1	Pheophytinase activity and gene expression of chlorophyll-degrading enzymes relating to
2	UV-B treatment in postharvest broccoli (Brassica oleracea L. Italica Group) florets
3	
4	Sukanya Aiamla-or ^a , Tetsuya Nakajima ^b , Masayoshi Shigyo ^{a,b} , Naoki Yamauchi ^{a,b*}
5	
6	^a The United Graduate School of Agricultural Science, Tottori University, Koyama-Minami,
7	Tottori 680-8553, Japan
8	^b Faculty of Agriculture, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan
9	
10	
11	
12	
13	
14	
15	* Corresponding author Tel.: +81-83-933-5843; Fax: +81 83933 5820; E-mail
16	address:yamauchi@yamaguchi-u.ac.jp
17	

1 Abstract

2	Pheophytinase (PPH) activity and gene expression of chlorophyll (Chl)-degrading
3	enzymes relating to UV-B treatment in postharvest broccoli (Brassica oleracea L. Italica
4	Group) florets were determined. PPH is involved in the dephytylation of Mg-free Chl a,
5	pheophytin (Phy) a. However, chlorophyllase (Chlase, EC.3.1.1.14) also uses Phy a as a
6	substrate to produce pheophorbide (Pheide) a by dephytylation. For an accurate
7	determination of PPH activity, the PPH protein fraction was separated from Chlase protein by
8	ammonium sulfate precipitation. The protein precipitated by 45-60% saturated ammonium
9	sulfate was included a little bit Chlase activity and was suitable for PPH determination. PPH
10	activity in broccoli florets treated with a UV-B dose of 19 kJ m^{-2} was repressed for the first 2
11	days of storage at 15 $^{\circ}$ C, whereas it increased gradually with senescence of control broccoli
12	florets. The expression level of <i>BoCLH1</i> was reduced in broccoli florets on day 4 of storage,
13	while BoCLH2 and BoCLH3 were up-regulated with UV-B treatment. A high BoPAO
14	expression level was found in senescent broccoli florets, and the up-regulation of this gene
15	was delayed by UV-B treatment. The highest expression level of BoPPH was found in the
16	control, and its expression was clearly repressed by UV-B treatment on day 2 of storage. We
17	suggest that the up-regulation of Chl-degrading enzyme genes could be delayed by UV-B
18	treatment, resulting in the suppression of floret yellowing in stored broccoli.
10	

20 Keywords: Chlorophyll degradation, Chlorophyllase, Pheophytinase, gene expression, UV-B
21 treatment

1 1. Introduction

2

3 Plant senescence is often observed as a change in leaf color, which is regulated by 4 chlorophyll (Chl) degradation. As shown in Fig. 1, the degradation of Chl to Chl catabolites 5 occurs mainly in two ways, the removal of phytol from Chl a and the formation of 6 chlorophyllide (Chlide) a by chlorophyllase (Chlase) (Roca and Minguez-Mosquera, 2003; 7 Harpaz-Saad et al., 2007) followed by the removal of a Mg atom by a Mg-dechelating 8 substance (MDS) (Shioi et al., 1996). Subsequently, pheophorbide (Pheide) a is degraded to 9 fluorescent, primarily colorless Chl catabolites, including a red Chl catabolite generated by 10 Pheide *a* oxygenase (PAO, EC 1.14.12.20) and a red Chl catabolite reductase (RCCR, EC 11 1.3.1.80) (Matile et al., 1999). An alternative process that differs in the first step of the above 12 pathway proceeds by Chl *a* removing a Mg atom before the phytol group, with pheophytin 13 (Phy) a as an intermediate (Tang et al., 2000, Vavilin and Vermaas, 2002). Afterward, the 14 dephytylation of Phy a is catalyzed by Chlase (Heaton and Marangoni, 1996). Recently, 15 pheophytinase (PPH) was also demonstrated to be a Phy *a*-specific dephytylation enzyme 16 (Schelbert et al., 2009). Büchert et al. (2011b) found that the expression of *BoPPH* increased 17 with floret yellowing of broccoli and that its expression was induced by ethylene; however, 18 its expression was suppressed by cytokinin treatment. In addition, Chl a is also degraded in 19 vitro by Chl-degrading peroxidase (POX) in the presence of some phenolic compounds and hydrogen peroxide to form 13^2 -hydroxychlorohyll (OHChl) *a*, which is an oxidized form of 20 21 Chl a (Johnson-Flanagan and McLachlan, 1990; Kuroda et al., 1990; Martínez et al., 2001; 22 Yamauchi et al., 2004). Pheophorbidase (PPD, EC 3.1.1.82) is involved in the Chl

degradation pathway, and it converts Pheide *a* to pyropheophorbide (PyroPheide) *a* (Shioi et
 al., 1996).

