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Highlights 

 For the first time, BDD electrodes were used in benzodiazepines sensing 

 Facile and efficient approach for determination of benzodiazepines is presented 

 Low LODs of 10-7 mol/L were achieved using bare BDD electrodes 

 Green and effective alternative to mercury-based and chemically modified electrodes 

 BDD platforms are promising tools for pharmaceutical applications 

 

 

 

Abstract 

The boron-doped diamond electrodes (BDDEs) with different dopant levels were applied as 

advanced, mercury-free and modification-free electroanalytical platforms for simple and 

reliable quantification of benzodiazepines, bromazepam (BZ) and alprazolam (ALZ). Cyclic 

voltammetric measurements revealed that the electrode reactions of both analytes were 

manifested by one irreversible and diffusion-controlled reduction peak at −1.10 V in Britton-

Robinson buffer of pH 11 for BZ using lab-made BDDE with 1000 ppm B/C ratio and −0.84 

V in BR buffer of pH 5 for ALZ using commercial BDDE with 1000 ppm B/C ratio. 

Differential pulse voltammetry was used for construction of calibration curves for BZ and 

ALZ, respectively, with the analytical parameters as follows: the linear dynamic ranges of 

1×10−6 – 1×10−4 and 8×10−7 – 1×10−4 mol/L, the detection limit of 3.1×10−7 and 6.4×10−7 

mol/L and the excellent repeatability with the relative standard deviation below 3% for both 

drugs. The developed methods were applied to analysis of the pharmaceutical tablets with the 

recoveries from 97.33 to 100.85% for BZ and from 94.14 to 101.32% for ALZ. The usage of 

BDDEs as advanced electrochemical sensors in drug analysis represents a facile and effective 

analytical approach which may replace mercury-based sensors and chemically modified 

electrodes in previous benzodiazepines sensing. 
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1. Introduction 

 Benzodiazepines (BDZs) have become one of the most widely used drugs, since the 

chlordiazepoxide and diazepam were launched on global market in 1960s. These drugs were 

found to exhibit anticonvulsant, hypnotic, sedative and muscle-relaxant effects [1]. For this 

reason, BDZs have been indicated in medical use for the treatment of anxiety, insomnia, 

depression, psychiatric disorders and alcohol withdrawal syndromes [2, 3]. Nowadays, these 

drugs are mostly abused due to their toxic effects and widespread availability [4]. Based on 

the pharmaceutical relevance and medicinal objectives of BDZs, advanced and perspective 

analytical approaches of high efficiency for the rigid control of these important substances in 

pharmaceutical formulations and different biological fluids are still required. 

 Many analytical methods have been recently developed for determination of BDZs, in 

particular, high performance liquid chromatography (HPLC) coupled with diode array 

detector (DAD) [5, 6] and tandem mass spectrometry (MS/MS) [7, 8], gas chromatography 

(GC) in combination with MS [9], electrophoresis [10] and spectrofluorimetry [11]. These 

remarkable analytical methods are high sensitive and selective requiring low sample 

consumption and enabling simultaneous determination of plenty of miscellaneous analytes. 

On the other hand, they suffer from expensive instrumentation, time consuming and very 

costly analysis as well as need for the sample derivatization is required prior to analysis.  

 Electroanalytical methods represent financially unassuming, temporally efficient and 

sensitive tool for detection and determination of various structurally and biologically 

interesting substances [12, 13]. The literature survey states that hanging mercury drop 



electrodes (HMDE) [14-16] and silver solid amalgam electrode (AgSAE) [17] have been 

applied to sensitive determination of several BDZs derivatives based on their electrochemical 

reduction. Besides, various chemically modified carbon-based electrodes such as glassy 

carbon electrode (GCE) modified with multi-walled carbon nanotubes (MWCNT) [18] and 3-

methylthiophene [19] as well as carbon paste electrode (CPE) modified with MWCNT [20] 

and bentonite [21] have been exploited as mercury-free electrochemical platforms for 

quantifying BDZs. In order to achieve low detection limit (LOD), a modification of carbon-

based electrode substrates appeared to be favorable for supporting electron transfer in redox 

reaction, for decreasing peak potential and principally for increasing sensitivity. Nevertheless, 

bare (unmodified) conventional carbon-based electrode materials are known for their higher 

background with limited usable potential window in negative area due to hydrogen evolution 

reaction. For electroanalytical determination of BDZs, differential pulse voltammetry (DPV) 

and square-wave voltammetry (SWV) coupled with stripping steps such as square-wave 

adsorptive cathodic stripping voltammetry (SWAdCSV), square-wave cathodic stripping 

voltammetry (SWCSV), differential pulse stripping voltammetry (DPSV), differential pulse 

adsorptive cathodic stripping voltammetry (DPAdCSV) and linear sweep adsorptive cathodic 

stripping voltammetry (LSAdCSV) have been commonly used. In this respect, stripping 

voltammetry is an efficient technique routinely capable of achieving LODs lower than 10−8 

mol/L due to preconcentration of analyte on particular working electrode [22]. In spite of 

convenient application of HMDEs and modified carbonaceous electrodes in BDZs sensing, 

researchers are still forced to search the advanced and perspective electrode materials to be 

applied as sensitive electrochemical sensors, even without performing any surface 

modification and using toxic mercury electrodes. It is worth noting that the authors of the 

present work have recently demonstrated the use of meniscus modified silver solid amalgam 



electrode (m-AgSAE) as prospective electrode material for the quantification of selected 

BDZs with LODs of 10−7 mol/L [17]. 

