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ABSTRACT 

The formation of trigonal Form I crystals of polybutene-1 (PB-1) directly from 

melt has drawn much attention in past decades. In this study, we investigate the 

fractionated crystallization behavior of PB-1 within microdomains formed by 

blending PB-1 with an excess of isotactic polypropylene (iPP) employing DSC, SEM, 

in situ synchrotron WAXD and FTIR. When PB-1 is dispersed into a large number of 

small size droplets, the heterogeneous nucleation of Form II crystals can be inhibited 

because the number of droplets is larger than that of active nucleation sites for Form 

II (i.e., active heterogeneities originally present in bulk PB-1). The crystallization rate 

of Form I at different temperatures was determined by Fourier transform infrared 

spectroscopy. It was found that trigonal Form I crystallizes faster when the content of 

PB-1 in the blend is lower, and the specific interfacial surface area is larger. The 

opposite effect has been observed for the kinetics of the metastable Form II formation. 

It is therefore suggested that Form I crystallization is driven by the nucleation of 

PB-1 at the crystalline iPP surface, which competes with the crystallization of Form II 

induced by nucleating heterogeneities present in PB-1 droplets. 
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INTRODUCTION 

Semicrystalline polymers can show various nucleation paths depending on 

crystallization conditions and dispersion state. Two main types of nucleation, i.e., 

heterogeneous and homogeneous, are generally recognized.
1-3 Most polymers contain 

heterogeneities that can account for triggering nucleation at relatively low 

supercoolings, when polymers are cooled from the melt. The energy barrier for 

heterogeneous nucleation is smaller than that associated with the creation of 

homogeneous nuclei by spontaneous chain assembly, therefore, most polymers in the 

bulk state only undergo heterogeneous nucleation.  

However, the crystallization ability of polymers can significantly change when they 

are dispersed in microdomains (MDs).
4, 5

 In this case, fractionated crystallization or a 

large depression in crystallization temperature can occur. In fact, bulk polymers 

normally crystallize from the melt in a relatively narrow crystallization temperature 

range as reflected by a single exothermic peak during a DSC cooling run. However, 

when the same polymer is dispersed into fine droplets in an immiscible matrix, 

several crystallization peaks can arise during cooling from the melt, which is 

interpreted as the “fractionated” crystallization of different crystal populations 

nucleated at distinct supercoolings. Fractionated crystallization usually occurs when 

the number of MDs is comparable to the number of nucleating heterogeneities 

originally present in the bulk sample. During polymer blending, several populations 

of droplets are generated, which can be free of any heterogeneity or contain the 

different types of them. When the number of MDs is much larger than that of active 

heterogeneities, only one exothermic peak appears at a very large supercooling. In this 

case, clean droplets have been generated by blending that can be homogeneously 

nucleated, or nucleated at the interface with the second polymer.
6
  

In recent years, a variety of methods have been proposed to create confined 

environments, including the synthesis of block copolymers,
7-15

 dewetting the polymer 

melt into droplets,
16, 17

 and infiltration of polymeric samples within anodic aluminum 

oxide (AAO) templates.
2, 18-21

 However, blending immiscible polymeric materials 



remains an easy and convenient way to obtain droplet dispersions.
2, 6, 22, 23

  

The size and distribution of the MDs strongly depend on the composition of the 

immiscible blends and the blending strategy. Typically, fractionated crystallization 

will occur when the amount of dispersed phase is small enough (30 wt% or less).
2, 3

 

Many systems have been studied in the past several decades, for instance polyamide 

6/poly (vinylidene fluoride),
4
 poly (butylene terephthalate)/poly(vinylidene fluoride), 

poly(3-hydroxybutyrate)/poly(ethylene oxide),
24

 polyamide 6/polypropylene,
25

 

polyolefins/polyamide 6,
26

 and polystyrene/polyamide 6.
27-30

  

