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Abstract: 11 

The transition to the Late Holocene/Neoglacial occurred as a worldwide process of climatic 12 

deterioration from the optimum thermal conditions of the mid-Holocene, culminating in an 13 

abrupt decline around 4200 cal yr ago, in a period of severe climatic deterioration that lasted for 14 

two or three centuries. This sudden climatic event has been recorded in many proxy data archives 15 

from around the world, and its effects were manifest in different ways depending on the reaction 16 
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temperatures. It has been regarded as causing or contributing to the sudden collapse of several 18 

well-established human societies at that time, including advanced agricultural Late Neolithic 19 

cultures in eastern China. We have used high-resolution pollen and non-pollen palynomorph 20 

analysis to examine the nature of this climatic transition through its impacts on the vegetation 21 

and hydrology at Pingwang, a site in the Yangtze coastal lowlands which has no evidence of 22 
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complicating environmental influences such as sea-level rise or significant human land-use 23 

activity, factors previously suggested as alternative reasons for changes in forest composition. 24 

Our results show two phases of forest alteration, one gradual from about 5500 cal BP and one 25 

sudden at about 4200 cal BP., in which the frequencies of subtropical forest elements fall and are 26 

replaced by those of conifers and cold-tolerant trees. Total arboreal pollen frequencies do not 27 

decline and the proportion of temperate forest trees, tolerant of a wide range of temperatures, 28 

remains unchanged throughout, both ruling out human land clearance as a cause of the change in 29 

forest composition. As these dates accord very well with the known timings of climate 30 

deterioration established from other proxy archives in the region, we conclude that climate was 31 

the main driver of vegetation change in eastern China at the mid- to Late Holocene transition. 32 

Our hydrological results support the view that a combination of rising local water level and 33 

climatic cooling during the 4200 cal BP event was the probable cause of societal collapse in the 34 

lower Yangtze valley. 35 
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1. Introduction 45 

Holocene climate history is now relatively well understood at the global scale, with the 46 

recognition of a series of significant temperature events that occurred within the longer-term 47 

evolution of the present interglacial‟s temperate climate, some of which represent tipping points, 48 

major shifts that mark phase transitions between longer periods of more stable thermal 49 

conditions. One of the most important of these climatic shifts is Holocene event 3 (Bond et al., 50 

2001), occurring relatively abruptly around 4200 years ago (hereafter cal BP) and having major 51 

environmental impacts worldwide, recognised (Walker et al., 2012) as the global transition from 52 

early and mid-Holocene thermal maxima (Renssen et al., 2012) to the Late Holocene 53 

(Neoglacial), with its colder, more extreme and more variable climatic regimes (Jessen et al., 54 

2005; Marchant and Hoogiemstra, 2004; Wanner et al., 2011). This major climatic shift to 55 

unstable Neoglacial conditions in the centuries preceding 4000 cal BP has been recorded across 56 

the globe in a range of proxy climate data archives (Gear and Huntley, 1991; Jian et al., 1996; 57 

Phadtare, 2000; Stott et al., 2004; Booth et al., 2005; Magny et al, 2009; Geirsdóttir et al., 2013), 58 

affecting major atmospheric systems such as the North Atlantic Oscillation (Olsen et al. 2012), 59 

ENSO (Schulmeister and Lees, 1995), the Indian Monsoon (Overpeck et al., 1996; Gupta et al., 60 

2003; Staubwasser et al. 2003) and the East Asian Monsoon (EAM) through global climatic 61 

teleconnections (Wang et al., 2000; Liu et al., 2004; Hong et al., 2005; Tan et al., 2008). A 62 

gradual onset of globally cooler conditions can be noted at around 5500 cal BP, with the major 63 

Neoglacial intensification at ca 4200 cal BP (Geirsdóttir et al., 2013). The EAM, which forms 64 

the focus of this paper, accords very well with the global data, with ample evidence of its 65 

progressive weakening after the mid-Holocene at ca 5500 cal BP, culminating in an abrupt 66 

decrease in its strength in the centuries before 4000 cal BP (An, 2000; An et al., 2000; Morrill et 67 



 4 

al., 2003; He et al., 2004; Yuan et al, 2004; Wang et al., 2005; Selveraj et al., 2007; Cosford et 68 

al., 2008; Cai et al., 2010). 69 

1.1. Neoglacial climatic deterioration and human societies 70 

The link between climatic and societal change can be very strong (Perry and Hsu, 2000; 71 

Caseldine and Turney, 2010; Zhang et al., 2011). It is not deterministic (Coombes and Barber, 72 

2005) to assume that the change from the mid-Holocene climatic optimum to the much less 73 

congenial Neoglacial climate would have had significant effects upon human societies, 74 

particularly those that had developed intensive agricultural systems that supported high, 75 

sedentary populations, but which had become dependent upon stable, favourable and reliable 76 

climatic conditions. The more economically and socially specialized such societies became, the 77 

more vulnerable they would have been to any rapid environmental change (O‟Sullivan, 2008). 78 

Human communities are resilient and adaptable (Anderson et al., 2007; Lu, 2007) and were able 79 

to cope and even flourish during the gradual climatic decline from the mid-Holocene thermal 80 

maximum around the world, the development of advanced agrarian societies based on the control 81 

of water resources in the major river valleys of the Middle East and China being good examples. 82 

In China such advanced, highly productive farming systems sustained the dense Neolithic 83 

populations of the Longshan, Shijiahe, Qijia and Liangzhu cultures in the Yellow River and 84 

Yangtze valleys during the millennium after 5000 cal BP (Liu and Feng, 2012; Zhuang et al., 85 

2014). Abrupt climatic deterioration would have been difficult for such complex agrarian 86 

societies to cope with, however (Mo et al., 2011), and there is abundant archaeological and 87 

palaeoecological evidence that the rapid climate changes around 4200 cal BP caused severe 88 

economic and political dislocation, and even societal collapse, in many regions of the world 89 

