the limit of ~10 kGy 166 

reported to cause damage to soil-borne microbial populations (McNamara et al., 2003; 167 

Zappala et al., 2013). 168 

 169 

2.3. Image Processing, Segmentation and Analysis 170 

Raw grey-scale X-ray CT images were processed using ImageJ 1.44 171 

(http://rsbweb.nih.gov/ij/). A uniform contrast enhancement was applied to 1% of 172 

saturated pixels in order to improve image clarity, followed by a Median filter of radius 173 

1.5 pixels to remove noise in the data but maintain feature borders. To separate pores 174 

http://rsbweb.nih.gov/ij/


from the surrounding soil matrix, the Li global automatic threshold algorithm was used 175 

(Li and Tam, 1998). This uses an iterative method based on selecting the threshold 176 

which minimises cross entropy between the segmented and original image. Prior to this, 177 

different manual and automatic thresholds were compared on a subset of images to 178 

assess the optimum global thresholding technique and to optimise the image analysis 179 

routine. The chosen routine was representative of soil porosity across all soil textures 180 

throughout the soil profiles as illustrated by manual comparison of raw to binarised 181 

images at multiple depths along each macrocosm. A 14.36 x 14.36 x 24.76 mm (1160 x 182 

1160 x 2000 pixels) region of interest was cropped to exclude the area outside of the 183 

soil column and to reduce edge effects, before bright and dark pixels of radius 1.0 pixels 184 

were removed using the Remove Outliers tool to convert selected features to the 185 

opposite phase in the binary image and thus exclude any remaining noise. The resulting 186 

binary images were analysed using the Analyse Particles tool, which scans the binarized 187 

pores in 2D image slices until it finds their edge, measures their individual area and 188 

circularity, makes it invisible, and then resumes scanning of the next pore. In this way 189 

 information for the total porosity for each individual image (2000 images in total per 190 

scan), and the pore shape (circularity) for each individual pore within each image (ca. 191 

~3 million pores per image stack) were calculated. Pores less than 2 pixels in diameter 192 

were excluded from the analyses, as the minimum object size accurately detectable is 193 

often viewed as twice the scanning resolution (Rogasik et al., 2003). Therefore, the 194 

imaging resolution in this study was 24.76 μm. 195 

 196 

Surface pore connectivity was assessed for each sample using a novel flood-fill 197 

principal available as a tool in VG Studio Max® 2.0 software (Figure 1). Briefly, a black 198 

image slice representing absolute pore space was manually inserted into the top of the 199 

image stack (Figure 1b), and used as a seedbed for the Region Growing selection tool. 200 



This selects pore space directly connected to the adjacent image above, effectively 201 

‘tracking’ pore space with a direct connection to the soil surface down through the soil 202 

profile. At the point at which connection to the surface is lost, the measurement ceases. 203 

By isolating the surface connected pore space as a region of interest and removing the 204 

original artificial pore slice from the selection, the method gives a visual representation 205 

of surface connected pore development with time (Figure 1c). By comparing the 206 

temporal ratio of connected pore volume to total sample porosity, the technique 207 

provides a means of quantifying the spatial evolution of the pore network over time and 208 

allows changes in microscale surface-connected pore architecture to be mapped. 209 

 210 

2.4. Microbial Biomass and Activity 211 

Microbial biomass C and biomass N were estimated by fumigation extraction (modified 212 

from Vance et al. (1987)). Briefly, two sub-samples of 12.5 g fresh weight soil were 213 

destructively harvested from the macrocosms previously used for microbial respiration 214 

analysis. One sub-sample was fumigated for 24 h at 25°C with ethanol-free CHCl3. 215 

Following fumigation the soil was extracted with 50 ml 0.5 M K2SO4 by 1 hour of 216 

orbital shaking, and filtered. The non-fumigated sub-sample was extracted similarly at 217 

the time fumigation began. Extracts were frozen at -20°C until analysis, and then 218 

defrosted and analysed on a Shimadzu TOC-V CPH with TNM-1 total nitrogen 219 

analyser. A value of 0.45 was selected as the coefficient to convert ‘chloroform-labile’ 220 

carbon to microbial biomass carbon (Jenkinson et al., 2004).  221 

 222 

Microbial respired carbon dioxide was used to provide an indication of microbial 223 

activity at each sampling time point. Respiration rates from four replicate columns per 224 

soil texture and per microbial treatment were ascertained using a gas chromatograph 225 