 Boron-doped diamond (BDD) is a perspective and “green” carbon-based electrode 

material exhibiting many advantages when compared to conventional materials such as CPE, 

GCE or HMDE. BDD electrode (BDDE) renders high chemical and electrochemical stability 

owing to sp3 hybridization of carbon in diamond structure (chemically inert character), wide 

potential window in the aqueous and non-aqueous media as well as low and stable 

background current [23, 24]. Apart from these properties, it yields excellent biocompatibility, 

mechanical robustness and stability in alkaline and acidic media [25, 26]. BDD electrode 

surface can be treated electrochemically by applying very negative and positive potentials 

(cathodic and anodic pretreatment) to obtain predominantly hydrogen and oxygen terminated 

surface (hydrophobic and hydrophilic nature), respectively, which may change overall 

chemical properties of this working electrode [13]. Recently, interesting reviews on practical 

guide to usage of BDDE in electrochemical research [27] as well as possibilities of chemical 

modification of this material for biosensors and biosensing [28] have also been published. In 

addition, BDDE has seemed to be an efficient electrochemical sensor for detection and 

determination of significant biologically active compounds used in protection of human 

health [29], environment [30] and food analysis [31]. 

 This paper reports the novel application of BDDEs as advanced, mercury-free and 

modification-free electrochemical platforms suitable for the individual determination of the 

selected electrochemically reducible BDZs (Fig. S1), namely bromazepam (7-Bromo-5-(2-

pyridyl)-3H-1,4-benzodiaxepin-2(1H)-one, BZ) and alprazolam (8-Chloro-1-methyl-6-

phenyl-4H-[1,2,4]triazolo[4,3-a][1,4]benzodiazepine, ALZ). The feasibility of the developed 

assays was demonstrated by the analysis of commercial pharmaceuticals. Moreover, as far as 

we know, these procedures could be considered as the first usage of BDD as advanced 



carbon-based electrode material for the reliable quantification of BDZs in pharmaceutical 

samples. 

Here Fig. S1 

 

 

2. Experimental 

2.1. Chemicals 

BZ (CAS No. 1812-30-2, purity ≥ 98%, in all figures presented as A) and ALZ (CAS No. 

28981-97-7, purity ≥ 98%, in all figures presented as B) were purchased from Sigma Aldrich 

(Czech Republic). 1×10−3 mol/L stock solutions were prepared by dissolution of appropriate 

amount of BZ and ALZ in 25 mL methanol (p.a., Lachema, Czech Republic) without any 

further purification. These solutions were stored in the fridge for following use. Britton-

Robinson buffer (BR) was prepared by mixing of 0.04 mol/L H3BO3, H3PO4, CH3COOH 

adjusted with 0.2 mol/L NaOH (p.a., Lachema, Czech Republic). Prior to the analysis, 1 

mol/L H2SO4 (p.a., Lachema, Czech Republic) was used as transitional medium for applying 

the highly positive and negative potentials on the BDDE surface to be anodically and 

cathodically pretreated. The individual working and calibration solutions of BDZs were 

prepared by suitable dilution of the stock solution of BZ and ALZ with supporting electrolyte. 

All aqueous solutions were prepared in deionized water with resistivity above 18 MΩ cm. 

 

2.2. Equipments 

All voltammetric measurements were performed using potentiostat PSTAT 910 mini 

(Metrohm Ltd., Switzerland) driven by software PSTAT 1.0. The three electrode 

configuration consisted of platinum wire as counter electrode, Ag/AgCl/3 mol/L KCl 

reference electrode and working electrodes as follows: either commercial BDDE (boron 



concentration expressed as B/C ratio in gaseous phase of 1000 ppm, BDD film with diameter 

of 3 mm, Windsor Scientific Ltd., UK) or lab-made BDDEs with the different boron doping 

levels (B/C ratio of 1000 ppm, 2000 ppm, 4000 ppm and 8000 ppm, BDD film with diameter 

of 740 µm) fabricated by the co-workers at the Faculty of Electrical Engineering and 

Information Technology, Slovak University of Technology in Bratislava. pH-meter Model 25 

(Denver Instrument, USA) with combined glass electrode was applied for the pH 

measurements. 

 

2.3. Working electrode surface pretreatment 

At the beginning of every work day, the particular BDDE was firstly rinsed with 

deionized water and very softly rubbed with a piece of damp silk cloth until a mirror-like 

appearance of surface was obtained. After this procedure, an anodic pretreatment was carried 

out in 1 mol/L H2SO4 by applying +2.0 V for 60 s to get rid of any impurities on the BDDE 

surface. Subsequently, a cathodic pretreatment using −2.0 V for 30 s in the same medium was 

undertaken to obtain predominantly H-terminated electrode surface. Afterwards, thus 

pretreated BDDE surface was directly utilized for the voltammetric measurements with 

repeatable signals. 

 

2.4. Measurement procedure 

10 mL of particular 1×10−4 mol/L BDZ solution was placed into the electrochemical cell. 