(Dalfes et al., 1997; Sandweiss et al., 1999; Peiser, 1998; deMenocal, 2001). Major civilizations 90 
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disintegrated at this time in India and the Middle East and the coincidence of societal failure and 91 

settlement abandonment with the rapid change to Neoglacial cold and arid conditions in these 92 

areas implies an environmental cause and a cultural effect, with climate as the driving force 93 

(Weiss et al., 1993; Cullen et al., 2000; Staubwasser et al., 2003; Drysdale et al., 2006; 94 

Staubwasser and Weiss, 2006; Riehl, 2012), although of course such a direct relationship can 95 

never be proven conclusively. 96 

1.2. The East China example 97 

One of the world‟s regions that has a clear correlation between cultural „collapse‟ and the 4200 98 

cal BP climate event is eastern China, and in particular the lower Yangtze valley, one of the 99 

historic heartlands of Chinese society and agricultural development. Liu and Feng (2012) and 100 

Wu et al. (2012) have evaluated the evidence for the development in the fifth millennium cal BP 101 

of the advanced agrarian cultures of central and eastern China mentioned above, and their 102 

sudden, almost synchronous demise around 4200 cal BP, when severe climate deterioration 103 

occurred. Many major Neolithic archaeological sites have culturally sterile sediments of this age 104 

that seal the rich cultural layers and are interpreted as flood deposits. Many authors (e.g. Yu et 105 

al., 2000, 2003; Jin and Liu, 2002; Wu and Liu, 2004; Zhang et al., 2005; Gao et al., 2007; Chen 106 

et al., 2008) are convinced that the 4200 cal BP event must have been responsible for site 107 

abandonment and for the culturally impoverished interlude of a few centuries recorded almost 108 

everywhere in north and east China around 4200 cal BP. Clear, independent evidence that the 109 

severe climatic deterioration of Holocene Event 3 had an impact on the east Asia region at this 110 

time may be seen in marine sediment records from the South China Sea, the East China Sea and 111 

the North-west Pacific generally. Jian et al. (1996) used oxygen isotope analysis on planktonic 112 

foraminifera from deep water marine sediments in the East China Sea to reconstruct sea-surface 113 
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temperatures during the transition to the late Holocene, observing major cooling at the start of 114 

the Neoglacial around 4200 cal BP. Sun et al. (2005)‟s oxygen isotope analyses from corals in 115 

the South China Sea show a major weakening of the monsoon and increase in its variability 116 

during the same period. Wang et al. (1999a, b), also using oxygen isotope data, identified a very 117 

clear abrupt cooling, the most severe in the Holocene apart from the 8200 cal BP event, at 4200-118 

4000 cal BP in the northern South China Sea, a feature also observed by Wei et al. (1998) and by 119 

Chinzei et al. (1987) in the Sea of Japan. The ca. 4200 cal BP major cooling event is well 120 

attested in proxy climate records from the east Asia region, and it coincides with the apparent 121 

collapse of the late Neolithic cultures of the lower Yangtze area. 122 

Although the circumstantial evidence that environmental pressures of varying kinds led to the 123 

collapse of the Liangzhu culture of the lower Yangtze around 4200 cal BP is very persuasive, we 124 

still do not know in detail the vegetation changes that preceded and accompanied the 4200 cal 125 

BP event there. New, high resolution palaeoecological data are required from within the 126 

Liangzhu‟s core settlement and agricultural area with which to establish these environmental 127 

preconditions. Most previous palynological research has been of low resolution, or situated too 128 

close to archaeological sites to be able to separate clearly any cultural impacts from the 129 

background vegetation history, or too far away to provide evidence of conditions within the 130 

cultural heartland itself. Also, not every pollen record agrees with the hypothesis that agricultural 131 

production almost ceased in the Taihu lowlands at this time (Itzstein-Davey et al., 2007b). In this 132 

paper we use high resolution palynology (both pollen and non-pollen palynomorphs) to 133 

investigate the nature and severity of the environmental changes during the transition to the 134 

Neoglacial in the Yangtze coastal lowlands of eastern China, as expressed in vegetation patterns 135 

and hydrology. A site at Pingwang has been selected where a more regional pollen signal might 136 
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be expected, minimizing the influence of local human land-use in this intensively settled area, so 137 

that natural factors rather than agricultural impacts will have been the main driving force behind 138 

the vegetation history and environmental change. Zong et al. (2011) have shown that direct 139 

inundation by marine transgression could not have been the reason for the abandonment of the 140 

Taihu lowlands by Neolithic people at this time, and this paper will explore in detail whether 141 

climate deterioration and its consequences was the environmental driving force, if one existed. 142 

 143 

2. The study area and site 144 

The study area chosen is the coastal lowland around the Taihu lake west of Shanghai (Fig.1). 145 

Between the valley of the Yangtze river and Hangzhou Bay, throughout the mid- and Late 146 

Holocene this flat plain, mostly less than 5 m above sea level, was naturally occupied by 147 

woodland and by wetland ecosystems which had developed during and after the main postglacial 148 

sea-level rise on this coast (Tao et al. 2006; Zong et al., 2011, 2012a, b; Wang et al., 2012). 149 

Higher ground to the west and north (Fig. 1a) and low hills within the wetland would have 150 

naturally carried forest. As well as the main Lake Tai (Qu, 2000; Wang et al., 2001) these 151 

wetlands included many other lakes and smaller water bodies and a wide expanse of peat-152 

forming bogs, swamps and marshes. Although sheltered from direct marine inundation after the 153 

mid-Holocene by a system of coastal barrier ridges (Yan et al., 1989), these wetland systems 154 

remained affected by the groundwater influence of sea-level fluctuation (Zong et al., 2011). 155 