(Shimadzu GC-2014 Gas Chromatograph) at weeks 0, 2, 4, 8, 16 and 24 of incubation. 226 



At each sampling point, single soil columns were sealed in a 250 ml flask, which were 227 

over pressurised with 80 ml ambient air. 20 ml of gas headspace was analysed at 40 228 

minute intervals for 120 minutes, allowing a flux of respired carbon dioxide to be 229 

calculated. Laboratory air was analysed in the same way to correct for ambient carbon 230 

dioxide concentration.  231 

 232 

2.5. Statistical Analyses 233 

Four replicate samples per microbial treatment per soil texture (36 samples in total) 234 

were randomly assigned as ‘scanned’ samples at the beginning of the investigation, and 235 

a repeated measurement multi-variate mixed model (REML) was performed in GenStat 236 

Release 15.1 (VSN International) to isolate the effects of sampling period on X-ray CT 237 

measures of porosity, pore size and pore connectivity over the 24 week incubation. A 238 

separate sub-set of samples were randomly assigned to biological analysis (4 replicate 239 

samples per microbial treatment per soil texture for each sampling interval – 216 240 

samples in total), and the respiration rate non-destructively ascertained before a 241 

destructive measure of biomass for the same samples quantified at each sampling 242 

interval. A total of 36 samples was used to calculate respiration rates and then 243 

destructively sampled at each sampling interval. Each column was analysed individually 244 

using ANOVA, with all interaction of the explanatory variables. Standardised residual 245 

plots were examined in GenStat to check data normality, and where variation was high 246 

with high mean values, the data were log10 transformed. Comparison of means was 247 

based on least significant differences (L.S.D.) at the P = 0.05 probability level.  248 

 249 



3. Results  250 

3.1. The effect of microbial treatments on soil structure  251 

The visual impact of biota on soil structure could be seen after 2 weeks in the loamy 252 

sand texture under glucose enhancement, with the formation of large air-filled 253 

gaps/pores during a dramatic swelling of the soil matrix highlighting the potential for 254 

rapid and large-scale alterations under simple carbohydrate addition (Figure 2a). After 2 255 

weeks of incubation there was a visual accumulation of fungal hyphae on the soil 256 

surface of glucose enhanced loamy sand columns  (Figure 2a) and in the bottom half of 257 

the silty clay loam glucose enhanced soil column at 24 weeks (Figure 2b). Fungal 258 

growth was visually absent throughout the 24 week incubation in the glucose enhanced 259 

clay loam, all field and all sterilised soil treatments. Fungal growth could not be 260 

quantified in this instance by X-ray CT due to its low density in comparison to the 261 

surrounding soil particles. As such it was classified as pore space in the resulting 262 

analysis.  263 

 264 

 265 

Microcracks began to develop in the glucose enhanced soils almost immediately (2 266 

weeks), whilst cracks in the field soils were only observed after 8 weeks of incubation. 267 

The addition of glucose caused an increase in individual pore volumes across all soil 268 

textures (P < 0.05; Figure 3; Video S2). After 24 weeks of incubation, mean porosities 269 

of the soil under glucose enhancement at the resolution used had risen from 37.8 and 270 

9.3% to 54.4 and 24.0% in the loamy sand and clay loam soils respectively (P < 0.05; 271 

Figure 4c). This accounts for the increase in sample volume during the investigation 272 

observed in Figure 2b and c. In comparison a decrease in porosity was observed in the 273 

sterile and field treatment up to week 8 of incubation (P < 0.05), most likely due to 274 

slumping under self-weight (Figure 4a, b). Following this, mean porosities in the field 275 



treatment increased from 36.5 to 44.0% in the loamy sand texture (P < 0.05; Figure 4b) 276 

and from 14.1 to 17.1% in the clay loam soil (P < 0.05; Figure 4b), demonstrating the 277 

role that the resident microbial populations play in increasing pore size in the absence of 278 

further environmental perturbations between 8 and 24 weeks of incubation. Variability 279 