3 Broccoli is a kind of cruciferous vegetable with a high antioxidant content. However, 4 broccoli is a highly perishable product and floret yellowing is a major limitation to extended 5 shelf life with high quality. Physical treatments have been applied to delay floret yellowing, 6 including heat treatments (Funamoto et al., 2002; Costa et al., 2006b; Kaewsuksang et al., 7 2007), low temperature storage (Starzyńska et al., 2003), controlled atmosphere storage 8 (Yamauchi and Watada, 1998) and UV-C treatment (Costa et al., 2006a; Erkan et al, 2008). 9 Previously, we discovered that UV-B treatment effectively inhibited Chl-degrading enzymes, 10 such as Chlase, Chl-degrading POX and MDS, in stored broccoli (Aiamla-or et al., 2010). In 11 the present study, we deal with gene expression of Chl-degrading enzymes, corresponding to 12 the Chl degradation pathway, during storage of broccoli florets with postharvest UV-B 13 treatment. Furthermore, we defined the methodology for PPH activity analysis and 14 characterized the enzyme and corresponding changes in senescing broccoli florets. 15 16 2. Materials and Methods 17 18 2.1 Plant materials and UV-B treatments 19 Broccoli (Brassica oleracea L. Italica Group, cv. Sawayutaka) heads were harvested in 20 Fukuoka Prefecture and transported to the Horticultural Science laboratory at Yamaguchi 21 University. Broccoli heads were immediately irradiated with UV-B (spectral peak value: 312 22 nm, T-15M, VL) according to Aiamla-or et al. (2010). Each broccoli head was placed 23 vertically under the UV-B lamps at a distance of 15 cm, resulting in UV-B energy doses of

19 kJ m⁻². The dose of UV-B treatment was detected by a UV-B meter (UV 6.0 MK
Scientific), which measured rang of 285-315 nm. Broccoli heads were kept in polyethylene
film bags (0.03 mm in thickness), with the top folded over. The bags were then placed on a
plastic tray and stored at 15 °C in the dark. Triplicates of plant materials were removed at
scheduled intervals during the 6-day storage period. The florets used for gene expression
analysis were frozen with liquid nitrogen and kept at -80 °C. For determination of enzyme
activities, florets were kept as acetone powders at -20 °C.

8

9 **2.2** Chlorophyll assay and chlorophyll *a* and pheophytin *a* preparation

10 Chl content was determined using N,N-dimethylformamide (Moran, 1982). For Chl a 11 preparation, spinach leaves were homogenized for 3 min in cold acetone (-20 °C). The 12 homogenate was filtered through two layers of Miracloth (Calbiochem, USA). The filtrates 13 were treated with dioxane and distilled water to precipitate a lipid-soluble pigments including 14 Chls and then kept for 1 h on ice. The filtrates were centrifuged at $10,000 \times g$ for 15 min at 4 15 °C. After centrifugation, the pellets were treated again with acetone, dioxane and distilled 16 water, and then kept for 1 h on ice in the dark. Afterwards, the soluble pellets were 17 centrifuged at $10,000 \times g$ for 15 min at 4 °C and then subsequently dissolved in petroleum 18 ether. Soluble chlorophyll in petroleum ether was flushed with nitrogen gas, then stored at -20 °C until the individual pigments were separated using sugar powder column 19 20 chromatography (Perkins and Roberts, 1962). Finally, five hundred $\mu g/mL$ of Chl a was 21 prepared in acetone. Phy a was prepared by the acidic reaction, using 0.1 M hydrochloric 22 acid (HCl). The Phy a concentration was measured spectrophotometrically at 409 nm using an extinction coefficient of 156,000 M cm⁻¹. 23

2 **2.3 Protein extraction and separation**

3 An acetone powder (1 g) of floral tissues was suspended in 15 mL of 50 mM Tris 4 (hydroxymethyl) aminomethane-hydrochloric acid (Tris-HCl) buffer (pH 8). The mixture 5 was stirred for 1 h at 0 °C and filtered with two layers of Miracloth. The filtrate was then 6 centrifuged at 15,000× g at 4 °C for 15 min. The protein in the supernatant was precipitated 7 with saturated ammonium sulfate. The precipitate was dissolved with 50 mM Tris-HCl buffer 8 (pH 8) and the solution was passed through a PD-10 column (GE Healthcare) to desalt the 9 ammonium sulfate. Using the eluate, the formation of Pheide a was measured by high 10 performance liquid chromatography (HPLC) analysis, as previously described (Aiamla-or et 11 al., 2010). Chlase and PPH activities were also determined spectrophotometrically at 667 nm, 12 by measuring Pheide a or Chlide a formation. The protein contents were determined based on 13 Bradford's method (1976).

14

15 **2.4 Determination of chlorophyllase and pheophytinase activities**

16 For the Chlase assay, the reaction mixture contained 0.75 mL of 20 mM phosphate 17 buffer (pH 7.5), 0.1 mL of 500 µg/mL Chl a acetone solution and 0.5 mL of enzyme solution. 18 The reaction mixture was incubated in a water bath at 25 °C for 40 min, and afterward the 19 enzyme reaction was stopped by adding 4 mL of acetone. Chlide a was separated by adding 4 20 mL of hexane. The upper phase contained the remaining Chl a, whereas the lower phase 21 contained the Chlide a. The activity was spectrophotometrically detected by Chlide a 22 formation at 667 nm. The unit of enzyme activity, katal (kat), was defined as the amount of 23 enzyme that formed one mole of product per second.

