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Abstract 

Superparamagnetic iron oxide nanoparticles (SIONPs) have great potential for various biomedical 

applications, including magnetic resonance imaging (MRI) contrast enhancement, targeted drug delivery, 

hyperthermia, catalysis, biological separation, biosensors, and diagnostic medical devices. For the 

development of SIONPs toward bio-related applications, control of the surface chemistry of SIONPs is 

required. Polymers with more than one group capable of binding to particle surfaces (multidentate 

ligands) can enhance the stability of SIONPs as well as their optical, magnetic, and electronic properties. 

Most synthetic and bio-based polymers are transparent in the visible range of electromagnetic spectrum, 

not interfering with biological process. Additionally, polymers provide mechanical and chemical 

stability to the nanomaterials. The present review summarizes the recent advances in design and 

biological applications of polymer-embedded SIONPs.  
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1. Introduction 

Colloidal inorganic nanometer-sized particles (nanoparticles, NPs) or nanocrystals (NCs) have proved 

to be useful as building blocks for the development of nanomaterials and biomaterials in nanoscience 

and biotechnology. This is because of their unique structural and optical properties that are attributed to 

nanoscale phenomena.
[1]

 Superparamagnetic iron oxide NPs (SIONPs) including Fe3O4 magnetite and 

Fe2O3 maghemite have great potential for various biomedical applications. They include magnetic 

resonance imaging (MRI) contrast enhancement, targeted drug delivery, hyperthermia, catalysis, 

biological separation, biosensors, and diagnostic medical devices.
[2-8]

 Other magnetic NPs have also 

been developed, including iron-based FePt,
[9-15]

 FePd,
[16]

 Co-based CoPt,
[17, 18]

 CoO,
[19]

 and CoFe2O4,
[20]

 

as well as Mn-based MnPt,
[21]

 Gd-based NPs,
[22-26]

 and their inorganic-inorganic hybrid 

nanomaterials.
[27-33]

 

For the development of SIONPs toward bio-related applications, control of the surface chemistry of 

SIONPs is required. Pristine SIONPs tend to aggregate into large clusters, because of their large 

surface-to-volume ratio and dipole-dipole interaction. The resulting large agglomerates reduce intrinsic 

superparamagnetic properties. The surface of SIONPs has been modified to not only prevent 

aggregation of the particles, leading to colloidal stability, but also render them with water-solubility, 

biocompatibility, and nonspecific adsorption to cells. In addition, control of surface chemistry can allow 

for the flexibility and functionality of SIONPs that enable efficient coupling of these probes to bioactive 

molecules capable of targeting and sensing biological processes. Several approaches to modification of 

the surface of SIONPs with small molecules including biomolecules have been investigated for the 

preparation of water-soluble SIONPs. The general approach is the post-addition of water-soluble ligands, 

including direct adsorption,
[34-38]

 addition of second layer,
[39-41]

 ligand exchange,
[23, 42-45]

 functional silica 

coating,
[46-50]

 and ionic interaction.
[51]

 In-situ formation approach directly yields water-soluble SIONPs 
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in the presence of stabilizing ligands. Typical examples include Fe3O4 NPs coated with D-mannose,
[52]

 

2-pyrrolidone,
[53]

 and poly(ethylene glycol) diacids (HOOC-PEG-COOH),
[54]

 as well as iron oxide 

nanoworms coated with dextran (Dex).
[55]

  

Polymers with more than one group capable of binding to particle surfaces (multidentate ligands) can 

enhance colloidal stability of inorganic NPs including SIONPs as well as their optical, magnetic, and 

electronic properties.
[56]

 Most synthetic and bio-based polymers are transparent in the visible range of 

electromagnetic spectrum, not interfering with biological process. Additionally, polymers provide 

mechanical and chemical stability to the nanomaterials. The present review will summarize the recent 

advances in design, preparation, and biological application of polymer-embedded SIONPs. The methods 

that have been developed to prepare unique polymer-SIONP hybrid nanomaterials include direct 

modification with polymers, surface-initiated controlled polymerization, inorganic silica/polymer 

hybridization, self-assembly, self-association, and various heterogeneous polymerization methods. 

These methods provide magnetic polymer composites that differ in morphologies.
[57]

 Figure 1 illustrates 

the various morphologies, including magnetic core–polymer shell (a), magnetic multicores 

homogeneously dispersed in polymer matrix (b), magnetic NPs located on the surface of a polymer core 

(“raspberry” morphology, c), and brush (hair)-like morphology with polymer chains attached to a 

magnetic core (d).  
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Figure 1. Different morphologies of composite magnetic polymer microspheres; single-core (a), 
multicore or embedded (b), raspberry-like or heterocoagulated (c), and brush-like morphology 
(d). Reprinted with permission from ref [57]. Copyright 2007 Wiley InterScience. 

 

 

1.1. Synthesis of superparamagnetic iron oxide NPs (SIONPs) 

Coprecipitation of Fe(II) and Fe(III) ions from an aqueous basic solution is a facile method for the 

preparation of SIONPs in water. Several parameters should be controlled to prepare SIONPs with 

narrow size distribution. They include pH, temperature, and mixing method, as well as nature and 

concentration of anions. In general, FeCl3 and FeCl2 solutions are mixed at a concentration ratio of 

Fe(III)/Fe(II) = 2/1 in an aqueous ammonia solution, yielding Fe3O4 SIONPs with d = 3 – 15 nm. 

Recently, a droplet-based microfluidic system has been designed to prepare SIONPs via coprecipitation 

of Fe(II) and Fe(III) solutions in an continuous oil phase (Figure 2). The microfluidic device was 

designed in such by injecting two aqueous Fe salt solutions through the outer channels, which were 

synchronously emulsified by central oil channel. This approach enabled fast (millisecond scale) 

preparation of SIONPs with d = 4 nm.
[58]
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Figure 2. Design of droplet-based microfluidic system for the preparation of magnetic Fe3O4 
nanocrystals via coprecipitation of aqueous Fe(II) and Fe(III) solutions in oil. Pairing module 
with Qo for oil and Qx and Qy for two aqueous phases (a); fusion module where paired droplets 
are coalesced by applying an electric voltage U between two electrodes (b). Reprinted with 
permission from ref [58]. Copyright 2008 Wiley InterScience. 

  

Organic solution-phase synthesis, also known as thermal decomposition of iron precursor in hot 

surfactant solutions, has been developed for the preparation of high-quality monodisperse SIONPs. 

