# The Skill Bias Effect of Technological and Organisational Change: Evidence and Policy Implications

Mariacristina Piva - Catholic University Piacenza Enrico Santarelli - University of Bologna Marco Vivarelli - Catholic University Piacenza

### Aim of the Paper

- At the macroeconomic level, there has been a shift in the skill composition in the G-7 countries in the last 20 years.
- Potential **explanations** in the literature are:
  - 1) skill-bias technological change (SBTC);
  - 2) skill-bias organisational change (SBOC);
  - 3) SBTC + SBOC.
- What is happening in **Italy**?

### Upskilling in the G-7 in the '80s and '90s

### Shares (% values) of white-collars in manufacturing employment in the G-7



Source: Calculations based on OECD data (1998) for the first two years and on different national sources for the last two years.

## The Skill-Biased Technological Change (SBTC) Hypothesis

- The SBTC hypothesis is based on **complementarity** between **new technologies and skilled workers** and **substitutability** between **new technologies and unskilled**.
- **Different proxies** for technology in empirical studies.
- Empirical evidence supporting SBTC are found at sectoral and firm-level data analysis especially in *US* (Berman *et al.*, 1994; Doms *et al.*, 1997; Siegel, 1998; Adams, 1999) and *UK* (Machin, 1996).
- Less robust results in European countries (*France*: Goux-Maurin, 2000; *Spain*: Aguirregabiria-Alonso Borrego, 2001).

## The Skill-Biased Organisational Change (SBOC) Hypothesis

- The SBOC hypothesis is based on the idea that reorganisational processes within firms play a determinant role in increasing demand for skilled (Lindbeck-Snower, 1996).
- Recent *trends* are :
  - 1) decentralization and delayering
  - 2) collective work
  - 3) multi tasks
- Some **empirical analysis support SBOC** at the firm-level especially in **France** (Greenan-Guellec, 1998; Thesmar-Thoenig, 2000; Caroli *et al.*, 2001) and **UK** (Caroli-Van Reenen, 2001).

### SBTC + SBOC

- A recent strand of the literature tends to emphasize that **technological change**, especially **GPT** (Bresnahan-Trajtenberg, 1995), **and organisational change are complementary** and generate **superadditive effects** (Milgrom-Roberts, 1990 and 1995).
- Recent empirical analyses test positively the correlation between **ICTs and organisation strategies** and their impact on the **skill demand** and recruitment strategies (Hitt-Brynjolfsson, 1997; Bresnahan *et al.*, 2002).

### Data and Model

- Firm-level data come from **Mediocredito Centrale**. A sample of 400 **manufacturing firms** covering the **1989-1997** period has been used.
- Starting from a translog cost function, it is possible to estimate **two functions** for **two categories** of workers (*white-collars* & *blue-collars*) through **SURE**:

$$\Delta \ln WC_{it} = C + \alpha \Delta \ln Y_{it} + \beta \Delta \ln K_{it} + \gamma \Delta \ln w_{WC},_{it} + \delta SB_{it-1} + u_{it}$$

$$\Delta \ln BC_{it} = \overline{C} + \overline{\alpha} \Delta \ln Y_{it} + \overline{\beta} \Delta \ln K_{it} + \overline{\gamma} \Delta \ln w_{BC},_{it} + \overline{\delta} SB_{it-1} + \overline{u}_{it}$$

- i = 1, ..., n; t = 1991-1997; t-1 = 1989-1991
- WC = white-collars; BC = blue-collars
- Y = sales; K = capital; w = wage
- SB = Skill Bias; alternatively equal to R&D, ORG (organisational change) and R&D\*ORG
- u = usual error term

Table 2: Descriptive statistics

|                                       | Sample (1991) | Population (1991) |
|---------------------------------------|---------------|-------------------|
| Observations                          | 400           | 4,169             |
| Employees (average)                   | 351           | 310               |
| Sales (average, million Italian lira) | 93,989        | 85,478            |
| R&D (%) 1989-1991                     | 48            | 36.99             |
| ORG (%) 1989-1991                     | 41.75         | 37.80             |
| ORG and R&D (%) 1989-1991             | 23.25         | 20.24             |