1	PPH activity was based on the method of Shchelbert et al. (2009), with the slight
2	modification of performing the spectrophotometric measurement at 667 nm. The reaction
3	mixture contained 0.35 mL of enzyme solution, 75 μ L of 2.0% Triton X–100, 0.1 mL of Phy
4	a (10 μ M) and 0.70 mL of 50 mM Tris–HCl buffer (pH 8.0). The reaction was incubated in
5	darkness for 90 min at 25 °C. After the optimal concentration of ammonium sulfate was
6	defined for PPH protein as described above, the assay on optimal reaction incubation
7	conditions for PPH activity was carried out. The partial PPH protein fraction, which was
8	precipitated by 45-60% saturated ammonium sulfate, was used to determine enzyme activity.
9	The reaction was stopped by addition of acetone. Pheide a was separated from Phy a by
10	additional hexane. Subsequently, the Pheide a concentration in the acetone layer was
11	measured spectrophotometrically at 667 nm. The quantity of Pheide a formation was
12	calculated by comparison to a Pheide a standard (Wako Pure Chemical Industries, Tokyo,
13	Japan). PPH activity was expressed as products of Pheide <i>a</i> (mole) per second, katal (kat) per
14	mg protein.
15	
16	2.5 RNA extraction and real time PCR analysis of transcriptional profile of chlorophyll-
17	degrading enzymes
18	Frozen broccoli florets were ground in liquid nitrogen, and powder was put into 150 mM
19	Tris-HCl buffer (pH 7.5) containing 5 mM ethylenediaminetetraacetic acid (EDTA), 2%
20	sodium dodecyl (SDS) and 3.55 μ M mercaptoethanol in a total volume of 5 mL. Total RNA
21	was prepared by the phenol method and quantified by spectrophotometry. RNA integrity was
22	determined on 2% agarose gels by electrophoresis. Total RNA was purified with phenol /
23	chloroform / isoamyl alcohol (PCI) and precipitated by adding 1/3 extraction volume 10 M

1	LiCl overnight at -20 °C. After RNA in LiCl solution was centrifuged at $10,000 \times g$ at 4 °C
2	for 10 min, the pellets were collected. Subsequently, pellets were re-dissolved in DEPC-DW.
3	RNA was purified again with PCI and precipitated by adding 1/10 sample volume 3 M
4	sodium acetate and 2.5 sample volume 99.5% ethanol at -80 °C for 20 min. Twenty-five
5	micrograms of RNA were treated with DNase. Ten micrograms of RNA was reverse
6	transcribed using a cDNA synthesis kit (Takara). cDNA was stored at -20 °C and employed
7	as a template for two step RT-PCR using the SYBR® Green PCR Master Mix (QIAGEN)
8	according to manufacturer recommendations. Primers were designed using Primer Express®
9	software version 3.0 (Applied Biosystem). Actin was used as an internal control: BoAct1
10	(accession no. AF044573), forward 5'-CTTGCACCAAGCAGCATGAA-3', reverse 5'-
11	AGAATGGAACCACCGATCCA-3'. Primers specific to following genes were used:
12	BoCHL1 (accession no. AF337544), forward 5'-CGGTTTTGTCGGGTTTATGG-3', reverse
13	5'- CACCAACAAAGCTTCTCATCTCA-3'; BoCLH2 (accession no. AF337545), forward
14	5'-TCTCGCTGTCGCTGCTACAA-3', reverse 5'-GTTGCCACCAAAAGCGACTT-3';
15	BoCLH3 (accession no. AF337546), forward5'-GGTGATGCTCCTCCATGGTT-3', reverse
16	5'-TGAAGCCATGGGAAGAGACAT-3' and BoPAO (accession no. AB470926), forward
17	5'-ACTAGGATTCCACAGGCTGCTAC-3', reverse 5'-CCATTTTCATCAGGCCACAC-3'.
18	Primer specific to BoPPH was followed Buchert et al. (2011b)'s designed; forward 5'-
19	AGAGGTTATCGGTGAGCCA-3', reverse 5'-GACGAGATGAGGATGGG-3'. Each
20	measurement was performed in triplicate.
21	

- 1 **3. Results**
- 2

3 3.1 Accurate determination of pheophytinase activity using saturated ammonium 4 sulfate precipitation

5 In the Chl degradation pathway, Chlase normally utilizes both Chl a and Phy a as 6 substrates to produce Chlide a and Pheide a, respectively (McFeeters et al., 1971; Mínguez-7 Mosquera et al., 1994), whereas PPH has specific activity only for Phy a. A high level of 8 Pheide a formation was found in reactions with the 20-40% and 40-60% saturated 9 ammonium sulfate fractions, while a high level of Chlide *a* formation occurred in reaction 10 with the 20-40% saturated ammonium sulfate fraction (data not shown). These results 11 indicated that both PPH and Chlase proteins were present in the 20-60% saturated ammonium 12 sulfate precipitate. Hence, we further separated PPH protein from Chlase protein using 0-13 40%, 40-50%, 50-60%, 0-45% and 45-60% saturated ammonium sulfate fractionations. As 14 shown in Fig. 2, Chlase protein was highly precipitated with 0-40% saturated ammonium 15 sulfate, whereas the formation of Pheide a was found in each fraction over a wide range of 16 the 0–60% saturated ammonium sulfate. By further separation using 0-45% and 45-60%17 saturated ammonium sulfate precipitation, most of the protein was precipitated with the 0-18 45% fraction. Chlase activity was also present in this fraction, with greater specific activity in 19 the 0-45% fraction than in the 0-40% fraction (Fig. 2C). Little Chlase activity was found in 20 the 45-60% fraction. On the other hand, Pheide a formation was found in both the 0-45% and 21 45-60% fractions (Fig. 2D), indicating that Chlase protein was present in the 20-45% fraction 22 and PPH protein in the 45-60% fraction. Based on these results, the 45–60% fraction was 23 used to characterize PPH and its activity changes in stored broccoli florets.