Nitrogen gas (Linde, Slovakia) was used for bubbling each analyzed solution for 5 min in 

order to remove oxygen from solution and to maintain the inert atmosphere in the cell. Since 

the BDDEs with the different active surface areas were applied in this work, instead of the 

peak currents, the particular peak current densities (current density J is defined as a ratio of 

current signal to electrode area) for electrochemical reduction of BZ (JBZ) and ALZ (JALZ) 



were always evaluated. Cyclic voltammetry (CV) was used for investigation of the effect of 

supporting electrolyte (pH) and scan rate. Calibration curves were assessed from the 

differential pulse (DP) voltammograms with the optimized operating parameters such as 

modulation amplitude and modulation time. The peak current densities (JBZ and JALZ) were 

estimated from the straight lines connecting the minima before and after the voltammetric 

peak maximum, without using any background correction. Analysis of the pharmaceuticals 

was accomplished by standard addition method with three consecutive additions of 50 µL of 

the particular BDZ stock solution into the electrochemical cell. LODs were calculated as 

standard deviation of intercept divided by slope of the particular calibration curve. The 

calibration curves were statistically analyzed by OriginPro 8.0 (OriginLab, USA) and the 

relevant results (slope and intercept) were evaluated with a 95% confidence interval. All 

voltammetric measurements were performed in triplicate at room temperature. 

 

2.5. Preparation of pharmaceutical samples  

The commercial pharmaceutical tablets of Lexaurin® (declared amount of BZ according to 

the leaflet was 3 mg per tablet) and Xanax® (declared amount of ALZ was 2 mg per tablet) 

were purchased from Krka (Slovenia). The procedure for preparing and treating these samples 

was as follow: ten tablets of each brand of pharmaceuticals were weighed and powdered using 

mortar and pestle. 300 mg of particular powder of pharmaceuticals was dissolved in 25 mL 

methanol and filtered through the filter paper (the pore size of 20 µm). The clear filtrates of 

both pharmaceuticals were filled up with methanol to the total volume of 50 mL volumetric 

flask and stored in the fridge.  

 

2.6. Fabrication of the BDDEs 



Apart from the commercial BDDEs used in this work, the lab-made BDDEs with the 

different boron doping levels were prepared and applied. The polycrystalline BDD films were 

grown by bias enhanced hot filament chemical vapor deposition (HF CVD) technique. As a 

substrate, highly conductive (0.008-0.024 Ω cm) N (100) type silicon substrate with 2 μm 

thick SiO2 layer (CVD, Oxford PlasmaLab 80) was used. The deposition process was divided 

into three steps: (i) 40 min ultrasonic seeding of diamond nanoparticles (CAS No. 7782-40-3, 

Sigma-Aldrich) diluted in deionized water, (ii) 2 h growth of the BDD thin film with 2 % 

concentration of CH4 in H2 and trimethylboron (TMB) to obtain the 1000 ppm, 2000 ppm, 

4000 ppm and 8000 ppm boron to carbon ratio (B/C) within the gas mixture. The total 

pressure in the reactor during deposition was kept at 3 kPa and temperature was set up to 

650±20 ˚C, (iii) a hydrogen termination of the as-grown BDD layer within the one vacuum 

cycle (10 min, H2, 3 kPa, 650±20 ˚C). Resistivity of the 1000 ppm, 2000 ppm, 4000 ppm and 

8000 ppm films was 150.21, 1.58, 8.25 and 3.65×10−3 Ω cm and B concentration was 0.24, 

0.56, 4.92 and 2.65×1021, respectively, as measured by 4-point Hall method. The active 

surface of working electrode (0.43 mm2) was created in 400 nm SiO2 (CVD, Oxford 

PlasmaLab 80) using a standard optical lithography (SUSS, MA6) and wet etching in the 

buffered oxide etch (BOE) solution (6:1 volume ratio of 40% NH4F in water to 49% HF in 

water). Subsequently, the electrode chip (10×3 mm2) was electrically connected by Ag 

polymer paste (CB115, DuPont) to a printed circuit board support and completely passivated 

by non-conducting paste (548X, DuPont). 

 

3. Results and discussion 

3.1. Electrochemical behavior study of BZ and ALZ on BDDEs 

3.1.1. Effect of pH and reversibility study 



The choice of the suitable pH of supporting electrolyte is an important stage in the 

electroanalytical studies because it affects the properties of the solution and the electrode-

solution interface, thus modifying the thermodynamics and kinetics of the particular charge 

transfer process. The effect of pH on the peak current density (JBZ and JALZ) for the individual 

BDZ solutions of 1×10−4 mol/L was investigated using differential pulse voltammetry (DPV) 

in BR buffers (pH 2 – 12). The results accomplished for the commercial and lab-made 

BDDEs with various boron doping levels are listed in Table S1. It is apparent from these data 

that the maximum peak current densities for BZ and ALZ varied from the particular working 

electrode and pH used. The optimal medium for the electrochemical reduction of BZ with the 

highest JBZ (–0.329 µA/mm2) was shown at the peak potential of –1.10 V in the BR buffer of 

pH 11 using the L-M BDDE with 1000 ppm B/C ratio. As for the electrochemical reduction 

of ALZ, the highest JALZ (–0.686 µA/mm2) was observed at –0.84 V when the BR buffer of 

pH 5 and the commercial BDDE with 1000 ppm B/C ratio were used. The recorded DP 

voltammograms characterizing these redox processes in relation to the pH of BR buffer on the 

selected BDDEs are demonstrated in Fig. 1 (A for BZ and B for ALZ). The insets of Fig. 1 

depict the dependences between the particular peak current density (Jp) and pH suggesting the 

pH 11 and 5 as the most suitable ones for BZ and ALZ, respectively. Besides, these insets 

also reflect Ep versus pH dependences with a good linearity achieved over the particular pH 

range with the following equations (Eqs. 1 and 2): 