(standard error) in X-ray CT-derived porosities between samples of the same soil 280 

texture was low across all microbial treatments but increased with time (Figure 4). The 281 

temporal differences for all textures under ‘field’ treatment were small compared to 282 

those from the glucose enhanced soil. 283 

 284 

There was a significant degree of slumping (i.e. a decrease in sample porosity to a more 285 

stable state) during the 24 week incubation in the sterilised loamy sand and silty clay 286 

loam treatments (P < 0.05; Figure 4a), but no significant change in the clay loam 287 

texture. During the first 8 weeks of incubation the degree of slumping in the sterile 288 

loamy sand treatment was greater than that observed in the field soil (a decrease in total 289 

porosity of 9.9 and 6.6% respectively; P < 0.05), suggesting that even at this early stage, 290 

microbial populations in the field soil treatment were able to actively manipulate the 291 

soil porous architecture and counteract the effects of particle slumping. There was no 292 

significant increase in porosity over the 24 week incubation across any texture in the 293 

sterile treatment, indicating that localised wetting and drying cycles created by the 294 

watering regime in this study had no significant impact on pore enlargement or 295 

microcrack formation. 296 

 297 

Pore shape (circularity) under the glucose enhancement was variable between soil 298 

textures, but was generally uniform in distribution throughout the macrocosms. Pore 299 

shape was significantly affected during 24 weeks of incubation for loamy sand and silty 300 

clay loam textures (P < 0.01; Figure 5a, b). In the loamy sand treatment there were 301 



fewer irregular pores and a greater number of rounded pores at week 24 (P < 0.05; 302 

Figure 5a). In the silty clay loam soil, pores became more irregular with time, with a 303 

two-fold increase in the number of pores in the lower circularity range (0-0.2) and fewer 304 

regular shaped pores over the incubation period. There was no change in the circularity 305 

of pores in the clay loam treatment during incubation (P > 0.05). 306 

 307 

Increases in the porosity of the soil matrix during incubation had a significant impact on 308 

the surface connected pore architecture (i.e. porosity with a continuous connection to 309 

the surface), resulting in a more complex pore network in the upper part of the soil 310 

columns (Figure 6) and significantly altering the continuity of the surface connections 311 

of pores in all soils over time (P = 0.05; Figure 7). Under glucose enhancement pre-312 

existing surface pore connections grew larger in diameter and volume (Video S3). 313 

Furthermore new crack development in the upper soil regions was rapid, increasing in 314 

size and becoming more elongated with time. Throughout the incubation the surface 315 

connected porosity accounted for > 99% of total sample porosity for the loamy sand 316 

texture (Figure 7a), demonstrating the highly connected nature of the pore network in 317 

coarser textured soils (at the resolution explored here). Mean surface connected 318 

porosities in silty clay loam and clay loam increased by 24.2 and 45.6% to 96.8 and 319 

52.9% respectively by week 24 (Figure 7a; P < 0.05), but there was no significant 320 

change to mean surface connected porosity in the loamy sand texture. There was no 321 

significant increase in the mean surface connected porosity in the field and sterile 322 

treatments. 323 

 324 



3.2. The effect of microbial treatments on microbial population respiration and 325 

biomass 326 

Respiration rate declined across all soil textures with time in the sterile and field 327 

treatments (P < 0.05; Figure 8). Respiration under glucose enhancement was variable, 328 

but generally increased with time and was ca. 50 times greater than those observed in 329 

field soil (P < 0.05; Figure 8). After 24 weeks of incubation all treatments had 330 

significantly different respiration rates (P < 0.05), with the largest difference between 331 

textures within the glucose treatment. The clay loam texture systematically exhibited the 332 

highest respiration rate, with loamy sand and silty clay loam being similar throughout. 333 

The cumulative respiration of sterile and field treatments tended to plateau after the 24 334 

week incubation across all soil textures. The order of peak cumulative respiration 335 

followed clay loam > silty clay loam > loamy sand in the sterile and glucose treatment 336 

(Figure 8d and f), but clay loam > loamy sand > silty clay loam in the field soil (Figure 337 

8e). By the end of the 24 week incubation cumulative respiration was still rising in all 338 

treatments (Figure 8d, e, f), indicating the nutrient resource in all treatments, including 339 

the glucose addition, did not become limiting to growth as microbial populations were 340 

still actively proliferating.  341 

 342 

Microbial biomass carbon (chloroform-labile C) was significantly altered by the 343 

interaction of microbial treatment and soil texture (P < 0.01; Figure 9). Microbial 344 

biomass showed a 4-fold difference between sterile and field treatments, and a 10-fold 345 

increase under glucose enhancement (P < 0.05; Figure 9). Difference within the 346 

biomass measurements was high in the glucose treatment and increased with time, both 347 

between and within sample replicates (Figure 9c). The sterile and field treatments had a 348 