Direct decomposition of FeCup3
[59]

 and Fe(CO)5
[60]

 followed by oxidation produced monodisperse 

Fe2O3 maghemite nanocrystals. High temperature reaction of Fe(III) acetylacetonate (Fe(acac)3) in the 

presence of oleic acid and oleylamine as stabilizing ligands in phenyl ether at 265 C yielded 

monodisperse Fe3O4 magnetite NPs with a diameter of 16 nm. The resulting magnetite NPs was 

oxidated to Fe2O3 maghemite NPs at 250 C in the presence of oxygen for 2 h.
[61]

 A mild condition of 

thermal decomposition of Fe(CO)5 in oleic acid and octyl ether at 100 C for 2 h and consecutive 

aeration was developed for the preparation of maghemite NPs with a diameter ranging from 5 to 19 nm 

and magnetite NPs with 19 nm diameter, as seen in TEM images (Figure 3).
[62]

 Recently, thermal 

decomposition of iron oleate precursors in the presence of oleic acid salts was reported for the 

preparation of iron oxide nanocrystals with various shapes including spheres, cubes, and bipyrimids.
[63]

 

In addition, the thermal decomposition method combined with thermal oxidation was explored for the 

preparation of hollow Fe3O4 from Fe/Fe3O4 core/shell NPs.
[64]

 To avoid the use of oleylamine, oleic acid, 
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or trioctylamine which may create environmental concerns, the thermal decomposition of Fe(acac)3 in 

the presence of environmentally friendly benzyl alcohol at 200 C for 2 days was conducted , producing 

Fe3O4 SIONPs with a diameter ranging from 12 to 25 nm.
[65]

 

 

 

Figure 3. TEM images of respective intermediate and aerated iron oxide NPs: 5 nm (A) and 
(D), 11 nm (B) and (E), and 19 nm (C) and (F); insets are High resolution (HR) TEM images. 
Reprinted with permission from ref [62]. Copyright 2004 American Chemical Society. 

 

Solvothermal reaction by reduction of FeCl3 in hot organic solvents such as ethylene glycol has been 

explored for the preparation of water-dispersible Fe3O4 ferrite microspheres,
[66-68]

 microclusters,
[69]

 and 

nanorings
[70]

 with a diameter of 30 – 800 nm. In addition, hetero-structured nanocrystals (or 

heterogeneous inorganic-inorganic hybrid NPs) containing iron oxides have been explored to integrate 

multiple nanocrystal components into a single nanosystem. Examples include Fe2O3/ZnS
[71]

 and 

Fe3O4/Au
[72, 73]

 core/shell, FePt/Fe2O3 yolk-shell,
[74]

 as well as Fe3O4/CdSe
[75, 76]

 heterodimers, and 

Fe3O4 core/layered double hydroxide.
[77]

 Mn-doped iron oxide nanoparticles were prepared to enhance 
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MRI contrast and hyperthermic effects.
[78-81]

 In addition, the preparation of various silica-coated Fe2O3 

or Fe3O4 NPs,
[82-85]

 silica/Fe3O4 core/shell,
[86]

  Fe2O3/SiO2 Janus,
[87]

 and silica-satellite Fe3O4 NPs
[88]

 has 

been reported. 

 

2. Direct modification with polymers 

Various approaches to modify SIONPs with multidentate polymers (possessing multiple anchoring 

groups in polymer backbones) have been explored to prepare water-soluble/water-dispersible polymer-

stabilized SIONPs. The typical approaches include physical adsorption, addition of second layer, 

functional silica coating, and ionic interaction. For the approaches, novel polymers including synthetic 

polymers and biopolymers are designed, prepared, modified by various methods. 

The physical adsorption can be achieved by addition of stabilizing copolymers either during or after 

the preparation of SIONPs. This approach includes the design and preparation of functional copolymers 

with two different blocks. An anchoring block contains particularly carboxylic acids that enable the 

adhesion to the surface of SIONPs; another water-soluble block contains water-soluble groups, 

particularly poly(ethylene oxide) (PEO), that render SIONPs water-soluble and biocompatible. Control 

radical polymerization (CRP)
[89]

 methods have been utilized to prepare well-controlled block 

copolymers with predetermined molecular weight and narrow molecular weight distribution (Mw/Mn < 

1.3). Atom transfer radical polymerization (ATRP) has allowed for the preparation of well-controlled 

poly(oligo(ethylene oxide) monomethyl ether methacrylate)-b-poly(t-butyl acrylate) (POEOMA-b-

PtBA) block copolymer. The resulting POEOMA-b-PtBA was then hydrolyzed in acidic conditions, 

yielding POEOMA-b-poly(methacrylic acid) (POEOMA-b-PMAA). PMAA block is anchored to 

SIONP surface and POEOMA block renders water-soluble and biocompatible. In the presence of water-

soluble POEOMA-b-PMAA, SIONPs were prepared by coprecipitation of Fe(II) and Fe(III), yielding 

Fe3O4 SIONPs stabilized with POEOMA-b-PMAA block copolymers (Figure 4). Their diameters were 
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tuned in the range of 10 – 25 nm by varying the initial copolymer concentration. The resulting polymer-

stabilized SIONPs with long-term colloidal stability could be useful as MRI contrast agents.
[90]

 The 

combination of ATRP of solketal acrylate (SA), functionalization with folate, and hydrolysis of PSA 

allowed for the preparation of well-controlled folate-functionalized poly(glycol monoacrylate) (Folate-

PGA). Hydroxyl groups enabled PGA to be absorbed on SIONPs, yielding folate-conjugated PGA-

coated SIONPs.
[91]

 

Reversible addition-fragmentation chain transfer (RAFT) polymerization has also been utilized. Well-

defined poly(acrylic acid) (PAA) homopolymer was prepared in dimethylformamide (DMF). A 

subsequent RAFT polymerization yielded well-defined triblock copolymer consisting of PAA, poly(N-

isopropylacrylamide) (PNIPAM), and POEOMA blocks. The resulting PAA-b-PNIPAM-b-POEOMA 

block copolymer was post-added to Fe3O4 NPs. The resulting Fe3O4 NPs stabilized with triblock 

copolymers exhibited volume change in response to external stimuli such as temperature and pH. For 

example, the diameter of Fe3O4 NPs stabilized with PAA41-b-PNIPAM150-b-POEOMA90 triblock 

copolymer decreased from 70 to 45 nm in response to temperature change from 39 to 25 C. This 

quality is highly applicable towards hypothermia.
[92]

 Well-controlled poly(2-acetoacetoxyethyl 

methacrylate) (PAAEM-b-POEOMA) was prepared by the RAFT polymerization. Coprecipitation of 

Fe(II) and Fe(III) in the presence of PAAEM-b-POEOMA block copolymer yielded SIONPs stabilized 

with diblock copolymer, in which pendent acetoacetoxy groups anchored to the surfaces of SIONPs.
[93]

  