EBZ (V) = −0.826 – 0.022×pH R = −0.992  pH studied range of 4-12 (1) 

EALZ (V) = −0.615 – 0.045×pH R = −0.998  pH studied range of 2-7 (2) 

Overall, the L-M BDDE with the BR buffer of pH 11 and the commercial BDDE with the 

BR buffer of pH 5 were applied for the further voltammetric measurements of BZ and ALZ, 

respectively. Concerning the electrode reactions of both analytes, Fig. 2 demonstrates the CV 

records for the respective 1×10−4 mol/L BZ and ALZ solutions using the optimal supporting 



electrolytes in the potential range from +1.0 to –1.5 V. In both cases, one reduction peak at –

1.10 V and –0.84 V at forward scan with the absence of any oxidation peak at reverse scan 

was observed for BZ and ALZ, respectively, obviously confirming the totally irreversible 

electrode reactions on BDDEs. This behavior is mostly consistent with those reported for 

mercury [17, 32-34] and chemically modified carbon-based electrodes [18-21] in BDZs 

sensing. Besides, it is also apparent from Fig. 2 that the background current appeared to be 

relatively low at the more negative potentials (less than –1.0 V) using both BDDEs, thus 

approving excellent properties of this electrode material for detection of highly reducible 

analytes. Additionally, to corroborate this phenomenon, we also noticed higher hydrogen 

overpotential when the bubbles of the electrogenerated hydrogen did not occur even at the 

potentials of more negative than −1.5 V. Therefore, the hydrogen evolution on BDDEs did 

not significantly complicate the voltammetric behavior of BZ and ALZ. 

Here Table S1 

Here Fig. 1 

Here Fig. 2 

 

3.1.2. Mechanism of electrochemical reduction of BDZs 

The electrode reaction mechanism of some BDZs using various working electrodes such 

as m-AgSAE [17], CPE [34] and GCE [35] is well described in literature, in particular, 

suggesting the azomethine functional group to be reduced with the participation of 2H+/2e− 

transfer. However, as to BDDE, the mechanism of the electrode reaction of BDZs on this 

advanced carbon material has not been well known and described yet. Although the 

clarification of the detailed mechanism of the electrochemical reduction of BDZs has not been 

the subject matter of this work, to give some closer information for this aspect, the slope 

values of dependences (Ep versus pH of supporting electrolyte as shown in the insets of Fig. 



1) for BZ and ALZ were recognized to be 0.022 V/pH and 0.045 V/pH, respectively (Eqs. 1 

and 2). This fact indicates that the reduction of the reactive imine functional group of BZ as a 

part of the azomethine part could occur by 1H+ and 2e− exchange to most likely form the 

radical anion [17]. In regard to ALZ, the slope of this dependence (Eq. 2) notifies that the 

electrochemical mechanism probably involves the transfer of 2H+/2e− process due to the 

reduction of the imine groups to the amine functionalities [32]. Furthermore, it is noticeable 

from these results that the proposed reduction mechanism of studied BDZs is in good 

agreement with the literature data when using other working electrode materials [17, 32, 35]. 

On the other hand, for a detailed insight into the reaction mechanism of the studied BDZs, 

some additional measurements should be carried out e.g. using controlled potential 

coulometry with subsequent spectral analysis (NMR, MS) for identification of corresponding 

reduction products. 

 

3.1.3. Effect of scan rate 

The influence of scan rate (v) on the peak current density (Jp) was investigated by CV 

using 1×10−4 mol/L BZ and ALZ solution on the particular BDDE in the potential window 

from +1.0 to –1.5 V. Fig. S2 depicts the CV records of BZ and ALZ exhibiting the reduction 

peaks for the range of scan rate from 25 to 200 mV/s. From the insets of Fig. S2 it is evident 

that the respective linear relationships between Jp and the square root of the scan rate (v1/2) for 

both BDZs clearly reflect a diffusion-driven mechanism of the electrode reactions. The 

particular equations (Eqs. 3 and 4) with the significant linearity can be summarized as 

follows: 

JBZ (µA/mm2) = −0.025×v1/2 (mV/s)1/2 – 0.047 R = −0.995    (3) 

JALZ (µA/mm2) = −0.011×v1/2 (mV/s)1/2 – 0.030 R = −0.999    (4) 

Here Fig. S2 



 

The linear relationships were also obtained for the dependences of the logarithm of the 

absolute values of JBZ and JALZ against the logarithm of scan rate with the slopes of 0.42 and 

0.38 for BZ and ALZ, respectively (data not shown). These values are close to the theoretical 

one (0.50) indicating that the electrochemical reduction of BZ and ALZ on BDDEs is largely 

a diffusion-controlled process. Therefore, it may be concluded that the effect of adsorption as 

a rate-determining step during the electrode reactions of the studied analytes seemed to be 

negligible. Another proof of the minor effect of adsorption resulted from the intercept values 

given in Eqs. 3 and 4 which were found to be satisfactory low. Additionally, as can be seen in 

Fig. S2, the small shift of the peak potentials (EBZ and EALZ) towards negative direction was 

noticed for both BDZs as the scan rate gradually increased. This behavior points out the 

irreversible nature of the electrode process of BZ and ALZ on BDDE which is in good 

accordance with those previously observed on other electrode materials [18]. 