While their fertile marsh soils made them highly attractive for Neolithic settlement and intensive 156 

wet rice agriculture under the warm and wet climate of the mid-Holocene Megathermal phase 157 

(Cao et al., 2006; Lu, 2007; Atahan et al., 2008; Qin et al., 2011), the Taihu lowlands would have 158 

been highly vulnerable to any changes to their hydrology, sedimentation regime and natural 159 
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vegetation cover caused by even small-scale fluctuations in sea level or climate, or by fluvial 160 

input from the nearby Yangtze river. Lying at the biogeographical boundary between 161 

northeastern China‟s warm temperate broadleaf forests and southeastern China‟s sub-tropical 162 

evergreen forests (Box, 1995; Li et al., 1995; Ren and Beug, 2002; Ren, 2007; Cao et al., 2013), 163 

the natural vegetation of the lower Yangtze region would have been sensitive (Guiot et al., 2008) 164 

to climatic deterioration caused by the proposed reduction of the strength of the EAM during the 165 

transition to the Late Holocene (Morrill et al., 2003; Wang et al., 2005). It is an ideal location to 166 

test the environmental consequences of climate change during the transition to the Late Holocene 167 

Neoglacial in east China, and provide firmer evidence to assist interpretation of the 168 

archaeological record and evaluate the putative cultural responses (Chen et al., 2005, 2008). It 169 

can be difficult to distinguish vegetation changes caused by major climatic change from those set 170 

in train by human land-use (Liu and Qiu, 1994), particularly if both may be occurring at the same 171 

time and place, as both involve disturbance of established plant communities and the 172 

regeneration of changed vegetation units through seral pathways. This is particularly so in the 173 

Taihu lowlands, where usually population levels were high and agricultural activities were 174 

intensive during the mid- to late Holocene (Wu et al., 2012). For the purposes of this study a site 175 

was required that was at a significant distance from known Neolithic centres of agricultural 176 

activity, identified by archaeological sites and their concentrations of cultural material that are 177 

usually situated upon slightly higher land in the wetland. This should therefore contain a more 178 

„natural‟ environmental signal with the influence of anthropogenic impacts on the vegetation 179 

reduced as much as possible, although there would still be a regional cultural signature in the 180 

pollen rain. It is not easy to get far away from known Neolithic cultural sites in this area, as there 181 

are so many. Nevertheless such locations do exist, mainly in areas that were very wet and 182 
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perhaps agriculturally marginal, and one was selected at Pingwang to the south-east of Lake 183 

Taihu (Fig. 1) which lay more than 10 km from the nearest known archaeological site, and even 184 

further from any significant Neolithic settlement. The local hydrological history at Pingwang 185 

(30
o
 57‟ 30”N; 120

o
 38‟ 25”E; altitude 1.6 m Yellow Sea Datum) was summarised by Zong et al. 186 

(2011, 2012b). The sediments (Table 1) cover the whole of the mid- and late Holocene and 187 

record the development of various freshwater habitats above estuarine sediments after the 188 

postglacial rise of sea level was complete (Zheng and Li, 2000; Wang et al., 2012) and the final 189 

withdrawal of estuarine conditions from the area by 7000 cal BP after the establishment of 190 

coastal barrier ridges. Radiocarbon dating showed that the profile included the period of 191 

Liangzhu settlement and the Neoglacial cultural hiatus. 192 

 193 

3. Material and methods  194 

Samples were prepared for palynological analysis at 5 cm intervals using standard laboratory 195 

techniques, including alkali digestion, sieving at 180 μm, hydrofluoric acid digestion and 196 

acetolysis (Moore et al., 1991). Microfossils (all palynomorphs <180 μm in size) were identified 197 

using reference keys and type slides and counted using a stereomicroscope at magnification of 198 

×400, using ×600 oil immersion lenses for critical features. Identification of pollen grains 199 

followed Wang et al. (1995) and pteridophyte spores Zhang et al. (1990). Where very similar 200 

pollen taxa cannot be differentiated with certainty, they are shown as a composite genus, i.e. 201 

Ulmus/Zelkova, Corylus/Ostrya and Castanopsis/Lithocarpus. Quercus includes Lepidobalanus. 202 

Typha angustifolia includes Sparganium. A minimum of 200 land pollen grains was counted at 203 

each sampled level, plus all aquatic pollen and pteridophyte and bryophyte spores observed 204 

while attaining that sum. Non-pollen palynomorphs (NPPs), mainly comprising fungal spores 205 
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and algae, were also recorded with at least 200 identified on the pollen slides at each level. 206 

Taxonomic identification of NPPs was achieved where possible, otherwise they were identified 207 

using the catalogue of Type (HdV) numbers at the Hugo de Vries laboratory, Amsterdam, using 208 

illustrations and descriptions published in several papers (e.g. van Geel, 1986, 2001; van Geel 209 

and Aptroot, 2006). Microscopic charcoal particles (microcharcoal) were counted upon the 210 

microscope slides relative to the pollen sum, providing a pollen/microcharcoal ratio.  211 

Our dates on the Pingwang profile comprise AMS radiocarbon results and in this study, as in 212 

most other recent research in this area, only fragile terrestrial plant macrofossils, pollen residues 213 

or basal peat that has accumulated in situ have been dated, bulk alluvial sediment being avoided. 214 

Pollen residues have been shown in recent published studies from the area (Itzstein-Davey et al., 215 

2007a; Atahan et al., 2008; Qin et al., 2011) to provide reliable age curves. A statistically 216 

significant inversion occurs low in the profile in Table 2, but these dates refer to the early 217 

Holocene Megathermal which is not the main focus of this study. It is considered that the pollen 218 

residue date at 321 cm depth is more likely to be correct, based on existing regional pollen and 219 

radiocarbon evidence. The upper dates, bracketing the age period of interest in this study, are 220 

consistent and are accepted as accurate. Dates were calibrated according to Calib6.1 (Reimer et 221 

al., 2009) using the IntCal09 programme. Microfossil diagrams were constructed using the 222 