Table 3: SUR estimates of change in demand for WC and BC between 1997-91

|                                         | (1)<br>dlWC        | (2)<br>dlBC      | (3)<br>dlWC        | (4)<br>dlBC       | (5)<br>dlWC        | (6)<br>dlBC       |
|-----------------------------------------|--------------------|------------------|--------------------|-------------------|--------------------|-------------------|
| Constant                                | 0.17<br>(1.34)     | 0.12<br>(1.17)   | -0.13*<br>(1.83)   | -0.05<br>(0.64)   | 0.16<br>(1.33)     | -0.05<br>(0.64)   |
| Sales                                   | 0.32***<br>(5.79)  | 0.38*** (6.34)   | 0.31***<br>(5.64)  | 0.39*** (6.58)    | 0.31***<br>(5.51)  | 0.40*** (6.60)    |
| Capital                                 | 0.04<br>(1.11)     | 0.09**<br>(2.49) | 0.04<br>(1.02)     | 0.10***<br>(2.62) | 0.04<br>(1.04)     | 0.10***<br>(2.57) |
| Wages                                   | -0.60***<br>(6.96) | -0.004<br>(0.04) | -0.59***<br>(6.91) | -0.01<br>(0.15)   | -0.59***<br>(6.88) | -0.01<br>(0.14)   |
| R&D                                     | 0.02<br>(0.36)     | -0.01<br>(0.19)  |                    |                   |                    |                   |
| ORG                                     |                    |                  | 0.06<br>(1.46)     | -0.08*<br>(1.83)  |                    |                   |
| ORG*R&D                                 |                    |                  |                    |                   | 0.09*<br>(1.78)    | -0.10*<br>(1.82)  |
| Takeover/Breakup dummies<br>(Wald test) | 5.56*              | 1.21             | 5.95*              | 1.18              | 5.86*              | 1.23              |
| Size dummies<br>(Wald test)             | 25.75**            | 12.53***         | 26.20***           | 10.42**           | 27.29***           | 11.21**           |
| Sector dummies<br>(Wald test)           | 0.53               | 2.35             | 0.40               | 2.58              | 0.78               | 1.81              |
| $\mathbb{R}^2$                          | 0.23               | 0.19             | 0.24               | 0.20              | 0.24               | 0.20              |
| Observations                            | 400                | 400              | 400                | 400               | 400                | 400               |

Table 4: SUR estimates of change in demand for WC and BC between 1997-91 (SHOPFLOOR)

|                                         | (1)      | (2)      | (3)      | (4)     |
|-----------------------------------------|----------|----------|----------|---------|
|                                         | dlWC     | dlBC     | dlWC     | dlBC    |
| Constant                                | -0.13*   | 0.13     | -0.14*   | 0.12    |
|                                         | (1.76)   | (1.30)   | (1.90)   | (0.86)  |
| Sales                                   | 0.31***  | 0.39***  | 0.30***  | 0.40*** |
|                                         | (5.64)   | (6.60)   | (5.45)   | (6.70)  |
| Capital                                 | 0.04     | 0.10***  | 0.04     | 0.10*** |
|                                         | (1.05)   | (2.60)   | (1.05)   | (2.58)  |
| Wages                                   | -0.59*** | -0.01    | -0.59*** | -0.01   |
|                                         | (6.94)   | (0.12)   | (6.91)   | (0.12)  |
| SHOPFLOOR                               | 0.05     | -0.09*   |          |         |
|                                         | (1.22)   | (1.91)   |          |         |
| SHOPFLOOR*R&D                           |          |          | 0.09*    | -0.12** |
|                                         |          |          | (1.83)   | (2.20)  |
| Takeover/Breakup dummies<br>(Wald test) | 6.12*    | 1.20     | 6.04**   | 1.14    |
| Size dummies<br>(Wald test)             | 26.18*** | 14.73*** | 26.95*** | 11.15** |
| Sector dummies<br>(Wald test)           | 0.42     | 2.66     | 0.81     | 1.88    |
|                                         |          |          |          |         |
| $\mathbb{R}^2$                          | 0.24     | 0.20     | 0.24     | 0.20    |
| Observations                            | 400      | 400      | 400      | 400     |

### Conclusions

- Persisting upskilling trend in manufacturing in the G-7.
- Using a sample of 400 Italian manufacturing firms, the long-difference econometric analysis shows a superadditive skill-bias effect of reorganisation (driving explanation) combined with technological change.
- Reorganisational strategies should be coupled with intervention on HRM to avoid redundancy of blue-collars and skill shortage (Freeman-Soete, 1994).
- Moreover, the increasing demand for multi-skilled workers calls for a supply of general educational/training at high/intermediate levels, rather than technical education and vocational training (Bresnahan, 1999).