 

3.2. Individual analytical determination of BZ and ALZ 

3.2.1. Optimization of differential pulse voltammetric parameters 

DPV was applied as a sensitive voltammetric technique for the determination of BDZs 

with good significant resolution against the background current [13]. The optimization of the 

DPV operating parameters was performed to obtain the highest current densities for BZ and 

ALZ, thus ensuring the distinguished analytical sensitivity for their individual determination 

on BDDEs. The optimization was carried out using 1×10−4 mol/L BDZs in the particular 

medium with the fixed scan rate value of 10 mV/s. The operating parameters of DPV such as 

modulation amplitude (pulse height) and modulation time (pulse time) were investigated for 

both analytes. During the optimization one parameter was changed while the other was kept 

constant. As shown in DP voltammograms in Fig. 3, a variation of modulation amplitude in 



the range of 10 – 150 mV (with the modulation time fixed at 50 ms) showed that the current 

responses of BZ and ALZ increased, however, at the same time the background currents 

gradually increased as well. The optimal modulation amplitude with the best compromise 

between the faradaic and background current was set on 50 mV for BZ and 100 mV for ALZ. 

Furthermore, the modulation time was explored in the range from 10 to 150 ms. The insets of 

Fig. 3 illustrate the decrease of JBZ and JALZ as the modulation time increased. The optimal 

modulation time of 25 ms and 50 ms were chosen as suitable values for the subsequent DPV 

determination of BZ and ALZ, respectively. The optimal operating parameters of DPV for the 

determination of BDZs are also summarized in Table S2. 

Here Fig. 3 

Here Table S2 

 

3.2.2. Quantification of BDZs 

The applicability of DPV for the individual determination of BZ and ALZ was 

investigated under the optimized experimental conditions by plotting of JBZ and JALZ against 

the particular concentration. The DP voltammograms, involving the calibration curves with 

the linear dynamic ranges of 1×10−6 – 1×10−4 mol/L and 8×10−7 – 1×10−4 mol/L for BZ and 

ALZ, respectively, are gathered in Fig. 4. The analytical parameters of this electroanalytical 

approach are summarized in Table 1. LODs for BZ and ALZ were calculated to be 3.1×10−7 

and 6.4×10−7 mol/L, respectively. The repeatability of the proposed methods was tested by 

four replicate DPV measurements for 1×10−5 mol/L of each BDZ using the same conditions 

with the achieved relative standard deviations (RSDs) of 2.93 % for BZ and 1.98 % for ALZ. 

The low RSD values reflect good precision of the proposed method and confirm the 

negligible adsorption effect for this advanced electrode material. It may be concluded from 



the attained results that the developed methods provide considerably sensitive and precise 

quantification of both studied BDZs. 

Here Fig. 4 

Here Table 1 

3.2.3. Interference studies 

In order to evaluate the selectivity of the proposed electrochemical protocols, the 

influence of some common species (usually present in pharmaceuticals) on the reduction 

signal of 1×10−5 mol/L BZ and ALZ was examined under the optimum experimental 

conditions. The tolerance limit was taken as the maximum concentration of the foreign 

substances, which caused an approximately ±5% relative error in the determination of both 

drugs. The 200-fold excess of inorganic ions such as Ca2+, Mg2+, Na+ and K+ and sugars 

(glucose, lactose, starch and sucrose) exhibited no significant changes of BZ and ALZ signals. 

It was found that the individual determination of BZ and ALZ on BDDEs was not affected 

significantly by the common interfering species.  

 

3.2.4. Analysis of pharmaceutical tablets 

In order to investigate the accuracy and validity of the developed methods, standard 

addition method was applied to the analysis of two different commercially available 

pharmaceuticals Lexaurin® (BZ) and Xanax® (ALZ). The preparation of the pharmaceutical 

samples is discussed in detail in section 2.5. An aliquot volume of 1×10−3 mol/L BDZ 

standard solution was added to the electrochemical cell containing 9 mL of supporting 

electrolyte and 1 mL of the particular pharmaceutical sample. Each experiment was 

performed in triplicate. The respective DP voltammograms of analysis of the commercial 

pharmaceutical tablets with the graphical evaluation of standard addition method are 

illustrated in Fig. 5. The recovery values for both pharmaceutical samples are summarized in 



Table 2 and Table 3. The recoveries were ranged from 97.33 to 100.85% and from 94.14 to 

101.32% for the individual BZ and ALZ determination, respectively. Obviously, these results 

indicate that the methods did not suffer from any significant matrix interferences. Therefore, 

the BZ and ALZ amount can be quantitatively recovered by the proposed methods, being thus 

a guarantee of the accuracy of the voltammetric determination of these BDZs in routine 

pharmaceutical analysis. 

Here Fig. 5 

Here Table 2 

Here Table 3 

 

3.2.5. Comparison with mercury and chemically modified working electrodes 

A comparison between the analytical parameters of the proposed advanced approach and 

some methods previously reported for the determination of BZ, ALZ and other related BDZs 

is summarized in Table 4. From these data, it can be emphasized that the electroanalytical 

methods with the use of mercury electrodes in combination with the pulse voltammetric 

techniques with stripping steps have been considered to be the highly sensitive platforms with 

the low LODs for the quantifying BDZ, mostly below 10−8 mol/L [14-16, 32]. In addition, the 

linear range for studied BDZs using mercury electrodes was at the concentration level of three 

orders and the particular peak potentials varied from –0.5 to –1.2 according to the supporting 

electrolyte used (BR buffers of pH 5-11). The excellent analytical performance for BDZs 

sensing mostly arises from high hydrogen overpotential and self-renewing atomically smooth 

surface of this electrode material. However, mercury has been considered as toxic substance 

and the problems with mechanical stability could occur for electrochemical measurements in 

flowing systems and for field measurements, therefore an adequate care should be taken in its 



handling. Likewise, the current trends in the field of modern electroanalytical chemistry often 

classify mercury as obsolete electrode material [36]. 