TILIA program TGView (Grimm, 2004). 223 

 224 

4. Results and interpretation 225 

While Zong et al. (2012a) showed only selected summary curves from Pingwang, here we 226 

present full microfossil data. Tree and shrub pollen percentages are shown on Fig. 2, herb pollen 227 

and pteridophyte spores on Fig. 3 and NPPs on Fig. 4, all with frequencies calculated as 228 
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percentages of the total arboreal (tree + shrub) sum that reflects the more regional pollen rain. 229 

Fig. 2 includes summary curves for trees and shrubs based upon their life-form and temperature 230 

tolerances, although warm temperate and cool temperate are not separated. The CONISS 231 

(constrained incremental sum of squares) cluster analysis function (Grimm, 1987) within 232 

TGView has been used to zone the diagram based on the total land pollen percentages, and has 233 

recognised four pollen assemblage zones (PW-a to d) which are applied to all of the diagrams. 234 

The CONISS dendrogram is shown on Fig. 2. 235 

Zone PW-a (380-362.5 cm). This zone is dominated by the subtropical tree 236 

Cyclobalanopsis and the  warm temperate trees Quercus and Salix, the latter perhaps abundant in 237 

local carr habitat with its locally sourced pollen frequencies depressing Cyclobalanopsis 238 

percentages. There are background levels of temperate taxa such as Ulmus/Zelkova, Castanea 239 

and Liquidambar. Cooler climate taxa are poorly represented, with only Pinus pollen significant, 240 

probably not locally sourced. Poaceae, Cyperaceae and Typha angustifolia dominate the herb 241 

assemblage. Prominent NPP types include Sordariaceae (55A), Coniochaeta cf. ligniaria and 242 

HdV-11, as well as marsh/reedswamp taxa HdV-306 and 708. This zone corresponds to the basal 243 

peat layer at the site (Table 1) and includes evidence of carr and shallow water marsh 244 

environments. Zong et al. (2011) recorded a mixed diatom assemblage in this lower part of the 245 

profile, with evidence of saltmarsh or estuarine influence. The non-wetland vegetation was a 246 

subtropical forest with temperate elements which the date suggests existed not long after the start 247 

of the Megathermal mid-Holocene climate optimum. 248 

Zone PW-b (362.5-232.5 cm). This zone is dominated by the subtropical genera 249 

Cyclobalanopsis and Castanopsis/Lithocarpus which consistently provide 50% of arboreal 250 

pollen, with temperate deciduous Quercus accounting for most of the rest. Other temperate trees 251 
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are also significant, inluding Ulmus/Zelkova, Castanea, Pterocarya and Liquidambar. Conifers 252 

and cold tolerant trees are poorly represented, with a low background curve for Pinus. Non-253 

arboreal pollen and spores are low, supplied mainly by Poaceae and Cyperaceae. Aquatic taxa 254 

are important, and Potamogeton and Ceratopteris increase later in the zone and there is a peak of 255 

the aquatic Salvinia. NPPs become increasingly dominated by aquatic types, with shallow water 256 

marsh taxa like Zygnema, Mougeotia, HdV-306 and HdV-708 being replaced in the upper part of 257 

the zone by more open water algal types, especially Pediastrum, HdV-128 and the 258 

cyanobacterium Gloeotrichia. The regional forest comprised a typical Megathermal optimum 259 

assemblage with evergreen subtropical trees dominant but with a significant temperate 260 

component. The local environment changed from shallow water marsh to aquatic and eutrophic, 261 

biologically productive habitats with deeper standing water, as shown by Pediastrum abundance, 262 

nearer to 5000 cal BP. Such Pediastrum frequencies are typical of limnic environments with 263 

emergent aquatic vegetation under warm, mid-Holocene climates (Jankovská and Komárek, 264 

2000). 265 

Zone PW-c (232.5-177.5 cm). At the start of this zone subtropical tree frequencies, 266 

Cyclobalanopsis and Castanopsis/Lithocarpus, fall from 50% to 25% of arboreal pollen. Of the 267 

warm temperate trees, the more cool-tolerant Betula, Fagus and Alnus increase but the more 268 

thermophilous, including Pterocarya and Castanea, decline markedly. Against this trend pollen 269 

of Moraceae, usually subtropical trees in east China (Sun et al., 2003), appears and rises in 270 

frequency in mid-zone. Distinct increases occur in the cold-tolerant trees Cupressaceae (which 271 

includes Juniperus), Picea and Pinus. Frequencies of the main warm temperate forest trees 272 

Quercus, Liquidambar and Ulmus/Zelkova are unaffected. The summary cuves on Fig.1 show an 273 

almost direct replacement of the subtropical genera by the cold-tolerant taxa. There is little 274 
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change in the non-arboreal pollen and spores except for peaks in Potamogeton, Myriophyllum 275 

and Adiantaceae, all floating aquatics. The NPP assemblage shows major changes with 276 

Gloeotrichia rising to dominance and Pediastrum reduced, although still important. Peaks of the 277 

cyanobacterium Anabaena, intolerant of high temperatures, accompany Gloeotrichia‟s rise. The 278 

local aquatic habitat seems to have become colder, deeper and less eutrophic, while the regional 279 

forest also adapted to colder temperatures during this zone. 280 

Zone PW-d (177.5-130 cm). At the start of this zone, which has an interpolated date of 281 

4200 cal BP, the frequencies for the subtropical trees Cyclobalanopsis and 282 

Castanopsis/Lithocarpus continue to fall, dropping to 15% of arboreal pollen. Moraceae, 283 

however, maintains values of almost 10% of total tree and shrub pollen. Warm temperate trees 284 

are little changed, but the cold-tolerant and coniferous taxa rise to 35% of the total. Pinus and 285 