In addition to CRP, other polymerization methods have been explored for preparation of well-

controlled block polymers that can stabilize SIONPs. These polymers consist of pendent COOH or 

epoxy groups as anchoring blocks, yielding polymer-encapsulated SIONP dispersions. Examples 

include anionic polymerization and sequential photo-crosslinking for poly(isoprene)-b-poly(2-

cinnamoylethyl methacrylate)-b-PAA,
[94]

 polycondensation for PEO-b-poly(COOH-containing 

urethane)-b-PEO,
[95]

 ring-opening polymerization and subsequent hydrolysis for PEO-b-poly(aspartic 
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acid),
[96]

 and ring-opening metathesis polymerization (ROMP) for diblock copolymer of 

bicycle[2,2,1]hept-5-ene-2-carboxylic acid oxiranylmethyl ester.
[97]

  

 

 

Figure 4. Schematic illustration for preparation of well-controlled POEOMA-b-PMAA 
copolymer and polymer-coated SIONPs. Reprinted with permission from ref [90]. Copyright 
2006 American Chemical Society. 

 

The addition of second layer approach involves the use of amphiphilic block copolymers consisting of 

a hydrophobic portion that intercalates the hydrophobic stabilizing ligands such as oleic acid on 

magnetic NPs and a hydrophilic portion that ensures water solubility of magnetic NPs. As illustrated in 

Figure 5, oleic acid-stabilized Fe3O4 NPs was first prepared by thermal decomposition of iron oleate 

(Fe(oleate)3) in dioctyl ether. The resulting organic solution was added into an aqueous solution of 

Pluronic F127, an amphiphilic PEO-b-poly(propylene oxide) (PPO)-b-PEO block copolymer. The 

obtained oil-in-water microemulsion was dried, yielding a fine powder of F127-stabilized Fe3O4 NPs. 

They were then redispersed in water, resulting in the formation of water-soluble magnetic NPs.
[98]

 

Amine-end-functionalized PNIPAM (PNIPAM-NH2) was prepared by free radical polymerization in 

DMF, and then reacted with poly(maleic anhydride-alt-octadecene). Magnetic NPs stabilized with the 
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resulting PNIPAM-based amphiphilic block copolymer exhibited volume change in response to 

temperature change.
[99]

 

 

Figure 5. Schematic illustration for preparation of water-soluble magnetic NPs by addition of 
second layer approach, in which F127 PEO-b-PPO-PEO amphiphilic block copolymer is added 
into to oleic acid-stabilized magnetic NPs (a-c). Digital pictures show the distribution of 
magnetic NPs before (d) and after (f) phase transfer and F127-stabilzied magnetic NPs in 
water showing colloidal stability after four months (h). TEM images of magnetic NPs in hexane 
(e) and water (g). Reprinted with permission from ref [98]. Copyright 2007 Wiley InterScience. 

 

 

For the functional silica coating approach, copolymers bearing trimethoxysilyl groups capable of 

crosslinking reactions on SIONPs have been prepared. Examples include copolymers consisting of 

poly(3-trimethoxysilyl)propyl methacrylate (PEPMA) and poly(N-acryloxysuccinimide) (PNAS).
[100]

 

PNAS block was further functionalized  with Cy5.5 fluorescent dye for in vivo tumor detection by dual 

magnetic resonance and fluorescence imaging.
[101]

 Ionic interaction between negatively charged 

SIONPs and positively charged poly(L-lysine) has been utilized for stem cell labeling.
[102]

 In addition, 

dopamine-conjugated hyaluronic acid (HA),
[103]

 polypeptide with a sequence of 

GGGGYSAYPDSVPMMSK (a targeting ligand for ovarian cancer cells),
[20]

 virus,
[104]

 Dex,
[105]

 Dex-
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derivative modified with TAT-derived peptide,
[106]

 dopamine-plus-human serum albumin,
[107]

 and 

dendrimer
[108]

 has been utilized to modify SIONPs for MR cancer imaging.   

 

3. Surface-initiated controlled polymerization: “grafting from” method 

The general approach for “grafting from” method involves the utilization of surface-initiated CRP 

methods. ATRP method has been extensively utilized for modification of single SIONP with well-

controlled polymers because of facile functionalization of SIONPs with ATRP initiating species 

(halides) for surface-initiated controlled polymerization. Two routes for immobilization of halide-

initiating species have been proposed. The first route involves physical absorption of acid-

functionalized halides on SIONPs. They include 3-chloropropionic acid,
[109, 110]

 2-bormo-2-methyl 

propionic acid,
[111]

 and 10-carboxydecanyl-2-bromo-2-methyl-thiopropanoate,
[112]

 which initiate the 

ATRP of styrene (St) and OEOMA in bulk or in organic solvents, yielding single SIONP coated with 

hydrophobic PSt or water-soluble POEOMA. In addition, SIONPs were functionalized with 2-bormo-2-

methyl propionic acid, which initiated ATRP of 2-methoxyethyl methacrylate (MEMA). The resultant 

PMEMA-coated SIONPs exhibited quick temperature responsiveness at upper critical solution 

temperature (UCST) in MeOH. As seen in Figure 6, PMEMA-coated magnetic NPs were precipitated 

at below UCST; however at above UCST, they were redispersed to form a stable dispersion that shows 

collective response to a permanent magnet.
[113]

 The other route for the functionalization of SIONPs with 

ATRP initiating halides involves the covalent attachment via silanization. Examples include the 

immobilization of 2-(4-chlorosulfonylphenyl)ethyltrichlorosilane for poly(methyl methacrylate),
[114]

 

[11-(2-bromo-2-methyl)-propionyloxy]undecyltrichlorosilane for PSt,
[115]

 and [4-

(chloromethyl)phenyl]trichlorosilane for POEOMA.
[116]

  

The RAFT polymerization method has also been explored to modify single SIONP with well-

controlled polymers. An example includes the treatment of SIONPs with ozone to create hydrogen 
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peroxides, free radical initiating species. RAFT polymerization of St or acrylic acid (AA) in the 

presence of 1-phenylethyl dithiobenzoate (PDB) in DMF was then carried out, yielding PSt or PAA-

grafted magnetic NPs. They were characterized with X-ray photoelectron spectroscopy (XPS), FT-IR 

spectroscopy, and gel permeation chromatography (GPC).
[117]

 Another example include the ligand 

exchange oleic acid on Fe3O4 with S-1-dodecyl-S'-(,'-dimethyl-"-acetic acid)trithiocarbonate 

(DDMAT), a RAFT agent, followed by RAFT polymerization of NIPAM. The resulting PNIPAM-

coated SIONPs exhibited thermoresponsiveness.
[118]

 