Hence, several electrochemists have focused on the usage of the perspective and 

environmentally acceptable electrode materials as sensitive electrochemical sensors capable 

of the trace quantification of the particular BDZ. In this respect, the application of silver solid 

amalgam electrodes has seemed to be efficient in the BDZ sensing combining advantages of 

mercury and solid working electrodes. In contrast to mercury electrodes, they are 

mechanically stable and thus compatible with measurement in combination with flowing 

systems. The use of m-AgSAE as alternative electrode material for the individual 

determination of four BDZs (diazepam, nordiazepam, BZ, ALZ) by DPV with LODs of about 

10−7 mol/L has been recently demonstrated [17]. For BZ and ALZ, the best environment 

appeared to be alkaline with the peak potentials of –0.35 and –1.06 V using BR buffer of pH 2 

and phosphate buffer (PB) of pH 11, respectively. Otherwise, so far the most sensitive 

electroanalytical procedure with LOD of 2×10−10 mol/L has been rendered for lorazepam 

determination at +0.19 V in neutral media (PB of pH 6.8) using a GCE coated with MWCNT 

and Au nanoparticles [18]. This chemically modified electrode enhanced the transport of 

electrons that led to substantial improvement of sensitivity when compared with bare GCE. 

Concerning the analytical performance of BDZ sensing, it should be pointed out that the 

LODs accomplished by applying BDDEs in the proposed paper are slightly lower with those 

obtained with m-AgSAE [17] and 3-methylthiophene modified GCE electrodes [19] in acid 

medium. The usage of other chemically modified electrodes such as MWCNT modified CPE 

[20] and bentonite modified CPE [21] has resulted in LODs of 10−8 mol/L using SWV for 

both cases. Owing to above mentioned facts, it is worth stating that the application of 

amalgam electrodes is usually accompanied by extending the total procedure time because of 

a requirement of the preparation of nontoxic amalgam. Then, the preparation of chemically 



modified electrodes mostly requests demanding surface modification procedure, which on the 

one hand improves the sensitivity and selectivity, but on the other hand oftentimes gives the 

low reproducible signals. Furthermore, the analytical parameters achieved by modified 

electrodes may suffer from the variableness due to the singularity in the actual status of the 

modified electrode surface which can restrict their reliable usage in routine analysis. 

Accordingly, herein presented BDDEs in connection with the DPV technique meet all 

required characteristics for the contemporary electrochemical sensors (rapidity, simplicity, 

sufficient sensitivity, good repeatability and low cost) to be successfully used as mercury-free 

(nontoxic) and modification-free alternative platforms for determination of BDZs traces in 

pharmaceutical samples. 

Here Table 4 

 

 

4. Conclusion 

Recent analytical methods dedicated to BDZs quantification are relatively of high cost, 

generate a high amount of toxic organic solvent with time consuming analysis and need for 

sample derivatization. In this work, the commercial and lab-made BDDEs with various boron-

doping levels were exploited for the first time in connection with DPV technique to elaborate 

the novel and advanced electrochemical protocols for simple analytical determination of the 

selected BDZs. CV experiments revealed that both BZ and ALZ provided one irreversible and 

diffusion-controlled reduction peak at –1.10 and –0.84 V, respectively. Under the optimized 

experimental conditions, the analytical parameters were determined as follows: LOD = 

3.1×10−7 and 6.4×10−7 mol/L, the linear dynamic ranges of 1×10−6 – 1×10−4 mol/L and 8×10−7 

– 1×10−4 mol/L as well as the significant repeatability (RSD = 2.93 and 1.98%) for BZ and 

ALZ, respectively. The methods were sufficiently selective with the negligible effect of 



possible interfering agents. The developed procedures were applied to the analysis of the 

pharmaceutical samples without a complex sample pretreatment with the recoveries in the 

range of 97.33 – 100.85% and 94.14 – 101.32% for BZ and ALZ, respectively. The 

innovative aspect of here reported work consists in the application of the bare BDDEs as 

advanced, mercury-free and modification-free electrochemical platforms replacing toxic and 

obsolete mercury electrodes as well as chemically modified carbon electrodes in BDZs 

sensing. Clearly, the coupling of BDDE with DPV is a low cost and adequate electrochemical 

tool for routine pharmaceutical analysis. 
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Captions for figures  

 

Fig. 1.  

(A) Effect of pH on the peak potential (■) and the peak current density (■) of 1×10−4 mol/L 

BZ in BR buffer of pH 11 on L-M BDDE of 1000 ppm B/C using DPV. The used DPV 

parameters: modulation amplitude of 50 mV, modulation time of 80 ms and scan rate of 25 

mV/s. 

(B) Effect of pH on the peak potential (■) and the peak current density (■) of 1×10−4 mol/L 

ALZ in BR buffer of pH 5 on commercial BDDE of 1000 ppm B/C using DPV. The used 

DPV parameters: modulation amplitude of 50 mV, modulation time of 80 ms and scan rate of 

25 mV/s. 