higher biomass by week 24, with a decline after week 8.  349 

 350 



4. Discussion 351 

4.1. Implications of substrate addition for soil structural development  352 

This investigation allowed us to quantify the physical changes to soil structure in soils 353 

at moisture contents relevant to conditions in the region of the capillary fringe. The 354 

glucose treatment allowed us to directly compare soil structure alterations due to carbon 355 

input under controlled conditions, at a similar rate to which roots exude carbon into the 356 

rhizosphere. Whilst the addition of glucose has limitations over using true exudates (i.e. 357 

the composition of the carbon source does not account for the range of amino acids and 358 

sugar sources in root exudates, nor the influence of mucilage on altering the water 359 

holding capacity of the soil), it does provide a first step to understand the coupling of 360 

microbial activity and soil physical behaviour at the microscale.  361 

 362 

The rate at which soil porosity increased in the sandy loam and clay loam soils was at 363 

its maximum between weeks two and four of incubation (Figure 4c), presumably 364 

because an initial homogeneous soil structure became more heterogeneous with time. 365 

Fracturing of the soil matrix was apparent along distinct horizontal planes (Figure 2), 366 

possibly corresponding to unavoidable zones of weakness created during the packing 367 

process. Vinther et al. (1999) indicated microbial biomass, number and processes (e.g. 368 

denitrification) were higher in agricultural and forest field samples adjacent to 369 

macropores than matrix samples, due to increased substrate supply and bacterial cell 370 

transport through the macropores. The soil fracturing forced the translocation of soil up 371 

through the macrocosm, as indicated by an alteration in height between initial packing 372 

conditions. We can attribute this to the gaseous release by soil microorganisms, as this 373 

was not apparent in either the field or sterile treatments. Pagliai et al. (1981) suggested 374 

the possibility of large pore formation during carbon dioxide liberation through organic 375 

matter decomposition in peat samples. Thus, the potential for soil microorganisms to 376 



alter structure in this way, aside from other known mechanisms of extracellular 377 

polysaccharide production, filamentous structures (e.g. fungal hyphae) and extruded 378 

biopolymer-induced aggregation (Oades, 1993), has been speculated for some time. 379 

However, a lack of structural change in the sterile treatment negates the role of 380 

decomposing soil organic matter for carbon dioxide liberation in this investigation. 381 

Emerson and McGarry (2003) hypothesised that an increase in soil porosity with 382 

increasing carbon contents was derived not only due to the pores created following 383 

organic matter decomposition, but due to fungal mycelium invading the pore space 384 

surrounding organic matter. A clear accumulation of fungal hyphae in the upper and 385 

lower regions of the loamy sand and silty clay loam glucose enhanced soils may 386 

therefore have played a key role in altering the soil porous architecture, although could 387 

not directly be quantified using X-ray CT. De Gryze et al. (2005) also observed 388 

extensive fungal hyphae proliferation surrounding decaying organic residue, with 389 

reported differences in pore size distributions consistent with those observed in this 390 

investigation. De Gryze et al. (2006a) suggests there is an intriguing feedback between 391 

microbial activity and soil pore structure, with its understanding being essential to 392 

improving knowledge of phenomena such as gaseous release. The direct observation of 393 

gaseous release manipulating soil structure and pore geometry, highlights this feedback, 394 

although here microbial proliferation and activity was a cause for and not as a 395 

consequence of soil structural evolution. Furthermore, the role that the microbial 396 

populations play in altering the surface connected porosity of the samples through 397 

bridging pore gaps and creating an overall more porous and better connected network to 398 

the surface will have implications for the flow of solutes and water through the soil 399 

profile as well. Thus, conceptual models of soil aggregation and associated resource 400 

flows based purely on: 1) the microbial secretion of metabolic products; and 2) the 401 

enmeshment of soil particles by filamentous organisms, may not fully capture the 402 



complexity of the rhizosphere by neglecting the role that gaseous release can play in the 403 

temporal dynamics of microscale transport processes.  404 

 405 

4.2. Relationship between pore functioning and microbial communities 406 

Respiration rates increased at week 24 in the loamy sand and clay loam soils under 407 

glucose addition, but the total microbial biomass decreased over the same period 408 

(Figure 8c and, Figure 9c). Furthermore, under field soil treatments biomass fluctuated 409 

throughout the investigation, despite respiration continually falling (Figure 8b, Figure 410 