Cupressaceae are particularly increased, and Taxodiaceae is consistently recorded. Aquatic 286 

pollen is still important although the rise of Typha and Ceratopteris late in the zone implies 287 

falling water levels. Present in low frequencies throughout, Artemisia increases late in the zone. 288 

Gloeotrichia is still abundant early in the zone, but decreases as marsh herbs, ferns and NPPs 289 

increase after ca 2800 cal BP. This zone sees a continued expansion of conifers in the forest at 290 

the expense of the subtropical genera. 291 

 292 

5. Discussion 293 

5.1. Yangtze region vegetation history 294 

The biogeographical location of the lower Yangtze region means that its natural vegetation 295 

contains elements of both subtropical and temperate forests, and during the mid-Holocene 296 
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Megathermal optimum phase, subtropical forest trees were common there as the monsoon front 297 

lay to the north and the Yangtze had a very warm, humid and wet climate (Shi et al., 1993; 298 

Zheng et al., 2004; Zong et al., 2007; Innes et al., 2009; Li et al., 2010a; Cao et al., 2013). 299 

Castanopsis and Cyclobalanopsis were the dominant taxa, associated with thermophilous 300 

deciduous trees Quercus, Liquidambar and Ulmus/Zelkova. There are several published pollen 301 

profiles from the lower Yangtze region with which the Pingwang Megathermal record can be 302 

compared (Liu et al., 1992; Xu et al., 1996; Chen et al., 2005; Tao et al., 2006; Yi et al., 2006; 303 

Shu et al., 2007; Innes et al., 2009; Li et al., 2010b) as well as more general regional syntheses 304 

for east China (Liu, 1988; Sun and Chen, 1991; Ren and Beug, 2002; Zhang et al., 2005; Ren, 305 

2007), and all show this general forest history. Zhao et al. (2009) have analysed the data from 306 

many pollen records across all of EAM China and conclude that whatever the Megathermal 307 

forest type, there was a shift to a more cold-tolerant forest community, in many regions with 308 

major expansion of conifers in particular, after about 4200 cal BP, and it may well have been 309 

responsible for the major forest decline that occurred in more arid regions (Zhao et al., 2009; 310 

Herzschuh et al., 2010), instead of the human impact explanation favoured by earlier workers 311 

(Liu and Qiu, 1994; Ren, 2000). This climate shift is well represented in the lower Yangtze (Wu 312 

et al., 2012), with a broadleaf temperate and conifer woodland established. As most rice 313 

agriculture occurred here on sites reclaimed from wetlands (Li et al., 2012), human impacts on 314 

the forest were probably not great except close to settlement sites (Atahan et al., 2008). This 315 

remained the case until major human forest clearance occurred after ca 2500 cal BP. (Atahan et 316 

al., 2007; Wang et al., 2011). 317 

5.2. The 4200 cal BP climatic deterioration in China 318 
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While reservations exist (Maher, 2008; Maher and Thompson, 2012), the severe climatic 319 

deterioration at ca 4200 cal BP appears to be well attested in speleothem records from caves in 320 

several areas of China (Wang et al., 2001; Dykoski et al., 2005; Shao et al., 2006; Cosford et al., 321 

2008; Hu et al., 2008; Dong et al., 2010). This widespread switch to cold conditions (Shi et al., 322 

1993) is substantiated by many other forms of proxy data (Hong et al., 2000; Li et al., 2010b), 323 

including pollen records (Xiao et al., 2004; Lim and Fujiki, 2011; Chen et al., 2012). In more 324 

northerly and westerly areas of China towards the EAM margins the 4200 cal BP climatic 325 

deterioration and instability was expressed by a rapid switch to much more arid conditions (Hong 326 

et al., 2001; Schettler et al., 2006; Jiang and Liu, 2007; Mischke and Zhang, 2010; Wang et al., 327 

2010; Wen et al., 2010), as the summer monsoon weakened and the winter monsoon 328 

strengthened (Yu et al., 2006; Jiang and Liu, 2007; Yancheva et al., 2007; Yang and Scuderi, 329 

2010). Precipitation would have been the dominant factor controlling vegetation distributions 330 

(Wen et al., 2013). In the western part of the Chinese Loess Plateau, the climate until 4200 cal 331 

BP was humid (An et al., 2003; 2004; Gao et al., 2007), with organic palaeosol development. 332 

Southeast of Lanzhou, for example, wetlands seem to have existed in several river valleys, 333 

adjacent to Neolithic settlements (Feng et al., 2004, 2006). At about 4200 cal yr BP, the climate 334 

suddenly became drier in this region and from the reduction in the number of archaeological sites 335 

from this time, An et al. (2004, 2005) concluded that this period of intense aridity, which lasted 336 

for some centuries, had a major effect on the Neolithic Qijia people who lived in these river 337 

valleys, causing the collapse of their farming culture (Mo et al., 1996; Liu et al., 2010a). 338 

Previously distinct pollen and charcoal records of major human land-use impacts in this area also 339 

terminate at this time (Li et al., 2012). At the western and northern margins of the area of 340 

monsoonal influence, this period of maximum aridity (Wei and Gasse, 1999) caused lakes to 341 
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dessicate almost completely (Chen et al., 1991; Morrill et al., 2006; Zhai et al., 2011). This 342 

drying tendency since about 4900 cal BP extended even to eastern coastal China, where some 343 

lake levels started to fall (Wu et al., 2010). 344 

One of the clearest expressions of the climatic deterioration is in vegetation records (Zhao 345 

et al., 2009), many of which show major changes in the centuries leading up to 4000 cal BP. On 346 

the Western Loess Plateau and in the uplands of central China there was an abrupt change from 347 

forest to steppe as a response to the greatly increased aridity (Feng et al., 2006; Zou et al., 2009; 348 