In addition to the “grafting from” method, the “grafting onto” method has also been utilized for the 

preparation of SIONPs coated with single layer of polymers. For the method, polymers are designed to 

be monodentates that possess a terminal anchoring group at the end of polymer, or made of 

hyperbranched architectures with functionalities introduced in the focal points. Examples include thiol-

terminated PSt
[119]

 and phosphonate-functionalized PEO.
[120]

 

 

 

Figure 6. Schematic illustration (a) and photographs (b) of thermoresponsive PMEMA-coated 
magnetic NPs. The particles precipitate at below UCST; at above UCST, they are redispersed 
that reacts collectively under the influence of a permanent magnet. Reprinted with permission 
from ref[113]. Copyright 2006 American Chemical Society. 
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4. Inorganic silica/polymer hybridization  

SIONPs prepared by either coprecipitation or thermal decomposition are encapsulated with a silica 

shell through a sol-gel process of tetraethyl orthosilicate (TEOS). The resulting silica-coated SIONPs 

were further functionalized and encapsulated with polymers, yielding multifunctional hybrid 

nanomaterials. The preparation of hairy hybrid nanomaterials consisting of magnetic core, fluorescent 

silica shell, and functional polymer brushes is illustrated in Figure 7. This approach began with the sol-

gel reaction in the presence of Fe3O4 NPs including fluorescein isothiocyanate (FITC), a fluorescent dye, 

producing Fe3O4 core-fluorescent silica shell, in which FITC is covalently incorporated. The resultant 

silica shell was functionalized with methacrylates by reacting with 3-

methacryloxypropyltrimethosysilane (MPS) and then chlorines via radical crosslinking polymerization 

of ethylene glycol dimethacrylate (EGDMA) and vinyl benzyl chloride. The chlorine groups served as 

initiators for ATRP of OEOMA, yielding hybrid nanomaterials with biocompatible POEOMA 

brushes.
[121]

 Silica-coated Fe3O4 SIONPs prepared by the sol-gel reaction of TEOS were encapsulated 

with crosslinked polyphosphazene, yielding pomegranate-like core/shell structured nanomaterials.
[122]

 In 

addition, sol-gel reaction of TEOS in the presence of Fe3O4 NPs and cetyltrimethylamonium bromide 

(CTAB), functionalization with MPS, and then removal of CTAB yielded methacrylate-functionalized, 

Fe3O4-embedded silica nanomaterials with channels. They were coated with thermoresponsive 

polymeric shells consisting of PNIPAM copolymers for drug delivery applications.
[123]

     

In another approach, amino-functionalized silica-coated Fe3O4 SIONPs were prepared by the reaction 

of silica-coated Fe3O4 with 3-aminoporpyltirethyoxysilane (APS). They were mixed with acid-

functionalized core/shell microgels consisting of P(St-co-NIPAM) core and crosslinked PNIPAM shell. 

The removal of core P(St-co-NIPAM) by dissolving in tetrahydrofuran (THF) yielded crosslinked 

PNIPAM capsules surface-anchored with silica-coated Fe3O4 SIONPs (Figure 8).
[124]
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Figure 7. Synthesis of hairy hybrid nanomaterials with a magnetic core, fluorescent silica shell, 
and functional polymer brushes. Reprinted with permission from ref [121]. Copyright 2009 
American Chemical Society. 

 

 

Figure 8. Preparation (upper) and TEM (a) and SEM (b) images of crosslinked PNIPAM 
capsules surface-anchored with silica-coated Fe3O4 NPs (lower). Reprinted with permission 
from ref [124]. Copyright 2009 American Chemical Society. 
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5. Self-assembly and self-association 

Self-assembly method involves the design and preparation of amphiphilic block copolymers that 

enable self-assembly in water, forming stable core/shell micellar NPs wherein the hydrophobic core 

serves as a carrier for SIONPs and anticancer drugs and the hydrophilic shell allows particle 

stabilization in aqueous solution. Hydrophobic SIONPs stabilized with oleic acid are physically 

embedded in micellar particles through self-assembly. Further targeting ligands are attached to the 

surface of self-assembled NPs embedded with SIONPs and anticancer drugs for multifunctional 

nanomedicine platform. Polyester-based amphiphilic block copolymers were generally prepared by ring 

opening polymerization (ROP) of D,L-lactide (LA) and -caprolactone (CL). Well-defined COOH-

terminated PEO-b-PLA amphiphilic block copolymer self-assembled in the presence of hydrophobic 

SIONPs and doxorubicin (Dox). The resulting core/shell NPs embedded with SIONPs and Dox were 

then functionalized with therapeutic antibodies (targeting species to tumor) for an ultrasensitive MRI 

probe. It was reported that Mn-doped Fe3O4 (MnFe3O4) is more efficient of T2 relaxivity for MRI than 

Fe3O4 NPs.
[125]

 Well-controlled PLA-b-POEOMA amphiphilic block copolymer was prepared by a 

combination of ROP and ATRP from 2-hydroxyethyl-2'-methyl-2'-bromo-propionate, a double-headed 

initiator. The copolymer self-assembled in the presence of hydrophobic Fe3O4 NPs, and further 

functionalized with folates for cancer cell targeting (Figure 9).
[126]

 Maleimide-terminated PEO-b- PLA 

and methoxy-terminated PEO-b-PLA self-assembled in the presence of Dox and SIONPs through mixed 

micellization. The resulting maleimide-functionalized polymeric NPs reacted with RGD tripeptide that 

can target integrin v3 on tumor endothelial cells.
[127]

 In addition, the preparation and self-assembly of 

folate-encoded PEO-b-PCL amphiphilic block polymers,
[128]

 PEO-modified PSt,
[129, 130]

 and PEG-

phospholipid
[131]

 amphiphilic block copolymers have been explored. 
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Figure 9. Schematic illustration to prepare folate-functionalized micellar NPs embedded with 
SIONPs from well-controlled PLA-b-POEOMA amphiphilic block copolymer by a combination 
of ROP and ATRP. Reprinted with permission from ref [126]. Copyright 2009 Wiley InterScience. 