9b). The degree of fluctuation in activity accounts for the changes in observed soil 411 

porosities (i.e. increases in soil porosity as microbial activity increased), but does not 412 

account for alterations to biomass. Due to differences in soil chemical properties and 413 

microbial respiration rates between textures, population differences may occur with 414 

time as well as with depth. Likewise, increased biomass in the field and sterile 415 

treatments at the beginning of incubation relates to the flush in activity observed by 416 

Franzluebbers et al. (2000) as packing-induced disturbance and soil re-wetting favours 417 

short-term microbial proliferation (as observed in Figure 8a and b). Clearly the 418 

microbial community plays a key role in soil pore development. However, further 419 

investigation of community structure development over a timeframe longer than 420 

previously used is needed to provide insight into the communities responsible for the 421 

structural changes observed in this study. 422 

 423 

The largest soil structural changes occurred when soil respiration was at a maximum. 424 

We hypothesised that as microbial exudates act as binding agents for aggregate 425 

formation, this process itself would alter soil microporosity which could then be 426 

detected using non-invasive imaging. However we suspected that binding agents would 427 

only be produced in sufficient quantity to alter the physical soil structure after a period 428 



of months. Due to the simultaneous nature of processes occurring we are unable to 429 

differentiate whether microbial released binding agents or carbon dioxide production are 430 

responsible for driving the structural changes observed. The maximum respiration in the 431 

glucose enhanced clay loam soil occurred at 4 weeks of incubation, with the largest 432 

change increase in porosity occurring between weeks 2 and 4 (Figure 4c and Figure 8c). 433 

Bossuyt et al. (2001) found similar results although at a different temporal scale, 434 

reporting maximum aggregation occurred 10 days after peak microbial activity and thus 435 

providing evidence for large-scale structural alterations in terms of pore geometry over 436 

short time intervals. 437 

 438 

4.3. The relationship between soil structure, texture and organic matter 439 

Changes to soil porosity depended on soil texture. Oades (1993) described the cohesive 440 

properties of clay and the key role they play in governing structure formation in field 441 

soils. Generally, the rank order porosity change was loamy sand > clay loam > silty clay 442 

loam (Figure 4) regardless of microbial treatment. However, there was a clear difference 443 

in the degree of structural change observed in contrasting soil textures in the field soil 444 

treatment. Mean macrocosm porosities increased 7.5% between weeks 8 and 24 of 445 

incubation in the loamy sand columns, compared to increases of only 3.0% and 1.5% in 446 

the silty clay loam and clay loam respectively. This suggests the microbial influence is 447 

largely related to: i) the cohesive strength of soil particles; ii) the inherent particle sizes 448 

creating altered pore morphologies during artificial packing; iii) the organic content of 449 

the soil; and iv) variations in nutrient availability in different soil textures. We suggest 450 

that when substrate input is uniform, solute mobility is lower in finer textured soils 451 

known to display high tortuosity (Moldrup et al., 2001), although this is matric potential 452 

dependent. We hypothesise that this may confine microbial growth to ‘pockets’ in 453 

which substrate is accessible. Conversely, in coarser textured soils we suggest there is 454 



an improvement in the movement of metabolites towards sites containing microbial 455 

populations, enabling their rapid proliferation. It is known that the natural spatial 456 

heterogeneity of soil harbours increased microbial populations in distinct microsites 457 

(Nunan et al., 2006), although they were unable to demonstrate whether this variability 458 

resulted in changes to the physical soil microenvironment. Our work demonstrates the 459 

impact of this increased activity on pore function, with an enhanced potential for 460 

gaseous exchange created by a more porous system increasing microbial proliferation in 461 

localised regions. 462 

 463 

Using a different sampling approach, Nunan et al. (2003) observed a decreased 464 

structural variation in subsoil samples where the soil nutrient status was rate-limiting. 465 

They observed evidence for patchiness of bacterial densities in all samples of high 466 

fertility, with gradients of bacterial growth highest in regions of soluble substrate. This 467 

supports our findings where fracturing of the loamy sand soils at distinct locations under 468 

substrate addition is thought to follow increased microbial activity in these regions. In 469 

this current investigation the formation of microcracks in the field soils towards the end 470 

of the incubation period may be attributed to microbial-derived processes such as 471 

particle aggregation, but also due to carbon dioxide evolution breaching pore gaps and 472 

leading to an increase in the overall connectivity of the pore system (Kettridge and 473 