Herzschuh et al., 2010; Zhou and Li., 2012). Elsewhere in north and west China at this time this 349 

much colder and arid phase changed mixed forest to domination by conifers (Sun and Weng, 350 

1992; Jarvis, 1993; Ren, 2000; Makohonienko et al. 2004; Xiao et al., 2004; Jiang and Liu, 2007; 351 

Liu et al., 2010b; Xu et al., 2010; An et al., 2012), as pine was particularly favoured over oaks 352 

under the more arid and cold conditions (Ren and Zhang, 1998; Yi et al., 2003). Although there 353 

has been discussion as to whether human activity or climate change was responsible for the 354 

spread of Pinus in northeast China around 4200 cal BP (Ren, 2000; Xu et al., 2010), there is little 355 

evidence for human interference with the woodland during that period and climate change seems 356 

to be the most likely cause. In central eastern China the evergreen trees common during the 357 

Megathermal (Shi et al., 1994) were everywhere displaced by conifers within mixed, cool 358 

temperate woodland (Ren and Beug, 2002; Zhu et al., 2010), a change to a cooler forest biome 359 

recorded even in south China and Taiwan (Liew et al., 2006; Wang et al., 2007; Lee et al., 2010; 360 

Wu et al., 2012). There is more persuasive evidence for human activity having had an influence 361 

on the forest in the Yangtze region (Chen et al., 2009; Li et al., 2010b; Wu et al., 2012), but it 362 

declines and then stops almost everywhere in the centuries leading up to the 4200 cal BP event. 363 
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In contrast to the aridity phase in north and west China, in many places at this time in 364 

eastern and southern China peat deposits begin to form or expand markedly (Zhao et al., 2007; 365 

Zhang et al., 2011), including in the Taihu lowlands (Zhu et al., 2006), under greatly wetter 366 

conditions, providing pollen and other proxy records that confirm the abrupt and major climatic 367 

cooling at ca 4200 BP (Hong et al., 2000; Yu et al., 2006; Zhao et al., 2007; Ma et al. 2008, 368 

2009) following the southerly withdrawal and weakening of the EAM (Wang et al., 2005; Liu et 369 

al., 2010c) which coincided with stronger winter monsoons (Yancheva et al., 2007). An 370 

important consequence of the 4200 cal BP climatic decline in eastern China seems to have been a 371 

dramatic increase in the incidence and severity of flooding in river valleys (Tan et al., 2008; Wu 372 

et al. 2012), where much of Late Neolithic settlement and agriculture was concentrated. Fields 373 

and settlements were often located close to water sources, lakes and river channels, making them 374 

highly vulnerable to rapid fluctuations in water levels (Wu et al., 2010). Often cultural deposits 375 

are terminated by major flood sediment layers that date to this event (Huang and Zhang, 2000; 376 

Bai et al., 2008; Yao et al., 2008; Huang et al., 2010, 2011, 2012a, b; Zhang et al., 2010) and 377 

represent disasters that must have buried fields and forced settlement evacuation (Xia et al., 378 

2003; Liu et al., 2012), including some in the Yangtze Delta itself (Zhang, 2007; Zhang et al., 379 

2004a) and at the termination of the Liangzhu (Zhu et al., 1996; Zhang et al. 2004b; Shi et al., 380 

2008). Huang et al. (2011) record repeated floods which must have made cultural recovery in 381 

these locations very difficult. 382 

5.3. Environmental evidence at Pingwang 383 

5.3.1. Hydrological evidence 384 

 385 
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After the withdrawal of brackish marsh conditions from Pingwang, the site became dominated 386 

throughout its history by freshwater wetland environments, and increasingly by fully aquatic 387 

conditions, which probably explains the absence of archaeological material nearby and the lack 388 

of palynological evidence for agriculture throughout the profile (Figs. 3 and 4). The NPP record 389 

is particularly informative regarding the local hydrology, with HdV-128, Spirogyra, 390 

Gloeotrichia, Zygnema and Pediastrum all abundant and reflecting open water of various depths 391 

and trophic status, and the aquatic herb taxa Potamogeton, Typha and Salvinia support this. The 392 

significance of HdV-128, Zygnema and HdV-708 in zone PW-b suggests mesotrophic open 393 

water of relatively shallow depth (Bakker & van Smeerdijk, 1982; Pals et al., 1980). The 394 

microcharcoal curve is not high and probably represents a background regional signal of human 395 

activity, presumably on drier land but perhaps also burning of carr scrub within the wetland to 396 

establish paddy fields (Innes et al. 2009) and of dead plant stubble material to maintain them 397 

(Cao et al. 2006; Dodson et al., 2006; Zheng et al., 2009; Li et al., 2012; Hu et al., 2013; Zhuang 398 

et al., 2014). Although moderate throughout, the increased values at the top and base of the 399 

profile correlate with periods of shallower-water marsh conditions, when some increase in local 400 

human presence might be expected. It is interesting that microcharcoal frequencies fall sharply 401 

during the episode at the end of zone PW-c correlated with the 4200 cal BP event, supporting 402 

theories of greatly reduced human activity throughout the Taihu plain. The non-arboreal pollen 403 

and the NPPs indicate deeper water at this time, with Gloeotrichia abundant and replacing 404 

Pediastrum as a deeper and cooler but perhaps more eutrophic (van Geel et al., 1996) aquatic 405 

environment developed. Some eutrophication due to drainage from agricultural land during the 406 

Liangzhu period in zone PW-c might be expected, and low peaks of Anabaena would support 407 

this (van Geel et al., 1994; Hillbrand et al., 2014), although the major bloom in Gloeotrichia 408 
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would supress the abundance of the light-demanding Anabaena.  Gloeotrichia might also have 409 

been favoured by rising water levels and thus clearer water at this time, being favoured by 410 

increased light levels (Chmura et al., 2006). Presumably Pingwang was subsumed within the 411 

expanded water bodies of Taihu and the other lakes in the area which came into being after 4600 412 

cal BP (Wang et al., 2001; Zong et al., 2012a, b), following significantly increased rainfall and 413 

drainage discharge from the Yangtze valley (Long et al., 2014; Wu et al., 2014). 414 