Arnal et al.
6 

systematically studied the fractionated crystallization process of 

isotactic polypropylene (iPP) blended with polystyrene (PS) and found up to four 

exothermic peaks corresponding to the iPP droplets, which were attributed to the 

distribution of different types of active heterogeneities in different MDs together with 

the nucleation of the supposedly clean droplets at maximum supercooling. The 

addition of a compatibilizing agent could reduce the droplet size (while vastly 

increasing their number), thus leading to a single crystallization exotherm at 

extremely large supercooling, that was attributed to the nucleation and crystallization 

of clean droplets. On the other hand, if the iPP droplets were self-nucleated, active 

self-seeds could be injected into every droplet with the total disappearance of the 

fractionated crystallization and the crystallization of iPP in a single exotherm located 

at very low supercoolings.  

Tol et al.
27

 found that polyamide 6 could crystallize into different polymorphs if it 

was dispersed as small sized droplets blended with PS, e.g., the stable γ form of 

polyamide 6 could be formed when the size of MDs decreased to 1-10 μm.  

Isotactic polybutene-1 (PB-1) is a well-known polyolefin, characterized by a 

complex polymorphic behavior.
31, 32

 There are at least four crystal modifications 

(Forms I, I, II and III) with different chain conformations.
33-37

 Form I is a trigonal 

structure with 31 helices and maximum thermodynamic stability, and is normally 

obtained by a spontaneous slow transition from Form II, which occurs in the solid 

state also at room temperature.
38, 39

 The metastable Form II (tetragonal) with 113 

helices is normally obtained by cooling from the melt. In addition, Form I shows the 



same crystal structure as Form I, but has a lower melting temperature (90-100 
o
C). 

Obtaining Forms I and I directly from the melt has attracted recent attention.  

Cavallo et al.
40-44

 found that small amounts of Form I can be produced by 

self-nucleation (SN) inside Form I spherulites when the SN temperature is not very 

high. Ji and co-workers
45

 successfully obtained Form I crystals by mixing PB-1 with 

an iPP of low tacticity. Zhang et al.
46

 reported that single crystals of Form I could be 

obtained by isothermal crystallization from the melt for 5 days in ultrathin films at110 

o
C. Shieh et al.

47
 indicated that Form I crystals could be easily formed when PB-1 is 

blended with iPP, but the formation mechanism of Form I was not investigated 

in-depth. 

Therefore, the main aim of the present work is to systematically explore the 

crystallization behavior of PB-1 blended with iPP, to enlighten the crystallization 

mechanism of Form I in small PB-1 droplets. It was found that Form II can be 

effectively suppressed when PB-1 is dispersed into small droplets within an iPP 

matrix, while Form I can be generated during fractionated crystallization. These 

results indicate that the presence of iPP crystals at the PP/PB-1 blends interface plays 

an important role in the formation of Form I. 

 

EXPERIMENTAL SECTION 

An isotactic polybutene-1 (trade name: PB0110M) with a weight average molecular 

weight of 6.4× 105 kg/mol was purchased from Lyondell Basell Industries. The iPP 

sample (trade name: S1003) with a weight average molecular weight of 4.0×

105 kg/mol was kindly supplied by SINOPEC Beijing Yanshan Company.  

The pellets of iPP and PB-1 were melt blended at 200 
o
C using an internal mixer 

(Haake Rheomix OS) at a rotating speed of 50 rpm for 5 min. The PB-1 content in the 

blends was 10, 20, 25, 30, 35, and 40 wt%. Correspondingly, the blends were labeled 

as PP/PB 90/10, 80/20, 75/20, 70/30, 65/35, and 60/40, respectively. Neat iPP and 

PB-1 samples were subjected to the same treatment in the internal mixer for 

comparison. 



The morphology of the PP/PB-1 blends was observed with a JEOL JSM-6700F 

scanning electron microscope (SEM). Each sample was first melted at 250 
o
C for 5 

min or 12 h, the latter annealing performed in order to examine the miscibility 

between the two polymers, and then cooled down to room temperature at a rate of 10 

o
C/min. The prepared specimens were cryo-fractured by immersing in liquid nitrogen. 