 

 

Fig. 2. 

(A) CV records of 0 (blank) and 1×10−4 mol/L BZ in BR buffer of pH 11 on L-M BDDE of 

1000 ppm B/C in the potential range from +1.0 to –1.5 V with the scan rate of 50 mV/s. 

(B) CV records of 0 (blank) and 1×10−4 mol/L ALZ in BR buffer of pH 5 on commercial 

BDDE of 1000 ppm B/C in the potential range from +1.0 to –1.5 V with the scan rate of 50 

mV/s. 

 

 

Fig. 3. 

(A) DP voltammograms of 1×10−4 mol/L BZ in BR buffer of pH 11 on L-M BDDE of 1000 

ppm B/C for various modulation amplitudes: (a) 10, (b) 25, (c) 50, (d) 100 and (e) 150 mV. 

The optimization of modulation time: (a) 10, (b) 25, (c) 50, (d) 100 and (e) 150 ms appears in 

the inset. 

(B) DP voltammograms of 1×10−4 mol/L ALZ in BR buffer of pH 5 on commercial BDDE of 

1000 ppm B/C for various modulation amplitudes: (a) 10, (b) 25, (c) 50, (d) 100 and (e) 150 

mV. The optimization of modulation time: (a) 10, (b) 25, (c) 50, (d) 100 and (e) 150 ms 

appears in the inset. 

 

 

 



Fig. 4. 

(A) DP voltammograms of supporting electrolyte (BR buffer of pH 11, curve a) and BZ for 

the concentration range with two (I and II) linear segments: (I) (b) 1×10−6, (c) 2×10−6, (d) 

4×10−6, (e) 6×10−6, (f) 8×10−6 and (g) 1×10−5 mol/L, (II) (h) 2×10−5, (i) 4×10−5, (j) 6×10−5, (k) 

8×10−5 and (l) 1×10−4 mol/L in BR buffer of pH 11 on L-M BDDE of 1000 ppm B/C. The 

optimized DPV parameters: modulation amplitude of 50 mV, modulation time of 25 ms and 

scan rate of 10 mV/s. The respective calibration curves JBZ = f(cBZ) with corresponding error 

bars appear in the inset. 

(B) DP voltammograms of supporting electrolyte (BR buffer of pH 5, curve a) and ALZ for 

the concentration range with two (I and II) linear segments: (I) (b) 8×10−7, (c) 1×10−6, (d) 

2×10−6, (e) 4×10−6, (f) 6×10−6 and (g) 8×10−6 mol/L, (II) (h) 1×10−5, (i) 2×10−5, (j) 4×10−5, (k) 

6×10−5, (l) 8×10−5 and (m) 1×10−4 mol/L in BR buffer of pH 5 on commercial BDDE of 1000 

ppm B/C. The optimized DPV parameters: modulation amplitude of 100 mV, modulation 

time of 50 ms and scan rate of 10 mV/s. The respective calibration curves JALZ = f(cALZ) with 

corresponding error bars appear in the inset. 

 

 

Fig. 5. 

(A) DP voltammograms of analysis of the pharmaceuticals tablets Lexaurin® (curve b) with 

declared content of 3 mg BZ using standard addition method in BR buffer of pH 11 (curve a) 

on L-M BDDE of 1000 ppm B/C. The respective standard additions: (c) 50, (d) 100 and (e) 

150 µL (cBZ = 1×10−3 mol/L). The optimized DPV parameters: modulation amplitude of 50 

mV, modulation time of 25 ms and scan rate of 10 mV/s. The determination of BZ by 

standard addition method is depicted in the inset. 

(B) DP voltammograms of analysis of the pharmaceuticals tablets Xanax® (curve b) with 

declared content of 2 mg ALZ using standard addition method in BR buffer of pH 5 (curve a) 

on commercial BDDE of 1000 ppm B/C. The respective standard additions: (c) 50, (d) 100 

and (e) 150 µL (cALZ = 1×10−3 mol/L). The optimized DPV parameters: modulation amplitude 

of 100 mV, modulation time of 50 ms and scan rate of 10 mV/s. The determination of ALZ by 

standard addition method is depicted in the inset. 
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Table 1 

The basic characteristics of the developed methods for the individual determination of BZ and 

ALZ on BDDEs using the DPV technique with the optimized parameters (n = 3). 

 

Characteristics of the developed methods 
Studied analyte 

BZ ALZ 

Type of BDDE Lab-made Commercial 

BDDE active surface area (mm2) 0.43 7.1 

B/C ratio in BDDE (ppm) 1000 1000 

Supporting electrolyte BR buffer, pH 11 BR buffer, pH 5 

Peak potential (V vs. Ag/AgCl/3 mol/L KCl) –1.10 –0.84 

Linear dynamic range (mol/L) 1×10−6 – 1×10−4 

(with 2 linear segments: 

1×10−6 – 1×10−5,  

2×10−5 – 1×10−4) 

8×10−7 – 1×10−4 

(with 2 linear segments: 

(8×10−7 – 8×10−6,  

8×10−6 – 1×10−4) 

Slope (µA×L/mm2×mol) for 1st linear segment –3870 ± 107 –1411 ± 54 

Intercept (µA/mm2) for 1st linear segment 0.0022 ± 0.0004 –0.0009 ± 0.0003 

Correlation coefficient –0.998 –0.996 

Detection limit (mol/L) 3.1×10−7 6.4×10−7 

Repeatability (%, for 1×10−5 mol/L, n = 4) 2.93 1.98 
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Table 2 

The analysis of the pharmaceutical tablets (Lexaurin®) containing BZ using the proposed 

method (n = 3). 