 

Self-association is generally achieved through ionic interaction between SIONPs and anionic-or 

cationic polymers. Examples include ionic interactions of positively-charged SIONPs/negatively-

charged PAMAM dendrimers,
[132]

 negatively-charged SIONPs (with PAA)/poly(trimethylammonium 

ethyl acrylate methylsulfate)-b-PAAm,
[133]

 and vesicle aggregates crosslinked by positively-charged 

SIONPs.
[134]

 Interestingly, positively-charged poly(L-lysine) (PLK) mixed with negatively-charged 

SIONPs modified with citrate ions resulted in self-complex coacervates, which were then post-
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crosslinked with glutaraldehyde (GA) crosslinkers to obtain PLK-MIONP hybrid microspheres.
[135, 136]

 

In addition, self-complexation through hydrophobic interactions has been explored. An example 

includes inclusion interactions of -cyclodextrins with oleic acid-stabilized SIONPs.
[137]

 

Emulsification/solvent evaporation technique has also been explored for the preparation of polymeric 

NPs based on PLA homopolymers embedded with hydrophobic SIONPs. For the approach, 

hydrophobic PLA dissolved in volatile organic solvents were mixed with aqueous surfactant solution, 

forming oil-in-water emulsion. Solvents were then evaporated, yielding stable PLA-based NPs 

embedded with SIONPs in water with an aid of surfactants.
[138-140]

 

 

6. Heterogeneous polymerization  

Various heterogeneous polymerization reactions of hydrophilic or water-soluble monomers have been 

explored to prepare well-defined SIONP-embedded magnetic spheres as well as crosslinked 

microgels/nanogels and hydrogels for biomedical applications. These reactions include inverse 

(mini)emulsion polymerization, dispersion polymerization, and precipitation polymerization. In addition, 

heterogeneous polymerization of hydrophobic monomers such as styrene in the presence of hydrophobic 

SIONPs in conventional emulsion, miniemulsion, and suspension has produced magnetic hydrophobic 

particles.
[141-149]

 This review concentrates on the preparation of hydrophilic magnetic particles for 

biomedical applications. 

6.1. Inverse (mini)emulsion polymerization 

Inverse (mini)emulsion polymerization is a water-in-oil (W/O) polymerization process that contains 

aqueous droplets consisting of water-soluble monomers stably dispersed with the aid of oil-soluble 

surfactants in a continuous organic medium. Stable dispersions are formed by mechanical stirring for 

inverse emulsion process and by sonification for inverse miniemulsion polymerization. When radical 
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initiators are added, polymerization occurs within the aqueous droplets producing colloidal particles.
[150]

 

An introduction of multifunctional crosslinkers allows for preparation of crosslinked microgel 

particles.
[151]

 When the size of microgels is in submicron-sized, it is defined as nanogels. Several reports 

have demonstrated the use of inverse (mini)emulsion polymerization for the preparation of hydrophilic 

or water-soluble polymeric particles 
[152-154]

 and crosslinked microgels/nanogels.
[155-160]

 Recently, a 

unique method utilizing controlled ATRP in inverse miniemulsion has been developed for the 

preparation, functionalization, and application of well-defined biodegradable nanogels for targeted drug 

delivery.
[161-168]

 The details are reported elsewhere.
[169]

 

Inverse miniemulsion polymerization has been explored to prepare well-defined hybrid magnetic 

polymer particles. This method requires the preparation of hydrophilic or water-soluble SIONPs.
[170]

 An 

example includes the preparation of magnetic PAAm-based microgels with a diameter of 60 – 160 nm. 

An aqueous homogeneous solution of AAm, N,N'-methylenebisacrylamide  (MBAm), and MAA-

stabilized magnetic fluid in a dilute aqueous ammonia was mixed with an organic solution of Span 80 

(sorbitol monooleate) in cyclohexane under stirring. The resulting bi-phase was sonicated and 

polymerized upon the addition of free-radical initiator, producing stable miniemulsion of magnetic 

PAAm-microgels with a diameter of 100 nm. The magnetite content in the particles was determined to 

be 13 wt %, which was consistent with the concentration of magnetite NPs in the feed.
[171]

  

Inverse emulsion/microemulsion polymerization has also produced well-defined magnetic polymer 

particles. Aqueous droplets of MAA, 2-hydroxyethyl methacrylate (2-HEMA), and SIONPs were 

dispersed in a solution of sodium dioctylsulfosuccinate in toluene. Copolymerization of the monomers 

yielded hydrophilic polymer beads physically loaded with magnetic NPs, yielding composite magnetic 

particles of hydrophilic polymers. However, they were relatively polydisperse and only contained 3.3 

wt% magnetic NPs.
[172]

 Several approaches have been proposed to increase loading level of SIONPs 

into polymeric particles. One approach involves stabilization of SIONPs with double-hydrophilic block 
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copolymer, PEO-b-PMAA. A water soluble monomer mixture containing SIONPs stabilized with PEO-

b-PMAA, 2-HEMA, and MAA was mixed with organic solution of poly(ethene-co-butene)-b-PEO in 

decane. The addition of an organic initiator yielded magnetic microspheres with a diameter of 50–250 

nm and a loading level of SIONPs up to 18 wt%.
[173]

 Another approach involves albeit the size 

uniformity. The magnetic loading further increased to 23%. Submicrometer-sized magnetic hydrophilic 

polymer particles were prepared by inverse microemulsion polymerization of AAm, MBAm, and 

suspension of trisodiumcitrate-stabilized SIONPs dispersed in a solution of sodium bis(2-ethylhexyl) 

sulfosuccinate in toluene. The resulting magnetic PAAm microgels had their particle size ranging from 

80 to 180 nm in diameter, which can be controlled by the concentration of MBAm crosslinker and 

surfactant/water ratio. The magnetite content in polymer particles was determined to be 5–23 wt %.
[174]

 

6.2. Dispersion polymerization 

Dispersion polymerization is advantageous because micrometer-size polymer microspheres with a 

narrow size distribution can be obtained in a single step. Of utmost importance for the technique is the 

appropriate selection of the reaction medium, in which monomers are soluble, while the resulting 

polymer and magnetic material are insoluble. By heating the polymerization mixture, initiator is 

decomposed to form oligomer radicals. The oligomeric chains do not remain dissolved in the medium, 

but precipitate when reaching the critical chain length. The chains associate forming nuclei, which 

aggregate and at the same time adsorb the stabilizer forming primary mature particles containing 

magnetic cores. Under conditions where no new nuclei are formed, the primary particles grow and reach 

the uniform size.
[175-177] 

Dispersion polymerization was conducted with 2-HEMA in the presence of iron oxide needles or 

cubes (ca. 100~500 nm) in a mixture of toluene/2-methylpropan-1-ol, yielding magnetic microspheres 

with a diameter of 1–2 μm stabilized with acetate butyrate cellulose. Ethylene glycol dimethacrylate 
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(EGDMA) was added to prepare crosslinked microspheres.
[178]

 Similar process was applied to prepare 

magnetic microspheres of PGMA
[179-181]

  and PAAm
[182]

 stabilized with poly(vinyl pyrrolidone) (PVP). 