3.2 Characterization of pheophytinase

3	Enzyme characterization was performed on the partially purified PPH. As apparent in
4	Table 1, Km values corresponding to Chl <i>a</i> and Phy <i>a</i> of Chlase were approximated to be
5	14.54 μ M and 18.18 μ M, respectively. Chlase on Chl <i>a</i> also showed a high V <i>max</i> /K <i>m</i> value
6	(194.09) but a low value of $Vmax/Km$ (0.43) on Phy <i>a</i> . The Km and $Vmax/Km$ values of PPH
7	on Phy <i>a</i> were estimated to be 15.89 μ M and 0.49, respectively. The pH optimum for PPH
8	activity was around 8 and its optimum temperature was 25 °C (data not shown).
9	
10	3.3 Pheophytinase activity changes during storage in broccoli florets after UV-B
11	treatment
12	Chls <i>a</i> and <i>b</i> contents in the control showed a slight decrease for the first 2 days of
13	storage at 15 $^{\circ}$ C and then decreased rapidly concomitant with floret yellowing (Fig. 3). UV-B
14	treatment suppressed the decline in Chl level during storage and delayed the progress of
15	floret yellowing by around 2 days. In fresh broccoli florets, PPH activity was approximately
16	0.6 <i>p</i> kat/mg protein in controls, while it was 0.5 <i>p</i> kat/mg protein florets treated with UV-B.
17	PPH activities in broccoli florets with or without UV-B treatment showed a gradual increase
18	during storage at 15 °C. UV-B treatment did not significantly affect PPH activity in stored
19	broccoli florets (Fig 3).
20	
21	3.4 Effects of UV-B treatment on gene expression levels of chlorophyll-degrading
22	enzymes

1	Changes in gene expression of enzymes involved in Chl degradation were determined by
2	real time PCR (qRT-PCR) analysis using specific primers from <i>B. oleracea</i> . The results of
3	gene expression by qRT-PCR are shown in Fig 4. The expression of all Chlase genes
4	(BoCLH1, BoCLH2 and BoCLH3) increased immediately after UV-B treatment, whereas the
5	expression of <i>BoPPH</i> showed a small reduction with UV-B treatment (Figs. 4A, 4B and 4C).
6	The expression level of BoCLH1 in UV-B treated broccoli florets was reduced on day 4 in
7	comparison with that of the control. However, UV-B treatment did not reduce the expression
8	level of BoCLH2 or BoCLH3 during storage. The expression of Chlase genes was reduced
9	with senescence of control florets. The highest expression level of BoPAO in control broccoli
10	was found on day 4 and that in UV-B treated broccoli on day 6 of storage. UV-B treatment
11	reduced the expression level of BoPAO in broccoli florets on days 2 and 4 (Fig. 4D) relative
12	to controls. Likewise, the highest expression level of BoPPH was found in the control, and its
13	expression was clearly repressed by UV-B treatment on day 2. The highest expression level
14	of BoPPH in broccoli with UV-B treatment was shown on day 4, but the level was similar to
15	that of the control on day 4 (Fig. 4E).
16	

17 **4. Discussion**

18

When broccoli heads are harvested, their florets are immature and in their most intense growth phase, which makes them very sensitive to stress factors, leading to a rapid initiation of senescence. Therefore, suitable treatments are required to delay degradation of Chl in broccoli florets during storage. Several techniques have been applied to maintain the green color of broccoli florets (Funamoto et al., 2002; Costa et al., 2005; Costa et al., 2006a; Costa

1	et al., 2006b). We previously applied UV-B doses of 19 kJ m^{-2} to broccoli florets. We found
2	that a UV-B dose of at least 19 kJ m^{-2} effectively delayed the progress of floret yellowing
3	and Chl degradation. Furthermore, we also reported that the activity levels of Chl-degrading
4	enzymes such as Chlase, Chl-degrading POX and MDS were reduced by UV-B treatment in
5	stored broccoli florets (Aiamla-or et al., 2011). Recently, PPH was reported to be an
6	important enzyme involved in Chl degradation, such that Arabidopsis mutants deficient in
7	PPH accumulated Phy a during senescence (Shcellbert et al., 2009). However, the accurate
8	measurement of Pheide a formation by PPH during plant senescence could be difficult
9	because Chlase also uses Phy a as a substrate. Büchert et al. (2011b) reported that the
10	expression level of PPH increased with the progress of senescence in broccoli florets, but
11	changes in PPH activity was still unknown. Hence, we defined a methodology for measuring
12	PPH activity in broccoli florets using Phy a as a substrate. Saturated ammonium sulfate was
13	used for protein precipitation, and Pheide <i>a</i> formation was found in the 20-40% to 40-60%
14	fractions, while Chlide <i>a</i> formation was found in the 20-40% fraction (data not shown). The
15	formation of Pheide <i>a</i> as well as Chlide <i>a</i> was high in the 0-40% and 0-45% fractions.
16	Therefore, the fractions precipitated with 0-40% or 0-45 % saturated ammonium sulfate
17	seemed to include Chlase, which uses both Chl a and Phy a as substrates. This characteristic
18	of Chlase has been verified using recombinant protein, which revealed enzyme activity with
19	both Chl a and Phy a (Okazawa et al., 2006). The protein fraction precipitated with 45-60 %
20	saturated ammonium sulfate hardly showed Chlide <i>a</i> formation by Chlase, but did exhibit a
21	high level of Pheide <i>a</i> formation. Taking these results together, we suggested that the protein
22	fraction precipitated with 45-60% saturated ammonium sulfate should be suitable for PPH
23	determination. Moreover, Km and $Vmax/Km$ values corresponding to Phy <i>a</i> of Chlase were