Then the samples were etched by xylene at 60 
o
C for 15 min to better examine the 

size and distribution of MDs. 

The thermal behavior of the samples was characterized by differential scanning 

calorimetry (DSC, Q2000, TA Instruments) under nitrogen atmosphere calibrated with 

indium. In the non-isothermal scans, the samples were first heated to 250 
o
C for 3 min 

to erase thermal history and then cooled to 30 
o
C at different rates (0.5 

o
C/min and 10 

o
C/min), followed by heating to the final temperature of 200 

o
C at 10 

o
C/min.  

The isothermal crystallization was explored by the DSC thermal protocol shown in 

Figure 1a. All samples were first quenched from 250 
o
C to 125 

o
C at 30 

o
C/min and 

held at 125 
o
C for 60 min to crystallize iPP completely, and then quenched to different 

temperatures (65, 70, 75, 80 and 85 
o
C) for 3 h to guarantee complete crystallization 

of the blend samples, followed by heating to 200 
o
C directly. 

The self-nucleation (SN) test was designed as shown in Figure 1b. The samples 

were heated to 250 ºC and kept for 3 min at this temperature to erase thermal history. 

Then the samples were cooled at 10 ºC/min down to 30 
o
C, in order to provide a 

standard thermal history, followed by heating at 10 ºC/min up to the chosen SN 

temperature or Ts, where the sample was kept for 5 min, and during this time period 

the samples were completely melted, self-nucleated or self-nucleated and annealed, 

depending on the value of Ts. The samples were then cooled at 10 ºC/min from Ts 

down to 30 ºC. Finally, the samples were heated to 200 ºC. 
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Figure 1. DSC thermal protocols applied for isothermal crystallization (a) and 

self-nucleation (b). 

 

In situ synchrotron wide-angle X-ray diffraction (in-situ WAXD) experiments were 

performed at BL14B Beamline in Shanghai Synchrotron Radiation Facility (SSRF). 

Samples (80/20 and 70/30) were selected and wrapped with a piece of thin aluminum 

foil. Temperature control was applied with a Linkam 600 hot stage. The samples were 

first heated to 250 
o
C and kept for 3 min at that temperature to erase thermal history, 

and then cooled at a rate of 0.5 
o
C/min. WAXD patterns were collected during the 

cooling process. In order to avoid thermal degradation, all thermal treatments were 

carried out under N2 atmosphere. The distance between the samples and detector was 

423.8 mm and the X-rays wavelength was 1.24 Å.   

WAXD experiments were also carried out on a Xeuss 2.0 system of Xenocs (France) 

with a Cu Kα source (wavelength =1.54 Å) and a sample to detector distance of 140.2 

mm. Scattering patterns were collected by a semiconductor detector (Pilatus 300K, 

DECTRIS, Swiss) with a resolution of 487×619 pixels (pixel size =172 μm
2
). Each 

WAXD pattern was collected for 15 min and the one-dimensional intensity profiles 

were integrated using the standard procedure after background subtraction. 

Fourier transform infrared (FT-IR) spectra were recorded using a Nicolet 6700 

spectrometer equipped with a Linkam FTIR600 hot stage. The samples were first 

heated to 250 
o
C for 5 min, and then quenched to 125 

o
C and kept at this temperature 

for 60 min, followed by rapidly cooling (30 
o
C/min) to differently isothermal 

crystallization temperatures (85 
o
C with a small amount of Form II crystals). FT-IR 

spectra with a resolution of 4.0 cm
-1

 and 16 scans were collected during the 



isothermal crystallization. All IR spectra were baseline corrected according to the 

same standard procedure.
48

  

 

RESULTS AND DISCUSSION 

Phase separated morphology of the PP/PB-1 blends.  

It has been shown that the crystallization behavior of a semi-crystalline polymer 

changes when it is finely dispersed in the matrix of another polymer,
2, 3

 therefore, it is 

very important to obtain the information on the miscibility of two components, as this 

will determine the morphology of the material. 