In addition, magnetic microspheres of P(St-co-GMA) with 72 wt% of magnetic content measured by 

thermal analysis methods were prepared.
[183] 

Thermoresponsive polymeric microgels loaded with SIONPs and anti-cancer drugs are of interest for 

multi-functional cancer therapies. This is because such nanoparticles can be used for magnetic drug 

targeting followed by simultaneous hyperthermia and drug release. γ-Fe2O3 SIONPs with diameter of 14, 

19, and 43 nm were synthesized by high temperature decomposition. Composite magnetic nanoparticles 

of PNIPAM were prepared by aqueous dispersion polymerization of NIPAM in the presence of SIONPs. 

As seen in Figure 10, thermo-responsiveness of PNIPAM exhibited facile loading and release of drugs 

at temperatures below and above the lower critical solution temperature (34◦C). The particles showed 

Fickian diffusion release kinetics; the maximum Dox release at 42◦C after 101 h was 41%. In vitro 

simultaneous hyperthermia and drug release of therapeutically relevant quantities of Dox was achieved. 

For example, 14.7% of loaded Dox was released in 47 min at hyperthermia temperatures.
[184]
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Figure 10. Schematic overview of composite magnetic microsphere preparation(a), drug 
loading(b), and drug release processes(c). Reprinted with permission from ref [184]. Copyright 
2009 IOP. 

 

6.3. Other heterogeneous polymerization methods 

Precipitation polymerization of hydrophilic or water-soluble monomers in the presence of crosslinkers 

in water produces microgel particles. Typical examples are thermoresponsive PNIPAM-based microgels. 

Carboxylic acid-functionalized P(NIPAM-HEA-AA) microgels were prepared, and used as reactors for 

in-situ formation of inorganic NPs including Fe3O4 NPs.
[185]

  After being immersed in aqueous solution 

of Fe(II) and Fe(III), microgels of poly(acetoacetoxyethyl methacrylate-co-N-vinylcarprolactam) 

(P(AAEM-VCL)) became temperature-sensitive hybrid microgels with magnetic properties.
[186]

 

Thermally-responsive magnetic microgels of poly(di(ethylene glycol) methyl ether methacrylate) 

(PMe(EO)2MA) crosslinked with disulfides were prepared by ATRP under emulsion conditions. They 



 

 
PPS_MNP-Polymer_submitted.doclmv00 Page 23 3/18/2012 
 

 

 

were then mixed with oleic acid-stabilized SIONPs, magnetic microgels, followed by physical loading 

of Rhodamine B. Upon addition of reducing agents, the microgels degraded to release the hydrophilic 

drugs.
[187]

 In addition, the preparation of magnetic polyvinylamine NPs by in situ precipitation 

polymerization was reported.
[188]

 

7. Bulk physical and chemical crosslinking - magnetic hydrogel preparation 

Magnetic hydrogels containing magnetic NPs, called ferrogels, have been prepared by both physical 

and chemical crosslinking reactions in the presence SIONPs. For physical crosslinking, poly(vinyl 

alcohol) (PVOH) with degree of hydrolyzation of  >97% was mixed with dimethylsulfoxide (DMSO) at 

80 °C under stirring and then SIONPs under ultrasonification. The resulting mixture was subjected to 

five freeze-thaw cycles at -20 °C for 16 h and 25 °C for 5 h. The resulting physically-crosslinked 

PVOH-based hydrogels exhibited controlled release of drugs upon external application of magnetic field 

due to a precise control of opening and closure of pore configuration.
[189, 190]

 Collagen molecules self-

assembled into higher-order structure when pH of collagen solution increased to 7.4 at 37 °C. An 

addition of SIONP solution at pH = 4 resulted in the formation of physically-crosslinked collagen gels. 

The gels were further stabilized by a carbodiimide coupling reaction in the presence of N-(3-

dimethylaminopropyl)-N'-ethyl-carbodiimide (EDAC). Rhodamine-labeled Dex was incorporated into 

magnetic collagen gels for controlled release of Dex, a model drug, in external magnetic field.
[191]

 

For chemical crosslinking, free-radical crosslinking polymerization in water has been utilized. 

Thermosensitive hydrogels of alginate-PNIPAM semi-interpenetrating networks (IPN) embedded with 

SIONPs were prepared by simultaneous free-radical crosslinking polymerization of NIPAM with 

MBAm and physical crosslinking of Alg with Ca
2+

 ions. The alginate-PNIPAM IPN gels had larger 

pores than PNIPAM gels, exhibiting fast response to temperature, and thus leading to high rate of 
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swelling/deswelling. The resulting cylindrically shaped gels of 20 mm were immersed in an aqueous 

basic solution of Fe(II) and Fe(III), yielding magnetic hydrogels for hyperthermia applications.
[192, 193]

 

8. Bio-applications of SIONP-polymer hybrids  

This section discusses bio-related applications of hybrid magnetic polymer particles embedded with 

SIONPs. They include MR imaging (or dual imaging with optical imaging based on fluorescence), 

targeted drug delivery, hypothermia, protein immobilization, and biosensors. 

8.1. MR imaging  

MR imaging is one of the most powerful non-invasive imaging methods utilized in clinical medicine, 

which is based on the relaxation of protons in tissues. Upon accumulation in tissues, SIONPs enhance 

proton relaxation of specific tissues when compared with the surrounding tissues, serving as a MR 

contrast agent. For in vivo MR imaging applications, SIONPs should have longer half-life time in the 

blood circulation for the improved efficiencies of detection, diagnosis, and therapeutic management of 

solid tumors. Because opsonin plasma proteins are capable for interacting with plasma cell receptors on 

monocytes and macrophages, opsonin-absorbed SIONPs will be quickly cleaned by circulating 

monocytes or fixed macrophages through phagocytosis, leading to elimination of SIONPs from blood 

circulation. The smaller the particle and the more neutral and hydrophilic its surface, the longer is its 

plasma half-life. Therefore, the surface of SIONPs has been modified with hydrophilic polymers to 

prevent absorption of the circulating plasma proteins. 

POEOMA-coated SIONPs were incubated with RAW 264.7 microphage cells and the extent of their 

cellular uptake was compared with pristine SIONPs. As seen in Figure 11, iron concentration in 

RAW264.7 cells incubated with POEOMA-coated SIONPs is much smaller than that with pristine 

SIONPs, indicating the importance of surface properties of SIONPs for in vitro and in vivo MR imaging 

applications.
[116]

 SIONPs coated with POEOMA-b-PMAA block copolymer were injected into a rat. 
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Figure 12 shows the in vivo MR images of liver section of the live rat over time after injection. The 

liver was observed to be significantly darker after 2 h, which is much longer than 5 min for Resovist
®
, a 

larger commercial SIONP. The results suggest that ultra small SIONPs coated with POEOMA (diameter 

= 10 nm) have a longer half-life time in the bloodstream than standard commercial contrast agent.
[90]

   

 

Figure 11. Iron concentration in RAW 264.7 cells cultured in medium containing pristine (a) 
and POEOMA-coated SIONPs (b). Reprinted with permission from ref [116]. Copyright  2006 
American Chemical Society. 
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Figure 12. MR Images of a live rat after injection of 500 µL of a solution containing SIONPs 
coated with POEOMA-b-PMAA (d = 10 nm). Images on the left show liver selections measured 
at 0 min (a), 15 min (b), 1 h (c), 2 h (d), 6 h (e). Right image shows a coronal section 
measured after 70 min. Reprinted with permission from ref [90]. Copyright  2006 American 
Chemical Society. 