1	not significantly different from those values of PPH, indicating that both PPH and Chlase
2	have almost the same substrate affinity and catalytic power corresponding to Phy a.
3	In stored broccoli florets, PPH activity increased concomitantly with the decline of Chls
4	a and b contents, which suggests that PPH could be involved in Chl degradation in stored
5	broccoli florets. UV-B treatment effectively suppressed Chl degradation with floret yellowing
6	during storage. On the other hand, the enhancement of PPH activity in UV-B-treated broccoli
7	florets was slightly reduced for the first 2 days of storage; afterward its activity increased in
8	common with changes in PPH activity in the control. These findings indicate that the
9	inhibitory effect of Chl degradation by UV-B treatment might be due to the suppression of
10	enzymatic reactions except that of PPH. As discussed in a previous paper (Aiamla-or et al.,
11	2010), MDS may possibly play a crucial role in Chl degradation of broccoli florets, but as the
12	molecular nature of MDS and the involvement in MDS during Chl degradation are not
13	clearly understood, a future study is needed to elucidate this point.
14	The relative expression levels of BoCLH1, BoCLH2, BoCLH3, BoPAO and BoPPH
15	genes in broccoli florets with or without UV-B treatment were determined by qRT-PCR. The
16	expression level of <i>BoPPH</i> , as well as PPH activity, was reduced immediately after UV-B
17	treatment. The highest expression level of BoPPH in the control was found on day 2 of
18	storage. UV-B treatment considerably repressed expression on day 2, but then the expression
19	level of BoPPH increased in UV-B-treated broccoli florets during storage. Repression similar
20	to that of UV-B treatment was found with heat, UV-C and cytokinin treatments, whereas
21	modified atmosphere storage did not repress the expression level of BoPPH in stored broccoli
22	florets (Büchert et al., 2011ab). UV-B treatment, however, did not reduce the expression
23	level of BoCLH2 or BoCLH3 in stored broccoli florets. In addition, BoCLH2 in broccoli

florets with UV-B treatment showed an irregular transcriptional profile during storage, the
same as that found with cytokinin treatment (Büchert et al., 2011b). It was suggested that
both *BoCLH2* and *BoCLH3* could be unimportant in Chl degradation of broccoli florets
because their expression patterns did not correlate with degradation of Chl (Büchert et al.,
2011) and were not detected in florets of *B. oleracea* var. *italica* (Chen et al., 2008). In this
study, mRNA transcripts of all the Chlase genes, *BoCLH1*, *BoCLH2* and *BoCLH3*, were
found in broccoli florets (*B.oleracea* cv. pixel).

8 In the Chl-degradation pathway with conversion of Pheide *a* to pFCC, PAO plays a 9 significant role. PAO was considered to be an important enzyme in Chl degradation, because 10 its activity was found only during senescence (Chung et al., 2006; Pružinská et al., 2003). 11 The highest expression level of *BoPAO* was found in the control on day 4 and in UV-B-12 treated broccoli on day 6 of storage. UV-B treatment reduced the expression level of *BoPAO* 13 in broccoli florets on days 2 and 4. Fukasawa et al. (2009) reported that ethanol vapor 14 treatment suppressed Chl degradation in broccoli flortes during storage and also reduced the 15 expression level of *BoPAO*. Hence, the control of PAO by postharvest treatment could be 16 important for suppression of senescence.

In conclusion, an accurate, simple assay for PPH activity determination has become possible using ammonium sulfate precipitation. PPH activity and *BoPPH* gene expression was reduced by UV-B treatment of 19 kJ m⁻² for the first 2 days of storage, but then they increased with senescence in broccoli florets with or without UV-B treatment. A high *BoPAO* expression level was found in senescent broccoli florets, and up-regulation of its expression was delayed by UV-B treatment. Therefore, UV-B treatment reduced gene expression of Chldegrading enzymes, resulting in retarded Chl degradation in broccoli florets during storage.