The phase behavior of PP/PB-1 blends has been studied before, but there is no 

consensus in the literature so far.
49

 Bartczak et al.
50

 reported phase separation of iPP 

and PB-1 blends after thermal treatment at high temperature (220 
o
C) or long time 

annealing, according to SEM observations. Ji et al.
45

 indicated that a low tacticity 

polypropylene/PB-1 blend prepared by solution mixing can separate into two phases 

at high temperatures during a short period of time, after which it merges into one.  

It seems that the chain structure and molecular weight have an important influence 

on the miscibility of PP/PB-1 blend. In the present case, the PP/PB-1 blends always 

display phase separation even after annealing at 250 
o
C for 12 h (Figure S1). Similar 

results were summarized by White et al.
51

 in a review paper. They indicated that iPP 

and PB-1 are partially miscible and can separate into two phases below 250 
o
C. 

SEM micrographs of the PP/PB-1 blends with different content ratios are shown in 

Figure 2. The micrographs reveal a sea-island morphology, typical of immiscible 

blends. The immiscibility of the blends was also confirmed by the constant values of 

the melting points of both phases, which were independent of composition (see Figure 

3 and its discussion below). The average number and volume diameter (dn and dv), 

dispersity (D), volume fraction of dispersed phase (Xv) and average particle number 

per 𝑐𝑚3 (𝑁𝑖) shown in Table 1 were calculated according to equations proposed in 

the literature,
6
 by measuring more than 100 particles. As the content of PB-1 in the 

blends increased from 10 wt% to 40 wt%, the average size of droplets increased from 



0.19 μm to 15.45 μm, and the Ni value reduced from 2.80× 1014/𝑐𝑚3 to 2.08×

108/𝑐𝑚3.  

 

 
Figure 2. SEM micrographs of the PP/PB-1 blends: (a) 90/10, (b) 80/20, (c) 70/30, (d) 60/40. 

Scale bar: 5 μm. 

 

Table 1. Morphological characterization of PP/PB-1 blends 

PP/PB-1 dn (μm) dv (μm) D Xv Ni (cm
-3

) 

90/10 0.19 0.27 1.45 0.1005 2.80×10
14

 

80/20 0.49 0.95 1.95 0.2004 3.18×10
12

 

70/30 1.51 7.95 5.27 0.3012 1.46×10
11

 

60/40 15.45 18.68 1.21 0.4013 2.08×10
8
 

 

Fractionated crystallization behavior: non-isothermal crystallization.  

Figure 3 shows the DSC cooling and heating curves of PP/PB-1 samples at 10 

o
C/min. The peak crystallization and melting temperatures of neat PB-1 are 76.5 

o
C 

and 116 
o
C, corresponding to the crystallization and melting of PB-1 Form II, 



respectively.  

The crystallization behavior of PB-1 significantly changes in the blends. In the case 

of PP/PB-1 60/40 and 65/35 blends, the exotherms around 115 ºC are due to the 

crystallization of the iPP matrix, while the PB-1 droplets crystallize at 81 
o
C, which is 

5 
o
C above the crystallization temperature of neat PB-1. Hence, iPP is capable of 

nucleating the PB-1 Form II crystals. The size of droplets is quite large in this case 

(dn=15. 5 μm).  

As the content of PB-1 decreases to 30 wt% (Figure 3a), the crystallization peak 

corresponding to the PB-1 droplets develops a low-temperature shoulder at about 72 

ºC. When the PB-1 is dispersed into smaller droplets (dn≈0.5 μm), the crystallization 

exotherm shifts to approximately 72 ºC and displays a single but broader peak (as 

compared to samples with 35-40 wt%). In the subsequent DSC heating traces of 

Figure 3b, a new melting peak at lower temperatures appears at approximately 92 ºC, 

indicative of the formation of Form I.
47

 Therefore, micrometer sized PB-1 droplets in 

blends with 25-30 wt% i-PP apparently crystallize into Form I. During the 

subsequent heating, those Form I crystals melt and recrystallize into Form II crystals.  