 

 

SIONPs coated with hydrophilic polymers, typically POEOMA and poly(L-lysine) have also been 

utilized for in vitro and in vivo labeling cancer and stem cells. They were accumulated in tissues by 

enhance permeability and retention (EPR) effect for MR imaging of specific cells.
[100, 136]

 Fe2O3 

maghemite NPs coated with poly(N,N-dimethylacrylamide) (PDMAAm) were prepared by solution 

radical polymerization of DMAAm in the presence of aqueous solution of maghemite NPs, which were 

prepared by the coprecipitation method. In vitro cellular uptake results indicate that PDMAAm-coated 
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Fe2O3 maghemite NPs exhibited higher efficiency in labeling rat and human bone marrow mesenchymal 

stem cells than pristine Fe2O3 NPs and even Dex-modified NPs (Endorem® , a commercial MRI contrast 

enhancement agent)
[194, 195]

 In addition, Cy5.5, a fluorescent-dye, was incorporated into 

polymer/SIONPs for dual MR and fluorescence imaging. The resulting Cy5.5-conjugated 

polymer/SIONPs were injected intravenously into the rat through its tail vain. They were accumulated 

in tumor by EPR effect, as seen in vivo MR and fluorescence images of tumor after injection (Figure 

13).
[101]

    

 

Figure 13. T2-weighted fast spin-echo images taken at 0 and 3.5 h post-injection of 14.7 mg of 
Cy5.5-conjugated SIONPs coated with POEOMA at the level of tumor (320 mm3) on the flak 
above the upper left thigh of a nude mouse (a) and optical fluorescence images of the same 
mouse taken at 0 and 3.5 h (b). The red arrows indicate the position of the allograft tumor. 
Reprinted with permission from ref [101]. Copyright  2007 American Chemical Society. 
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Active targeting or specific targeting is a promising approach toward increasing the local accumulation 

of SIONPs in diseased tissue.
[8, 196]

 This approach requires the design and preparation of SIONPs coated 

with functional polymers, which are further conjugated with targeting biomolecules to specific cells. 

The effective targeting biomolecules include folic acid and its analogues, peptides, proteins, and 

antibodies, utilizing specific interactions such as receptor-ligand or antigen-antibody interactions. 

Folate,
[91, 126]

 Tat peptide,
[106]

 and a polypeptide with a sequence of GGGGYSAYPDSVPMMSK
[20]

 

have been conjugated to SIONPs through functional polymers for in vitro and in vivo targeting cancer 

cells. Dopamine-functionalized hyaluronic acid (HA) was conjugated with SIONPs in water, yielding 

stable HA-SPIONPs with a diameter of 15 nm on mica surface by atomic force microscopy (AFM). 

They were cultured with CD44+ cells (HCT116, human colon carcinoma cell line) and CD44- fibroblast 

cells (NIH3T3, mouse fibroblast). As seen in Figure 14, the MR imaging revealed that the cellular 

uptake of HA-SIONPs was greatly enhanced in HCT116 by specific CD44-HA receptor-ligand 

interactions.
[103]
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Figure 14. T2-weighted MR images and their color map for HCT116 and NIH3T3 cells (a) and 

relative relaxation rates (R2 = R2/R2cont; R2 = T2
-1) (b). Notation: HCT116+: HA-SIONPs 

treated cells, HCT116-: control HCT116 cells, NIH3T3+: HA-SIONPs treated cells, and 
NIH3T3-: control NIH3T3 cells. Reprinted with permission from ref [103]. Copyright 2008 Wiley 
InterScience. 
 

 

8.2. Drug delivery 

Polymer-based drug delivery systems (Polymer-DDSs) have gained an increasing attention in polymer 

science, pharmaceutics, nanobiomedicine, and biomaterials science. In particular, polymer DDS 

conjugated with cell-targeting ligand biomolecules that can recognize specific cell receptors may 

enhance non-specificity of chemotherapeutic agents as well as reduce their side effects. Several types of 

polymer-DDS have been exploited, including polymer pro-drugs,
[197]

 micelles and vesicles based on 

amphiphilic and double block copolymers,
[198, 199]

 dendrimers,
[200]

 hydrophobic polyester-based 

nanoparticulates,
[201]

 and microgels/nanogels.
[151, 202-204]

 For in vivo drug delivery applications, several 

criteria are required for the design and development of effective polymer -DDS. Primary requirements 
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include non-toxicity to cells, stability for prolonged circulation in blood stream, high loading efficiency, 

and controllable release of therapeutics. Additional requirements include biodegradability, novel 

functionality for further bioconjugation with cell-targeting biomolecules, and dimensional control.
[205]

  

A recent advance in SIONP/polymer system is the development of SIONP-loaded polymer-DDS with 

cancer-cell targeting capability for controlled drug release and efficient MR imaging contrast 

characteristics. These systems can allow for real-time tumor-tracking by MR imaging upon controlled 

release of anticancer drugs in cancer cells. Self-assembled nanoparticles of amphiphilic block 

copolymers loaded with SIONPs and anticancer drugs such as Dox are typical examples for 

simultaneous drug delivery and MR imaging. Cell-targeting ligands such as folate,
[128]

 RGD 

tripeptide,
[127]

 and antibody
[125]

 were attached to nanoparticles for intercellular delivery of anticancer 

drugs. They were then released upon collapse of micellar aggregates in cells after internalization into  

cells (Figure 15). PEG-based phospholipid self-assembled micelles consisting of SIONPs, quantum 

dots, and Dox were prepared for simultaneous magnetofluorecent imaging and drug delivery.
[131]
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Figure 15. Schematic illustration for the fabrication of ultrasensitive MRI probe from core/shell 
micellar NPs consisting of hydrophobic PLA core embedded with SIONPs and Dox and 
hydrophilic PEO shell functionalized with targeting therapeutic antibodies to tumor. Reprinted 
with permission from ref [125]. Copyright 2007 Wiley InterScience. 