2 Acknowledgements

3	The authors thank Dr. Cindy B.S. Tong, University of Minnesota, for graciously reading
4	this manuscript and also thank FUKUREN Co.Ltd. for supplying with broccoli florets. This
5	work was supported by a Grant-in-Aid for scientific Research (No. 22380027, JSPS).
6	
7	References
8	Aiamla-or, S., Kaewsuksaeng, S., Shigyo, M., Yamauchi, N., 2010. Impact of UV-B
9	irradiation on chlorophyll degradation and chlorophyll-degrading enzyme activities in
10	stored broccoli (Brassica oleracea L. Italic Group) florets. Food Chem. 120, 645-651.
11	Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram
12	quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72,
13	248–254.
14	Büchert, A.M., Civello, P.M., Martínez, G.A., 2011a. Effect of hot air, UV-C, white light and
15	modified atmosphere treatment on expression of chlorophyll degrading genes in
16	postharvest broccoli (Brassica oleracea L.) florets. Sci. Hort. 127, 214-217.
17	Büchert, A.M., Civello, P.M., Martínez, G.A., 2011b. Chlorophyllase versus pheophytinase
18	as candidates for chlorophyll dephytylation during senescence of broccoli. J. Plant
19	Physiol. 168, 337–343.
20	Chen, L.O., Lin. C., Kelkar. S.M., Chang, Y., Shaw, J., 2008. Trasgenic broccoli (Brassica
21	oleracea L. var italica) with antisense chlorophyllase (BoCLH1) delays postharvest
22	yellowing. Plant Sci. 174, 25–31.

1	Chung, D.W., Pružinská, A., Hörtensteiner, S., Ort, D.R., 2006. The role of pheophorbide a
2	oxygenase expression and activity in the canola green seed problem. Plant Physiol. 142:
3	88–97.
4	Costa, L., Vicente, A.R., Civello, P.M., Chaves, A.R., Martínez, G.A., 2006a. UV-C
5	treatment delays postharvest senescence in broccoli florets. Postharvest Biol. Technol.
6	39, 204–210.
7	Costa, M.L., Civello, P.M., Chaves, A.R., Martínez, G.A., 2005. Effect of ethephon and 6-
8	benzylaminopurine on chlorophyll degrading enzymes and a peroxidase-linked
9	chlorophyll bleaching during post-harvest senescence of broccoli (Brassica oleracea
10	L.) at 20 °C. Postharvest Biol. Technol. 35, 191–199.
11	Costa, M.L., Civello, P.M., Chaves, A.R., Martínez, G.A., 2006b. Hot air treatment decreases
12	chlorophyll catabolism during postharvest senescence of broccoli (Brassica oleracea L.
13	var. italica) heads. J. Sci. Food Agric. 86, 1125–1131.
14	Erkan, M., Wang, S.Y., Wang, C.Y., 2008. Effect of UV treatment on antioxidant capacity,
15	antioxidant enzyme activity and decay in strawberry fruit. Postharvest Biol. Technol.
16	48, 163–171.
17	Fukasawa, A., Suzuki, Y., Terai, H., Yamauchi, N., 2009. Effects of postharvest ethanol
18	vapor treatment on activities and gene expression of chlorophyll catabolic enzymes in
19	broccoli florets. Postharvest Biol. Technol. 55, 97-102.
20	Funamoto, Y., Yamauchi, N., Shigenaga, T., Shigyo, M., 2002. Effects of heat treatment on
21	chlorophyll degradation enzymes in stored broccoli (Brassica oleracea L.). Postharvest
22	Biol. Technol. 24, 163–170.

1	Harpaz-Saad, S., Azoulay, T., Arazi, A., Ben-Yaakov, E., Mett, A., Shiboleth, Y.M.,
2	Hörtensteiner, S., Gidoni, D., Gal-On, A., Goldschmidt, E.E., Eyal, Y., 2007.
3	Chlorophyllase is a rate-limiting enzyme in chlorophyll catabolism and is
4	posttranslationally regulated. Plant Cell 19, 1007–1022.
5	Heaton, J.M., Marangoni, A.G., 1996. Chlorophyll degradation in processed foods and
6	senescent plant tissues. Trends in Food Sci. Technol. 7, 8–15.
7	Johnson-Flanagan, A.M., McLachlan. G., 1990. The role of chlorophyllase in degreening
8	canola (Brassica napus) seeds and its activation by sublethal freezing. Physiol. Plant 80,
9	460–466.
10	Kaewsuksaeng, S., Yamauchi, N., Funamoto, Y., Mori, T., Shigyo, M., Kanlayanarat, S.
11	2007. Effect of heat treatment on catabolites formation in relation to chlorophyll
12	degradation during storage of broccoli (Brassica oleracea L. italica group) florets. J.
13	Japan Soc. Hort. Sci. 76, 338–344.
14	Kuroda, M., Ozawa, T., Imagawa, H., 1990. Changes in chloroplast peroxidase activities in
15	retention to chlorophyll loss in barley leaf segments. Physiol. Plant 80, 555–560.
16	McFeeters, R.F., Chichester, C.O., Whitaker, J.R., 1971. Purification and properties of
17	chlorophyllase from Ailanthus altissima (Tree-of heaven). Plant Physiol. 47, 609-618.
18	Martínez, G.A., Civello, P.M., Chaves, A.R., Añón, M.C., 2001. Characterization of
19	peroxidase-mediated chlorophyll bleaching in strawberry fruit. Phytochemistry 58,
20	379–387.
21	Matile, P., Hörtensteiner, S., Thomas, H., 1999. Chlorophyll degradation. Annu. Rev. Plant
22	Physiol. Plant Mol. Biol. 50, 67–95.