 415 

5.3.2. Climatic or human influence 416 

 417 

The arboreal pollen curves at Pingwang record woodland history all through the mid-418 

Holocene Megathermal, across the Late Holocene transition and into recent times, and providing 419 

evidence from beyond the local aquatic environments at Pingwang. The expansion of conifers, 420 

mainly Pinus, and the decline of subtropical evergreens after ca 5400 cal BP is very clear and is 421 

the important feature of the vegetation history.  In this respect it records the gradual onset of the 422 

Neoglacial in eastern China at this time as recorded in other sites (Zhong et al., 2010). The 423 

choice of the Pingwang site was designed to reduce the human element in woodland history as 424 

far as possible, as there are no records of significant Neolithic settlement near the site, even at 425 

the time of the greatest Liangzhu expansion. A complete absence of human influence on the site 426 

cannot be assumed, however, as there would be few areas beyond all human activity in the 427 

intensively settled Taihu lowland, if any, even the constantly flooded Pingwang locality. The 428 

complete absence of any big grass pollen grains that could be attributed to rice in the Pingwang 429 

pollen record, however, suggests that the site was well away from any cultivation throughout the 430 

Neolithic period. There are also no NPP indicators of pastoral farming and concentrations of 431 
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livestock such as the dung fungi Sporormiella or Podospora, as were found near the early 432 

Neolithic agricultural settlement at Kuahuqiao (Zong et al., 2007; Innes et al., 2009). All are 433 

absent from Pingwang, and virtually all NPPs reflect wetland environments. It is possible that the 434 

rise in Pinus and Moraceae frequencies during zone PW-c might have been caused by 435 

regeneration of secondary woodland after forest clearance in this lower Yangtze region (Huang 436 

and Zhang, 2000; Chen et al., 2009; Li et al., 2010b), as this is the main Liangzhu settlement and 437 

farming period and area, and some authors have reported extensive forest clearance and  438 

agricultural intensification in the Late Neolithic in the lower Yangtze catchment between 5000 439 

and 4200 cal BP, when it abruptly stopped (Yasuda et al., 2004; Zhuang et al., 2014). Liu (1988), 440 

Liu et al. (1992), Liu and Qiu (1994) and Okuda et al. (2003) have suggested that both climatic 441 

cooling and human disturbance may have contributed to the late Holocene Pinus rise in the lower 442 

Yangtze. This cannot be the case at Pingwang, however, where effects of significant forest 443 

clearance would be visible in the pollen record, even if none took place near to the site. During 444 

zone PW-c, when the Liangzhu culture was flourishing, tree pollen values generally remain high, 445 

with no increase in non-tree pollen that might indicate deforestation. The rise of Moraceae in 446 

zone PW-c is strange, however, if subtropical tree genera were in progressive decline. It is 447 

possible that Moraceae genera, mainly secondary trees, were increasing locally in successional 448 

woodlands as populations of Cyclobalanopsis and Castanopsis/Lithocarpus declined. An 449 

alternative, however, is that the Moraceae curve reflects human activity of a particular kind, 450 

taking advantage of the extensive water body at Pingwang. Retting of cannabis for fibres (e.g. 451 

Schofield and Waller, 2005) in the shallow lake edges could account for the increase in 452 

Moraceae pollen when subtropical genera are otherwise in decline. Moraceae frequencies are 453 

also high in zone PW-d, in later prehistory, when human activity might also be expected, 454 
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although there remains no sign of rice agriculture. Similar high Moraceae frequencies attributed 455 

to human activity have been recorded elsewhere in the Taihu region (Itzstein-Davey et al., 456 

2007b). It is interesting that Moraceae percentages fall abruptly at the end of zone PW-c, during 457 

the end-Neolithic cold phase and cultural hiatus, before recovering later. This would support 458 

both the origin of the Moraceae pollen in a human activity and the effectiveness of the ca. 4200 459 

cal BP cold phase in temporarily stopping it, along with all other human activity and settlement 460 

in the Taihu plain. 461 

The percentage representation of temperate trees, including the forest co-dominant Quercus, 462 

is almost unchanged throughout the Pingwang pollen profile, and forest composition changes are 463 

caused dominantly by the replacement of sub-tropical genera by cold-tolerant trees, mainly 464 

conifers. It is unreasonable to suggest that human land clearance for farming would have affected 465 

only sub-tropical trees and leave unscathed the deciduous temperate trees, especially the 466 

abundant oaks, that grew alongside them in the mixed forest. Only climate change and colder 467 

conditions can account for the direct replacement of the sub-tropical component of the forest by 468 

pine and other conifers. Although closer to the lower end of their temperature tolerance ranges, 469 

the deciduous temperate trees like Quercus could withstand the new colder environment and 470 

survive, whereas the sub-tropical genera could not. Given a competitive advantage by the colder 471 

climate, conifers moved in to occupy the place in the forest community vacated by the 472 

subtropical evergreens, particularly after the abrupt shift to the Neoglacial at ca 4200 cal BP, 473 

while the proportion of temperate deciduous trees remained unchanged. 474 

6. Conclusions 475 
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The profile from Pingwang in the centre of the Taihu coastal plain contains no pollen evidence of 476 

cultivation, other forms of human land-use or clearance of woodland, except perhaps for the 477 

equivocal evidence of a slight increase in open ground weeds after ca 2500 cal BP. Certainly 478 

there is no indication of agricultural activity there throughout the Late Neolithic, despite the 479 

intensive settlement and agricultural use of the Taihu lowlands by the Liangzhu culture. Because 480 

of its palaeogeography, Pingwang therefore provides a record of sub-regional forest history, 481 

uncomplicated by local human activity, unless the Moraceae pollen curve indicates fibre 482 

processing in the lake. It shows very clearly the rise of Pinus and other conifers after ca 5400 cal 483 