 

Crosslinked microgels/nanogels/hydrogels embedded with SIONPs (ferrogels) have been designed for 

controllable release of drugs. In particular, ferrogels based on thermally-responsive polymers are 

attractive because temperature change is generated by applying an external magnetic field onto 

SIONPs.
[206]

 When magnetic field is on, temperature increased. At temperatures above lower critical 

solution temperature (LCST), thermoresponsive polymeric ferrogels are shrunken, enhancing release of 

drugs from ferrogels. When the magnetic field is absent and the temperature is below the LCST, they 

become swollen, reducing drug release. Therefore, a magnetically remote-controlled drug release can be 

achieved without additional stimuli. Ferrogels based on poly(vinyl alcohol)
[190]

 and Fluronic PF127 

triblock copolymer consisting of PEO and poly(propylene glycol) (PPO) were prepared by thermally-

induced sol-gel process.
[189, 207]

 PF127 block copolymer formed micellar nanoparticles consisting of 

PPO core and PEO corona in water. In the presence of SIONPs and indomethacin (IMC), a hydrophobic 
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drug, thermal gelation of the micelles occurred at elevated temperature, yielding ferrogels embedded 

with IMC which is mainly located in micelle cores. As seen Figure 16, the half-time (t1/2) of drug 

release was reduced to 1500 min when magnetic field is on, compared to the 3195 min when magnetic 

field is off, indicating that the drug release is enhanced upon applying magnetic field.
[207]

 In addition, 

microgels/nanogels of water-soluble POEOMA, in which SIONPs are physically or covalently 

embedded, were prepared for drug delivery applications.
[208, 209]

  

 

Figure 16. Schematic illustration of ordered microstructure of thermally-induced ferrogels 
based on Fluronic PF124 block copolymers: before applying magnetic field, IMG hydrophobic 
drug molecules are encapsulated in the hydrophobic core of micelles (a) and when magnetic 
field is on, SPONPs orient and approach each other, squeezing the micelles and leading to 
enhancement of IMC release (b). Reprinted with permission from ref [207]. Copyright 2009 
Wiley InterScience. 

 

8.3. Other applications including hyperthermia, protein immobilization, and catalysts 

Hyperthermia therapy with SIONPs involves a local increase in temperature (up to 45 °C) when 

external magnetic field is applied on SIONPs. Such a temperature increase enables to kill temperature-

sensitive cells, such as cancer cells. Recent studies using calorimetry shows that the heating rate 
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depends on the particle size of SIONPs, in good agreement with theoretical prediction. This result 

suggests that the SIONPs should be designed to have optimal particle size with narrow size distribution 

for enhanced hyperthermia therapy.
[210]

 Several papers reported novel SIONP-polymer nanocomposites 

for hyperthermia. They include SIONPs coated with temperature-responsive PNIPAM-based 

copolymer
[92, 184]

 and chitosan
[211]

 as well as SIONPs embedded in hydrogels,
[130, 212, 213]

 solidified 

gels,
[214]

 and silica microparticles.
[215]

 In addition, well-designed polymer/SIONPs nanohybrids have 

been utilized for microfluidic separation,
[105]

 immobilization of proteins such as bovin serum 

albumin,
[216]

 and peroxidase-like catalyst.
[105]

 

 

9. Conclusion  

SIONPs have great potential for various biomedical applications, including MRI contrast enhancement, 

targeted drug delivery, hyperthermia, catalysis, biological separation, biosensors, and diagnostic 

medical devices. Polymers as multidentate ligands enhance the stability of SIONPs in solution as well as 

their optical, magnetic, and electronic properties. Various methods have been developed to yield unique 

polymer-SIONP hybrid nanomaterials. They include direct modification with polymers, surface-

initiated controlled polymerization, inorganic silica/polymer hybridization, self-assembly and self-

association, and various heterogeneous polymerization methods. The resulting hybrid magnetic polymer 

composites exhibit various morphologies such as magnetic core–polymer shell, magnetic multicores 

homogeneously dispersed in polymer matrix, raspberry morphology, and hair-like morphology. Direct 

modification with polymers requires the design, preparation, and modification of novel polymers 

including synthetic polymers and biopolymers. The general approaches include physical adsorption of 

well-controlled polymers, addition of second layer consisting of amphiphilic block copolymers, 

functional silica coating, and the ionic interaction approaches, yielding water-soluble/water-dispersible 

polymer-stabilized SIONPs. The surface-initiated CRP methods including ATRP and RAFT methods 
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have been utilized for modification of single SIONP with well-controlled polymers. Inorganic 

silica/polymer hybridization involves the encapsulation of SIONPs with a silica shell through a sol-gel 

process of tetraethyl orthosilicate (TEOS). The silica-coated SIONPs are further functionalized and 

encapsulated with polymers, yielding multifunctional hybrid nanomaterials. Self-assembly method 

involves the assembly of amphiphilic block copolymers in water, forming stable core/shell micellar 

particles. The hydrophobic core serves as a carrier for SIONPs and anticancer drugs and the hydrophilic 

shell allows particle stabilization in aqueous solution. The amphiphilic block copolymers include 

biodegradable polyester-based amphiphilic block copolymers of PLA and PCL. Self-association method 

involves the physical association between SIONPs and anionic-or cationic polymers. The associations 

are typically achieved through ionic interaction, stereo-complexation, and sol-gel process with 

thermoresponsiveness. In addition, various heterogeneous polymerization methods of hydrophilic or 

water-soluble monomers have been extensively explored to prepare well-defined SIONP-embedded 

magnetic polymer spheres as well as crosslinked microgels/nanogels and hydrogels for biomedical 

applications. They include inverse (mini)emulsion polymerization, dispersion polymerization, 

precipitation polymerization, and bulk physical and chemical crosslinking. These methods have allowed 

for the preparation of noble hybrid magnetic polymer nanomaterials embedded with SIONPs for bio-

related applications such as MR imaging (or dual imaging with optical imaging based on fluorescence), 

targeted drug delivery, hypothermia, protein immobilization, and biosensors. 

Future design and development of effective magnetic polymer nanocomposites for biomedical 

applications require a higher degree of control over their key characteristics. Proper particle diameters in 

usually sub-micron size range can offer high surface areas for immobilization of biomolecules. Narrow 

size distribution can allow a uniform response to an external magnetic field. Appropriate surface 

functionalities enable selective adsorption or binding with biomolecules. Homogeneous distribution and 

proper encapsulation ensure high degree of non-toxicity and biocompatibility by avoiding direct contact 
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of magnetic materials with some sensitive molecules and biomolecules (e.g. enzymes). Biodegradability 

and stimuli-responsiveness allow for controlled loading and release of encapsulated anticancer drugs 

and SIONPs. In addition, good colloidal stability in aqueous medium and high iron oxide content for 

rapid separation in the magnetic field are necessary. 
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