 

Added           

(µL) 

Expected            

(mg) 

Found
* 
               

(mg) 

Standard deviation          

(mg) 

Recovery              

(%) 

0 3.000 2.920 ± 0.083 0.049 97.33 

50 3.016 2.945 ± 0.089 0.053 97.64 

100 3.032 2.982 ± 0.061 0.036 98.35 

150 3.047 3.073 ± 0.054 0.032 100.85 

*Confidence interval for 95% probability calculated as [ x ± tn-1,α SD/n1/2]; t2; 0.05 = 2.92 
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Table 3 

The analysis of the pharmaceutical tablets (Xanax®) containing ALZ using the proposed 

method (n = 3). 

 

Added          

(µL) 

Expected         

(mg) 

Found
* 
               

(mg) 

Standard deviation          

(mg) 

Recovery                  

(%) 

0 2.000 1.917 ± 0.086 0.051 95.85 

50 2.015 1.897 ± 0.125 0.074 94.14 

100 2.031 2.043 ± 0.083 0.049 100.59 

150 2.046 2.073 ± 0.089 0.053 101.32 

*Confidence interval for 95% probability calculated as [ x ± tn-1,α SD/n1/2]; t2; 0.05 = 2.92 

 

 

 

 

  



Table 4 

The overview of voltammetric methods for the determination of BDZs on various mercury-like and chemically modified working electrodes. 

Studied BDZ Working electrode Supporting electrolyte 
Ep  

(V) 
Techniques 

Linear range  

(mol/L) 

LOD 

(mol/L) 

LOQ 

(mol/L) 
Ref. 

Diazepam 

m-AgSAE 0.1 mol/L NaOH −1.21 DPV 4×10−7 − 1×10−4 9.0×10−8 − 17 

3-methylthiophene/GCE 0.1 mol/L H2SO4 −0.85 DPSV 7×10−7 – 3.8×10−6 3.5×10−7 − 19 

MWCNT/CPE BR pH 7 −0.98 SWV 7×10−8 – 2.7×10−6 1.4×10−8 − 20 

Bentonite/CPE BR pH 10 − SWAdCSV 9.8×10−8 − 9×10−7 1.4×10−8 − 21 

Nordiazepam m-AgSAE BR pH 10.2 −1.09 DPV 6×10−7 − 1×10−4 1.1×10−7 − 17 

Bromazepam 

m-AgSAE BR pH 2 −0.35 DPV 6×10−7 − 1×10−4 3.7×10−7 − 17 

HMDE BR pH 5  −0.55 DPAdCSV 1×10−8 − 8×10−8 3.5×10−9 − 32 

HMDE 0.1 mol/L KNO3/BR pH 6  − SWCSV 1×10−7 − 1×10−5 1.2×10−8 − 33 

Alprazolam 
m-AgSAE PB pH 11 −1.06 DPV 6×10−7 − 1×10−4 3.5×10−7 − 17 

HMDE Ringer buffer pH 10 −1.05 AdCSV 1×10−6 − 3×10−5 − − 36 

Chlordiazepoxide 
Bentonite/CPE 0.05 mol/L FA/NaOH − SWAdCSV 1.1×10−7 − 1×10−6 1.6×10−8 − 21 

HMDE BR pH 8 −1.22 SWAdCSV 5×10−9 − 2×10−7 − 1.5×10−9 14 

Lorazepam 
Au/MWCNT/GCE PB pH 6.8 0.19 SWV 5×10−10 − 1×10−8 2.0×10−10 − 18 

HMDE BR pH 2 −0.65 DPAdCSV 1.6×10−7 − 3.6×10−6 5.9×10−8 − 15 

Tetrazepam 

HMDE BR pH 11 −0.97 DPP 5×10−6 − 1.1×10−4 1.5×10−6  − 16 

HMDE BR pH 11 −0.97 DPAdCSV 3×10−7 − 1×10−5 − 3×10−7  16 

HMDE BR pH 11 −0.97 LSAdCSV 1×10−8 − 1×10−6 −  1×10−8  16 

HMDE BR pH 11 −0.97 SWAdCSV 3×10−9 − 6×10−7 − 3×10−9  16 

Abbreviations: AdCSV – adsorptive cathodic stripping voltammetry, BR – Britton-Robinson buffer, CPE – carbon paste electrode, DPAdCSV – differential pulse adsorptive cathodic stripping 

voltammetry, DPP – differential pulse polarography, DPSV – differential pulse stripping voltammetry, DPV – differential pulse voltammetry, Ep – peak potential, FA – formic acid, GCE – 

glassy carbon electrode, HMDE – hanging mercury drop electrode, LOD – detection limit, LOQ – quantification limit, LSAdCSV – linear sweep adsorptive cathodic stripping voltammetry, m-

AgSAE – meniscus modified silver solid amalgam electrode, MWCNT – multi-walled carbon nanotube, PB – phosphate buffer, SWAdCSV – square-wave adsorptive cathodic stripping 

voltammetry, SWCSV – square-wave cathodic stripping voltammetry, SWV – square-wave voltammetr 

 