BP, and the rapid acceleration of that rise at ca 4200 cal BP. These two dates agree very well 484 

with the timings of the onset of climatic deterioration and its severe intensification noted around 485 

the globe (e.g. Geirsdóttir et al., 2013). It also clarifies the reasons for that radical transformation 486 

of the forests of the lower Yangtze region, and by extension for the same changes in forest 487 

composition that can be seen throughout eastern China at this time, with change beginning at ca 488 

5400 cal BP. Although it has been suggested previously that the rise of pine and other 489 

successional tree taxa in the Late Neolithic might have resulted from regeneration after major 490 

deforestation for agriculture, the Pingwang data make clear that the gradual and then sudden 491 

switch to a cold Neoglacial climate can account for the forest changes observed in regional 492 

vegetation history. The increased dominance of fully aquatic conditions across the Late 493 

Holocene transition at Pingwang is shown particularly clearly by the NPP results and accords 494 

with the evidence from several other Yangtze valley sites for severe flooding events at this time. 495 

It supports the hypothesis that severe and regular freshwater flooding or rising local water level 496 

(Stanley et al., 1999; Zong et al., 2012a; Long et al., 2014) on the Taihu plain, allied to 497 

significantly lower temperatures, is the explanation for the collapse of the Liangzhu culture, as 498 
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well as other Late Neolithic cultures of the Yangtze valley, at ca 4200 cal BP. The abrupt switch 499 

to such adverse conditions would have made organised rice farming and complex settlement 500 

virtually impossible until a measure of climatic amelioration occurred some centuries later. 501 
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Table 1. Lithostratigraphy at Pingwang (30
o
 57‟ 30”N; 120

o
 38‟ 25”E; altitude 1.6 m YSD) 1237 

Depth (m) Descriptions 

0.00 – 0.45 Paddy field soils 

0.45 – 1.10 Brown to yellowish grey, hard to firm, clay 

1.10 – 1.25 Blackish grey, soft, clay 

1.25 – 1.80 Greenish grey, soft, clay  

1.80 – 2.10 Brownish grey, soft, organic rich clay 

2.10 – 3.10 Dark grey, soft, organic rich clay with small shells found in upper part 

3.10 – 3.70 Greenish grey, soft, silt and clay 

3.70 – 3.80 Blackish brown peat 

3.80 – 4.00 Sticky hard clay (pre-Holocene) 

 1238 

Table 2. AMS Radiocarbon dates at Pingwang. Calibrated results are shown, using the Calib6.1 1239 

and IntCal09 programmes (Reimer et al., 2009). There is an inversion in the bottom two dates, 1240 

but based on regional pollen and radiocarbon data Beta-253340 is more likely to be correct.  1241 

 1242 

Depth (m) Dated material 

14
C date 

(a BP) 

Calibrated age range 

(cal BP) (2σ) 

Mid-point age 

(cal BP) 
Laboratory code 

1.59-1.61 pollen residue 2700±40 2750-2869 2810±60 Beta-255432 

1.85-1.87 pollen residue 4430±40 4872-5280 5076±204 Beta-266433 

2.25-2.27 
plant 

macrofossil 
4720±40 5324-5584 5454±130 Beta-243208 

3.20-3.22 pollen residue 6800±50 7573-7724 7649.5±75.5 Beta-253340 

3.75-3.77 peat 6290±50 7026-7322 7174±148 Beta-228442 

 1243 

 1244 
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Captions to figures 1245 

 1246 

Fig. 1. Location of the study area, around Taihu lake in the Yangtze coastal plain, showing the 1247 

topography and the position of other, smaller lakes, the barrier ridges to the east that protect the 1248 

plain from the sea, and the location of the coring site at Pingwang. Figures 1a and 1b show the 1249 

distribution of the main Late Neolithic archaeological sites of the Liangzhu and Maqiao cultures. 1250 

 1251 

Fig. 2. Percentage tree and shrub pollen diagram from Pingwang. Frequencies are calculated as 1252 

percentages of the total tree and shrub sum, with major stages in vegetation history and summary 1253 

curves for ecological groupings also shown. Calibrated radiocarbon age ranges before present 1254 

(cal BP) are shown on the left of the diagram, which is zoned at major changes in the tree and 1255 

shrub pollen curves using the CONISS program. The timings of the following major 1256 

environmental events are shown on the diagram. 1: Early in the mid-Holocene Megathermal 2: 1257 

The end of major saline estuarine influence at the site (after Zong et al., 2011) 3: The maximum 1258 

of the Megathermal optimum 4: The start of the climatic decline towards the Late Holocene 5: 1259 

Abrupt climate deterioration ca 4200 cal BP. Depths are in centimetres below present ground 1260 

surface. 1261 

 1262 

Fig. 3. Percentage herb pollen and pteridophyte spore diagram from Pingwang, frequencies 1263 

calculated as percentages of the total tree and shrub pollen sum. Diagram zonation, calibrated 1264 

radiocarbon dates and environmental events follow Fig. 2. Depths are in centimetres below 1265 

present ground surface. 1266 

 1267 
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Fig. 4 Percentage non-pollen palynomorph (NPP) diagram from Pingwang. NPPs and 1268 

microscopic charcoal fragment (microcharcoal) frequencies are shown as percentages of the tree 1269 

and shrub pollen sum. X axis NPP type numbers refer to the catalogue of the Hugo de Vries 1270 

laboratory, Amsterdam, and where taxon names are unknown they are assigned the prefix HdV. 1271 

Diagram zonation, radiocarbon dates and environmental events follow Fig. 2. Depths are in 1272 

centimetres below present ground surface. 1273 

 1274 
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