Additionally, when the 70/30 sample was cooled at a slower rate (0.5 
o
C/min), the 

bimodal exothermic peak was observed to split into two well-separated peaks (Figure 

S2), a typical feature of fractionated crystallization in immiscible polymer blends.
5, 6

 

The higher temperature exotherm is attributed to the crystallization of a droplet 

population nucleated by heterogeneities, since its peak crystallization temperature is 

identical to that of the PB-1 droplets of the 60/40 or 65/35 blends. The second 

exotherm, located at peak temperatures lower than that of neat PB-1, probably 

corresponds to a population of droplets with smaller sizes, which crystallize into Form 

I. Table 1 shows that the blends exhibit a wide dispersion of droplet sizes. 

 



 

Figure 3. DSC cooling curves (a) and heating (b) curves of PP/PB-1 blends at 10 
o
C/min. 

 

Two samples, 70/30 and 80/20, were selected to perform in situ synchrotron 

WAXD experiments during cooling (Figure 4). The reflections observed at 2θ values 

of 11.4
o
, 13.6

o
, 14.9

o
, 17.2

o
 and 17.6

o
 correspond to the (110), (040), (130), (131) and 

(041) crystallographic planes of α-iPP, respectively. The reflections at 8.0
o
, 13.9

o
 and 

16.47
o
 belong to (110), (130), and (220+211) crystal planes of PB-1 in Form I, 

respectively. The peaks at 9.58
o
, 13.59

o
 and 14.71

o
 are instead assigned to (200), (220), 

and (213+311) planes of Form II, respectively. Usually, the diffractions of (110)I and 

(200)II are used to distinguish between the PB-1 polymorphs.
32, 45, 52

  

 

 

Figure 4. In situ WAXD patterns for PP/PB-1 blends 80/20 (a) and 70/30 (b) during 

cooling at 0.5 
o
C/min.  

 

Figure 4a shows that PB-1, within the 80/20 blend, crystallizes exclusively into 

Form I at a slow cooling rate of 0.5 
o
C/min. On the other hand, both Form I and II 



are formed when the content of PB-1 increases to 30 wt% in the blends (Figure 4b). It 

is interesting to note that Form II appears at a relatively high temperature (95 
o
C), 

while Form I emerges at a lower temperature (75 
o
C). These observations support the 

interpretation of the origin of the two exothermic peaks in Figure S2, i.e., the higher 

temperature one corresponds to the crystallization of Form II, while the one at lower 

temperatures is related to the crystallization of PB-1 into Form I. These results 

further suggest that two kinds of nucleation mechanisms are active in different droplet 

populations of PB-1 dispersed in iPP matrix, and that they favor the formation of two 

different crystalline phases. 

 

The dependence of crystal forms of PB-1 on crystallization temperature. 

After isothermal crystallization of the iPP matrix at 125 °C, the samples were 

quenched to different temperatures in order to isothermally crystallize the PB-1 

component in the blends. The WAXD profiles of PP/PB-1 80/20 after isothermal 

crystallization at different temperatures are shown in Figure 5, together with the 

relative amount of Form I and Form II, as determined by the equations proposed by 

Turner-Jones
35

: 

𝑋𝐼 = 𝐼(110)
𝐼′

/𝐼(110)𝛼
          (1) 

𝑋𝐼𝐼 = 𝐼(200)𝐼𝐼
/𝐼(110)𝛼

         (2) 

WAXD data confirmed the presence of Form I at all the different crystallization 

temperatures. In particular, the content of Form I increases gradually, with decreasing 

supercooling, while the amount of Form II correspondingly decreases. In other words, 

higher isothermal crystallization temperatures are beneficial for the formation of PB-1 

Form I in the PP/PB-1 blends.  