Binley, 2011; Figure 6). One potential hypothesis is that high concentrations of carbon 474 

dioxide are evolved at sites of high microbial activity, and subsequently transported and 475 

trapped in distinct soil locations thus leading to fracturing of the soil matrix. This is 476 

particularly important for the relatively moist soils used in this investigation, as carbon 477 

dioxide evolution exceeded the dissolution potential in the surrounding pore water, 478 

creating the fractures observed in Figure 2. As no cracks were observed in the sterile 479 

treatment across all soil textures, the potential effect of daily wetting/drying cycles can 480 



be discounted. Velde (2001) and De Gryze et al. (2006a) observed cracks of 100 µm 481 

and 27-67 µm respectively during drying of soil columns and incubation. Higher 482 

increases in porosity in the loamy sand samples compared to silty clay loam (and clay 483 

loam) textures parallels results obtained by De Gryze et al. (2006a) during incubation of 484 

sand and silty clay loam aggregates.  485 

 486 

Differences in porosity may also reflect the contrasting organic matter levels in the soils 487 

(loamy sand – 2.9%, silty clay loam – 7.0%, clay loam – 5.2%). High organic matter is 488 

known to contribute to enhanced aggregate stability (Tisdall and Oades, 1982), so it is 489 

possible the coarser textured treatments with lower organic matter contents had 490 

weakened bonds between soil particles and hence soil porosities influenced more by 491 

microbial populations over the timeframe of the treatment application. Furthermore, 492 

organic matter has different shrink/swelling and water retention characteristics to that of 493 

soil (Garnier et al., 2004), with the stabilization of pore structure due to organic 494 

composition thought to further enhance cracking through the uneven dissipation of 495 

forces originating from wetting/drying cycles (De Gryze et al., 2006a). Whilst no 496 

increase in porosity through wetting and drying of the soil matrix itself was observed in 497 

any soil texture studied, we suspect that decomposition of the organic constituents, 498 

coupled with the application of glucose in the glucose enhanced treatment, may have 499 

contributed to the small increases in porosity observed throughout the incubation in the 500 

clay loam and silty clay loam textures of the field and glucose enhanced treatments. Soil 501 

cracks are thought to develop in hexagonal, squared (Velde, 1999) or triangular 502 

(Kodikara et al., 2000) patterns, which may account for the shift to a greater number of 503 

irregular shaped pores at the end of the incubation period in clay loam and silty clay 504 

loam soils containing higher organic contents (Figure 5). Conversely, the loamy sand 505 

treatment, with a lower organic matter content to the soil, had a temporal shift to a 506 



greater number of ‘regular’ shaped pores through increased pore volume due to gaseous 507 

release.   508 

 509 

5. Conclusions 510 

Soil-borne microbial populations rapidly create highly connected soil pore networks due 511 

to evolution of carbon dioxide by microbial respiration within soil, significantly 512 

deforming the soil matrix and having important consequences for pore architecture. 513 

During the structural reorganization of these relatively moist soils, increases in porosity 514 

under carbon enhanced conditions coupled with changes to pore surface area are likely 515 

to be beneficial for root aeration and water flow, at least for aggregated soils with a low 516 

to medium bulk density. The activity of soil microorganisms is governed by gaseous 517 

exchange and the availability of substrate and water, so there is a key relationship 518 

between localised soil porous architecture and microbial populations. Increased porosity 519 

in coarser textured soils corresponded to a large net respiration demand, with 520 

subsequent gaseous release fracturing the soil matrix and increasing not only pore 521 

volume and shape, but also altering the surface connectivity of the pore network. Hence, 522 

there lies a key feedback between soil microbial populations and structural evolution, 523 

with activity being both the cause for and response to altered structural states through 524 

improved gas transport networks. It is clear from this and other work that previous 525 

investigations at the macroscale may have overlooked the implications for soil flow 526 

properties by missing alterations to pore architecture at this scale (Taina et al., 2008; 527 

Wildenschild et al., 2002). However, the microscale resolution achievable in modern-528 

day non-destructive imaging approaches opens avenues for the future quantification of 529 

the role that specific microbial communities play in the development of soil structure, so 530 

that resulting soil microheterogeneity can be better understood and incorporated into 531 

hydrological models.   532 
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List of Figures 662 

Figure 1 – Imaging methodology for determining the surface connected porosity from 663 