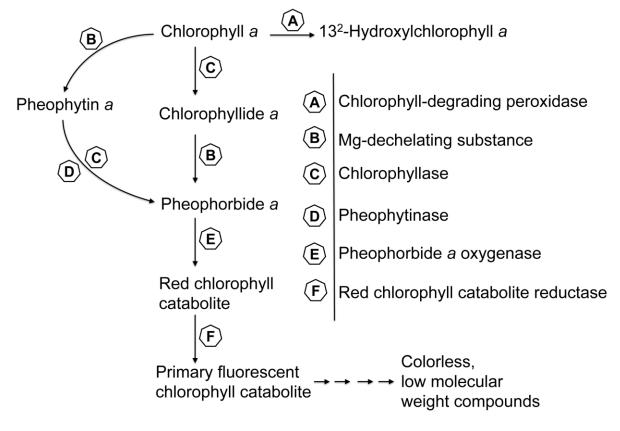
1	Mínguez-Mosquera, M.I., Gandul-Rojas, B., Gallardo-Guerrero, L., 1994. Measurement of
2	chlorophyllase activity in olive fruit (Olea europaea). J. Biochem. 116, 263-268.
3	Moran, R., 1982. Formulae for determination of chlorophyllous pigments extracted with N,N-
4	dimethylformamide. Plant Physiol. 69, 1376-1381.
5	Okazawa, A., Tang, L., Itoh, Y., Fukusaki, E., Kobayashi, A., 2006. Characterization and
6	subcellular localization of chlorophyllase from Ginkgo biloba. Z. Naturforsch. C. 61,
7	111–117.
8	Perkins, H.J., Roberts, D.W., 1962. Purification of chlorophylls, pheophytins and
9	pheophobides for specific activity determinations. Biochim. Biophy. Acta. 58, 486–498.
10	Pružinská, A., Tanner, G., Anders, I., Roca, M., Hörtensteiner, S., 2003. Chlorophyll
11	breakdown: Pheophorbide a oxygenase is a rieske-type iron-sulfur protein, encoded by
12	the accelerated cell death 1 gene. Proc. Natl. Acad. Sci. USA 100, 15259–15264.
13	Roca, M., Minguez-Mosquera, M.I., 2003. Involvement of chlorophyllase in chlorophyll
14	metabolism in olive verities with high and low chlorophyll content. Physiol. Plant 117,
15	459–466.
16	Schelbert, S., Aubry, S., Burla, B., Agne, B., Kessler, F., Krupinska, K., Hortensteiner, S.,
17	2009. Pheophytin pheoporbide hydrolase (pheophytinase) is involved in chlorophyll
18	breakdown during leaf senescence in Arabidopsis. Plant Cell 21, 767-785.
19	Shioi, Y., Tomita, N., Tsuchiya, T., Takamiya, K., 1996. Conversion of chlorophyllide to
20	pheophobide by Mg-dechelating substance in extracts of Chenopodium album. Plant
21	Physiol. Biochem. 34, 41–47.

1	Starzyńska, A., Leja, M., Mareczek, A., 2003, Physiological changes in the antioxidant
2	system of broccoli flower buds senescing during short-term storage, related to
3	temperature and packaging. Plant Sci. 165, 1387–1395.
4	Tang, L., Okazawa, A., Fukusaki, E., Kobayashi, A., 2000. Removal of magnesium by Mg-
5	dechelatase is a major step in chlorophyll-degrading pathway in Ginko biloba in
6	process of autumnal tints. Z. Naturforsch. C. 55, 923–926.
7	Vavilin, D.V., Vermaas, W.F.J., 2002. Regulation of tetrapyrrole biosynthetic pathway
8	leading to heme and chlorophyll in plants and cyanobacteria. Physiol. Plant 115, 9–24.
9	Yamauchi, N., Watada, A.E., 1998. Chlorophyll and xanthophyll changes in broccoli florets
10	stored under elevated CO ₂ or ethylene-containing atmosphere. HortScience 33, 114–
11	117.
12	Yamauchi, N., Funamoto, Y., Shigyo, M., 2004. Peroxidase-mediated chlorophyll
13	degradation in horticultural crops. Phytochem. Rev. 3, 221–228.
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	

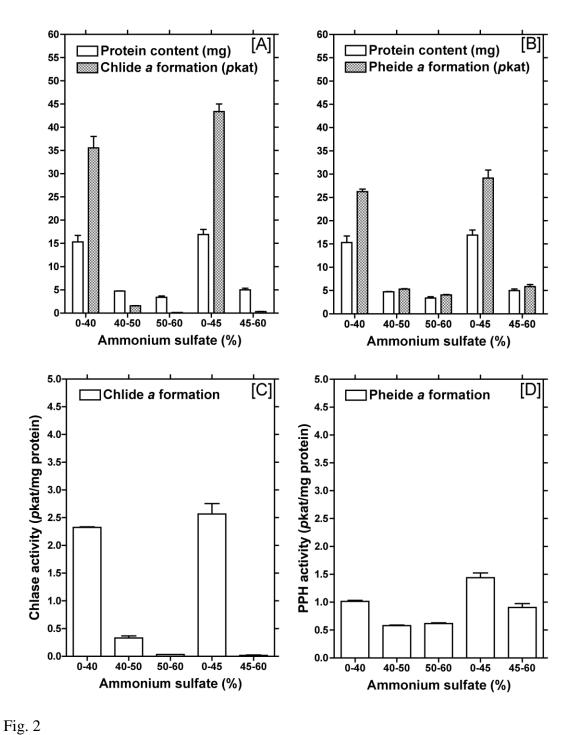
2	Figure	captions;
---	--------	-----------