  

Figure 5. WAXD patterns (left) and relative content variation of Form I and Form II (right) 

in 80/20 blend after isothermal crystallization at different temperatures. All samples were first 

isothermally crystallized at 125 
o
C for 60 min. 

 

The DSC heating scans obtained after isothermal crystallization of the PB-1 

dispersed phase in the same temperature range are reported in Figure 6. A single 

melting peak corresponding to Form I was observed at higher crystallization 

temperatures, while the melting endotherm relative to Form II becomes more and 

more evident as the supercooling is increased. Form I crystallized at 70 and 65 
o
C 

display the signature of melting and reorganization, probably due to the formation of 

low stability crystals. Furthermore, the melting temperature of Form I increases with 

increasing isothermal crystallization temperature of PB-1, as expected.  

According to Müller et al,
1-3, 5

 if the polymer is in the bulk state or the size of the 

droplets is large enough, the existing heterogeneities can act as nucleants at relatively 

high temperature (lower supercooling). Otherwise, the heterogeneous nucleation of 

polymer droplets will be largely suppressed. In the current PP/PB-1 blends, it appears 

that two kinds of nucleation paths compete with each other, when PB-1 is dispersed 

into a large number of small droplets, and this competition depends on the nuclei 

supercooling/nucleation density. It is well known that a higher number of 

heterogeneities or nucleation sites get activated with decreasing undercooling, due to 

the supercooling dependent critical size of the crystallization nuclei. Considering the 

PB-1 droplets, a smaller amount of heterogeneous nuclei are supposed to be active at 

the highest crystallization temperature (80-85 °C), as compared to higher 

supercoolings. Therefore, the observed crystallization temperature dependence of the 



polymorphic composition in the isothermally crystallized PB-1 droplets can be 

tentatively attributed to a different nucleation mechanism of the two polymorphs.  

 

 
Figure 6. The heating process of 80/20 sample at 10 

o
C/min, after isothermal crystallization 

at the indicated different temperatures. The i-PP phase was first isothermally crystallized at 

125 
o
C for 60 min. 

 

We can assume that the crystallization of Form II starts from the original 

heterogeneities present in bulk PB-1, while Form I is generated at the interface 

between PB-1 melt and solid iPP. The two nucleation paths are in competition: at high 

temperatures, the Form II nucleation ability of the present heterogeneities is less 

important in comparison to the iPP surface nucleation efficiency towards Form I. As 

such, a substantial amount of Form I can form and fill the droplet before Form II can 

develop to a large extent. The low amount (or low efficiency) of Form II nucleating 

impurities in the dispersed PB-1 droplets is also testified by the absence of Form II 

re-crystallization upon heating, after Form I melting (see Figure 6, heating after 

crystallization at 80 and 85 °C), contrary to what is commonly observed in bulk 

samples. On the other hand, at higher supercooling, Form II nucleation in the droplets 

containing impurities can occur more easily and profusely, due to the lowered energy 

barrier for nuclei formation, and thus compete again with the weakly Form I 

nucleating iPP interface. 

In order to support the above described competitive nucleation mechanism, the role 

of PB-1 droplets self-seeding and the dependence of the polymorphic crystallization 

kinetics on the specific interfacial area between the two polymers will be addressed 



below. 

 

The influence of active nuclei injection on the polymorphism of PB-1.  

Given the large concentration of PB-1 droplets in the 80/20 blend with iPP, it is 

reasonably deduced that the crystallization of PB-1 can be enhanced only when a 

comparable number of active heterogeneities per unit volume are introduced in the 

blend.
6, 27

 The self-nucleation procedure is the most efficient way to induce a large 

quantity of active nuclei in a crystallizing polymer melt. 

DSC curves for cooling and heating processes of the 80/20 blend self-nucleated at 

different temperatures are shown in Figure 7. Three self-nucleation domains can be 

identified (Domains I, II, III).
43

  

 

  

Figure 7. DSC cooling (a) and heating (b) curves of PP/PB-1 80/20 after self-nucleation at 

different Ts at 10 
o
C/min. Red: Domain I, blue: Domain II, green: Domain III. 