3D volumetric images: a) determination of total sample porosity; b) insertion of a 664 

phantom slice of ‘pore’ space; c) the visualisation of surface connected pore space 665 

following the use of the ‘region growing’ tool to select all pore space connected to the 666 

manually inserted ‘pore’ slice. 667 

 668 

Figure 2 – Representative examples of the soil macrocosms used under the glucose-669 

enhanced treatment: a) Sandy loam at week 2 of incubation, showing distinct gap 670 

formation; b) Silty clay loam at week 24 of incubation, showing fungal hyphae 671 

proliferation; c) clay loam at week 24 of incubation, exhibiting no fungal hyphae 672 

proliferation. Note the black marks on the container walls which indicate initial packing 673 

height of the soil. 674 

 675 

Figure 3 – An isolated pore from the centre of a representative clay loam sample, 676 

showing changes to pore morphology with time after: a) 0 weeks; b) 2 weeks; c) 4 677 

weeks; d) 8 weeks; e) 24 weeks of incubation. 678 

 679 

Figure 4 – Soil structural formation defined by changes in total porosity over the 24 680 

week incubation for: a) Gamma-irradiated sterile soil; b) unaltered field soil; c) Glucose 681 

enhanced (0.05 mg C g-1 soil) soil (* denotes data missing at week 16 of the glucose 682 

enhanced treatment due to an equipment fault). Values are means (n=4), error bars 683 

denote double s.e.. Standard errors of the difference of means are shown for (1) 684 

Sampling week, (2) Microbial treatment, (3) Soil texture. 685 

 686 



Figure 5 – The influence of soil texture on pore shape (circularity) at the beginning and 687 

end of incubation for the glucose enhanced soil. Values are means (n=4), error bars 688 

denote double s.e.. Standard errors of the difference of means are shown for (1) 689 

Sampling week, (2) Circularity range, (3) Soil texture. 690 

 691 

Figure 6 - Visual representation of changes to surface pore connectivity in silty clay 692 

loam after: a) 0 weeks; b) 2 weeks; c) 4 weeks; d) 8 weeks; e) 24 weeks of incubation, 693 

with associated surface connected porosities of the whole macrocosm. All images are of 694 

a subsection of sample with dimensions 14.38 x 11.88 x 0.74 mm (1160 x 960 x 60 695 

pixels), for ease of visualisation. 696 

 697 

Figure 7 – The influence of soil texture on surface pore connectivity throughout 698 

incubation for the glucose enhanced soil as a function of: a) total volume of pore space; 699 

b) total sample volume. Values are means (n=4), error bars denote double s.e.. Standard 700 

errors of the difference of means are shown for (1) Sampling week, (2) Soil texture. 701 

 702 

Figure 8 – Respiration during 24 weeks of incubation: a-c - respiration rate; d-f - 703 

cumulative respiration from the soils for three microbial treatments of a, d – gamma-704 

irradiated sterile soil; b, e – unaltered field soil; c, f after addition of glucose (0.05 mg C 705 

g-1 soil), for three contrasting soil textures. Values are means (n=4), double error bars 706 

denote s.e. Note different scales used on y-axis. Standard errors of the difference of 707 

means are shown for (1) Sampling week, (2) Microbial treatment, (3) Soil texture. 708 

 709 

Figure 9 – Effect of various treatments on the soil microbial biomass during 24 weeks of 710 

incubation for three contrasting soil textures: a) Gamma-irradiated sterile soil; b) 711 

Unaltered field soil; c) Glucose enhanced soil (0.05 mg C g-1 soil). Values are means 712 



(n=4), error bars denote double s.e. Standard errors of the difference of means are 713 

shown for (1) Sampling week, (2) Microbial treatment, (3) Soil texture. 714 

  715 



List of Supplementary Data  716 

Figure S1 – Water release characteristics of the loamy sand, clay loam and silty clay 717 

loam soil textures used in this investigation. The water release characteristic was 718 

measured using pressure chamber apparatus, and fitted to the van Genuchten-Mualem 719 

model (van Genuchten, 1980). 720 

 721 

Video S2 – Changes to the morphology of an individually isolated pore for each 722 

sampling interval throughout the incubation period, in the clay loam soil texture under 723 

glucose enhancement. 724 

 725 

Video S3 – Changes to the porous connectivity of the silty clay loam texture under 726 

glucose enhancement at each sampling interval, as shown by porosity with a continuous 727 

connection to the soil surface. 728 