3

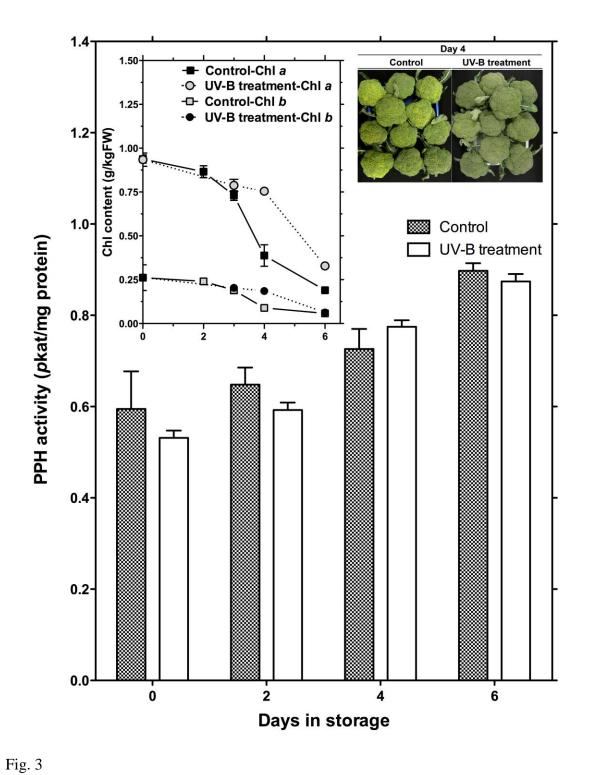
4 F	Fig. 1.	Putative	pathway	of chlore	ophyll d	legradatio	n
-----	---------	----------	---------	-----------	----------	------------	---

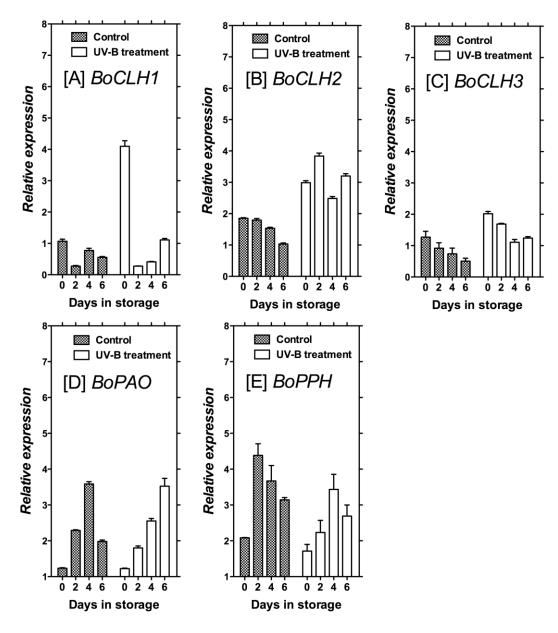

- 5 Fig. 2. Protein fractions and formation of Chlide *a* and Pheide *a* by ammonium sulfate
- 6 precipitation. Each fraction was precipitated by 0–40%, 40–50%, or 50–60% as a first
- 7 separation and 0–45% and 45–60% as a second separation (A and B). The formations of
- 8 Pheide *a* by Chlase and PPH and Chlide *a* by Chlase: A, total Chlide *a* formation: B, total
- 9 Pheide *a* formation: C, Chlide *a* formation per mg protein: D Pheide *a* formation per mg
- 10 protein. Vertical bars represent average values with \pm SE (n = 3)
- 11 Fig. 3. Changes of PPH activity, Chl a and b contents in broccoli florets with or without UV-
- 12 B treatment (19 kJ m⁻²) during storage at 15 °C. Vertical bars represent average values with \pm

13 SE (n = 3).


- 14 Fig. 4. Relative expression as measured by qRT-PCR of BoCLH1 (A), BoCLH2 (B), BoCLH3
- 15 (C), BoPAO (D) and BoPPH (E) in broccoli florets with or without UV-B treatment (19 kJ
- 16 m^{-2}). Vertical bars represent average values with \pm SE (n = 3).
- 17

Properties	Pheophytinase	Chlorophyllase		
	Phy a	Chl a	Phy a	
<i>Km</i> (μM)	15.89	14.54	18.18	
V <i>max</i> (<i>p</i> kat)	7.82	2826	7.69	
Vmax/Km	0.49	194.09	0.43	


1 Table 1. Kinetic constants corresponding to Chl *a* and Phy *a* of PPH and Chlase.



 $\frac{1}{2}$