 

As the Ts value decreases to 118 
o
C (Domain II) or 117 

o
C (Domain III), a small 

exothermic peak appears gradually upon cooling from the melt at around 98 
o
C. The 

presence of two crystallization peaks is different from what is commonly observed in 

the self-nucleation test of bulk polymers,
5
 which may be ascribed to the small droplet 

size. Most probably, not all the MDs are self-nucleated at the specific temperature, 

since the dispersed droplets are effectively independent from one another. Therefore, 

self-nuclei only remain in some of the PB-1 droplets, at a given temperature. Similar 

results have been reported for the MDs crystallization within block copolymers and 

PS/PA6 blends system.
9, 27

 The high temperature crystallization peak can be attributed 



to the development of Form II. In fact, the subsequent heating scans reveal a large 

decrease of the Form I fraction. Self-nuclei are expected to be inside the droplets, and 

thus favor the development of Form II, which crystallizes faster at these superccolings, 

preventing interfacial nucleation of Form I to occupy a large fraction of the domains. 

 

FT-IR study of crystallization kinetics of the different polymorphs:  

interfacial nucleation mechanism of PB-1 Form I crystals.   

FT-IR is a sensitive tool to characterize polymer chain conformations.
48

 For PB-1, 

the typical absorption bands at 923 cm
-1

 and 905 cm
-1

 are usually adopted to 

differentiate the 31 helices and 113 helices belonging to Form I and Form II, 

respectively.
44, 45, 53, 54

 Thus, the isothermal crystallization of the two polymorphs can 

be easily probed in situ via FT-IR spectroscopy.  

Figure 8 reports the data acquired for the PP/PB 80/20 blend crystallized at 85 °C. 

Both original and differential spectra, after subtraction of the initial spectrum at the 

beginning of the isotherm, are presented. While the increase of the absorbance of 923 

cm
-1

 band in time is clearly deduced from the raw spectra, the variation of the 905 

cm
-1

 band can hardly be distinguished, because of its overlap with the strong 899 cm
-1

 

band of iPP (Figures 8a and 8c). 
48, 55

 In order to detect the increases in intensity of the 

905 cm
-1

 band, relative to the crystallization of Form II, the corresponding differential 

spectra should be considered (Figure 8b and 8d).  

The absorbance of the 923 cm
-1

 and 905 cm
-1

 bands in the 80/20 sample at different 

temperatures versus time is shown in Figure S3. The variation of the 905 cm
-1 

band 

can be equilibrated within 3 min even at relatively high temperatures (85 
o
C), which 

means that the crystallization process of the relatively small amount of Form II is very 

fast and reaches saturation at the early stage of the process, while the formation of 

Form I continues for more than 40 min.
56, 57
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Figure 8. Time-resolved FT-IR spectra (a, b) and the corresponding differential spectra (c, d) 

of 80/20 sample isothermally crystallized at 85 
o
C and 80 

o
C. The spectra of the blends are 

stacked every 30 s. 

 

In order to investigate the effect of the polymer/polymer interface on the formation 

of Form I crystals, the crystallization kinetics in blends with composition 70/30, 

80/20 and 90/10 was studied. The absorbance of the 923 cm
-1

 band (Form I) in 80/20 

and 90/10 samples is summarized in Figures 9a and 9c. The crystallization rate of 

Form I in the 90/10 sample is distinctly faster than that of the 80/20 sample, for both 

considered crystallization temperatures. This observation is difficult to be concealed 

with a crystallization kinetics dominated by nucleating heterogeneities dispersed in 

the droplets. Indeed, the higher amount of (smaller) droplets in the 90/10 blends as 

compared to the 80/20 systems, should result in “cleaner” PB-1 domains in the former 

case, leading to a slower crystallization kinetics for a given undercooling. 

This situation has been in fact observed for the intensity variation of the 905 cm
-1

 

band in the 70/30 and 80/20 samples (Figures 9b and 9d), reflecting the crystallization 

rate of Form II. While the effect of composition is not noticeable in samples 



crystallized at 85 °C, at slightly lower supercooling (i.e., Tc=87 ºC) the crystallization 

kinetics of Form II in the 70/30 sample becomes faster than that in the 80/20 blends. 

This is expected if one considers that with a larger volume of each dispersed domain, 

the probability of finding droplets containing Form II nucleating heterogeneities is 

higher. 

  

 

Figure 9.  Variation of the absorbance of 923 cm
-1 

(a, c)
 
and 905 cm

-1
 (b, d) band in PP/PB 

blends as a function of crystallization time at the indicted crystallization temperatures. 

 

On the other hand, the faster crystallization of Form I in the blend with the lower 

amount of PB-1, supports the idea that the nucleation of this polymorph actually 

occurs at the interface between molten PB-1 droplet and solid iPP. In fact, on the basis 

of the morphological results summarized in Table 1, the total content of the 

polymer/polymer interface per unit volume is 1.10×10
13

 μm
2
/cm

3
 and 2.90×10

14
 

μm
2
/cm

3 
for the 80/20 and 90/10 blends, respectively. 

Considering the well-known similarities between iPP -phase and PB-1 Form I 

crystals, which share the same 31 helix and c-axis length of 6.5 Å,
58

 we can speculate 

that solid iPP surface can serve as an optimum substrate for crystallization of PB-1 

trigonal phase.  



 

Figure 10. A simplified model describing the competition of Form II and Form I 

crystallization in the PB-1 dispersed droplets within a blend with iPP matrix (i.e., 80/20 

iPP/PB-1 blend). 

 

On the basis of the above discussed FT-IR results, which corroborate the hypothesis 

of a different nucleation mechanism for the two polymorphs, the interpretation of the 

crystallization temperature-dependent polymorphism, highlighted in Figures 5 and 6, 

can be described schematically in Figure 10.  

When the sample crystallizes at relatively high temperatures (e.g., 85 
o
C, Figures 

10b and 10b), nucleation of Form II on heterogeneities contained in the droplet is 

relatively slow, thus only a small number of droplets can give rise to the trigonal 

polymorph, while most of the droplets can be considered effectively “clean” from 

heterogeneous nuclei. In this situation, Form I nucleated at the droplet/matrix 

interface can grow even at a slow pace, until all the droplets are saturated.  

With the decrease of Tc (75 
o
C, Figures 10c and 10c), Form II nucleation on the 

present heterogeneities becomes faster and part of the droplets ensemble will be 

occupied by Form II crystals already at a very early stage. As such, Form I can only 

grow in the remaining “clean” droplets. The neat result is an increment of the Form II 

fraction in the crystallized sample.  

Upon further increase of the undercooling (Figures 10d and 10d), only a minor 



amount of extremely “pure” (and small) droplets will develop into Form I, since 

Form II heterogeneous nucleation on impurities will be even faster, and most of the 

droplets with larger size will solidify in this modification.  

 

CONCLUSIONS 

The nucleation mechanism of PB-1 upon cooling from the melt drastically 

changes when it is dispersed in droplets within an iPP matrix. Our results have shown 

for the first time how as the droplet size is reduced, the formation of Form I´ is 

increasingly favored over its crystallization into the metastable Form II.  

Form I crystallizes faster (as indicated by our FT-IR experiments) when the 

content of PB-1 in the blend is lower, and the specific interfacial surface area of the 

droplets is larger. The opposite effect has been observed for the kinetics of the 

metastable Form II formation. As a consequence of the different kinetics, we postulate 

that the possible mechanism behind the interesting experimental observations made in 

this work is a competition between the heterogeneous nucleation of the droplets and 

the surface nucleation caused by the iPP matrix. The former induces the formation of 

Form II crystals while the latter Form I´ crystals.  
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