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Abstract: The surface of ramie cellulose whiskers has been chemically modified by grafting 

organic acid chlorides presenting different lengths of the aliphatic chain by an esterification 

reaction. The occurrence of the chemical modification was evaluated by FTIR and X-ray 

photoelectron spectroscopies, elemental analysis and contact angle measurements. The 

crystallinity of the particles was not altered by the chain grafting, but it was shown that 

covalently grafted chains were able to crystallize at the cellulose surface when using C18. 

Both unmodified and functionalized nanoparticles were extruded with low density 

polyethylene to prepare nanocomposite materials. The homogeneity of the ensuing 

nanocomposites was found to increase with the length of the grafted chains. The 

thermomechanical properties of processed nanocomposites were studied by differential 

scanning calorimetry (DSC), dynamical mechanical analysis (DMA) and tensile tests. A 

significant improvement in terms of elongation at break was observed when sufficiently long 

chains were grafted on the surface of the nanoparticles. It was ascribed to improved 

dispersion of the nanoparticles within the LDPE matrix. 
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1. Introduction 

Over the last two decades a good deal of work has been dedicated to the use of lignocellulosic 

fibers as reinforcing elements in polymeric matrix and for the possibility of replacing 

conventional fibers such as glass by natural fibers in reinforced composites [1]. However, one 

of the main drawbacks of lignocellulosic fibers, among others, is the important variation of 

properties inherent to any natural product. Indeed, their properties are related to climatic 

conditions, maturity, and type of soil. Disturbances during plant growth also affect the plant 

structure and are responsible for the enormous scatter of mechanical plant fiber properties. 

One of the basic idea to achieve further improved fiber and composite is to eliminate the 

macroscopic flaws by disintegrating the natural grown fibers, and separating the almost defect 

free highly crystalline fibrils. Indeed, natural fibers display a hierarchical structure and 

present a multi-level organization. In fact, cellulose chains are biosynthesized by enzymes and 

aggregate to form microfibrils. Depending on their origin, the microfibril section ranges 

between 2 and 20 nm for lengths that can reach several tens of microns. They aggregate 

further to form fibers. Therefore, each natural fiber can be considered as a string of cellulose 

crystallites, linked along the chain axis by disordered domains. 

Aqueous suspensions of cellulose nanocrystals can be prepared by acid hydrolysis of the 

biomass. The object of this treatment is to dissolve away regions of low lateral order so that 

the water-insoluble, highly crystalline residue may be converted into a stable suspensoid by 

subsequent vigorous mechanical shearing action. The resulting nanocrystals occur as rod-like 

particles or whiskers, which dimensions depend on the nature of the substrate, but range in the 

nanometer scale. Because these whiskers contain only a small number of defects, their axial 

Young’s modulus is close to the one derived from theoretical chemistry and potentially 

stronger than steel and similar to Kevlar. It has been first experimentally determined in 1962 

and a value of 137 GPa was reported [2]. This value differs from the theoretical estimate of 

167.5 GPa reported by Tashiro and Kobayashi [3]. More recently, Raman spectroscopy 

technique has been used to measure the elastic modulus of native cellulose crystals. A value 

around 143 GPa has been reported [4]. These highly stiff nanoparticles are therefore suitable 

for the processing of green nanocomposite materials. 

Then, the main problem is related to the homogeneous dispersion of these nanoparticles 

within a polymeric matrix. Because of the high stability of aqueous suspensions of cellulose 

whiskers, water is the preferred processing medium. Hydrosoluble polymers are therefore 

well adapted for the processing of cellulose whiskers reinforced nanocomposites [5]. Solid 

nanocomposite films can be obtained by mixing, casting and evaporating the aqueous 

polymer solution and the aqueous suspension. A first alternative consists in using an aqueous 

dispersed polymer, i.e. latex [6]. After mixing and casting the two aqueous suspensions, a 
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solid nanocomposite film can be obtained by water evaporation and particles coalescence. A 

second alternative consists in using non aqueous systems. It means that the nanoparticles 

should be dispersed in an adequate, with respect to the polymeric matrix, organic medium. 

For instance it is possible to coat the surface of nanoparticles with a surfactant [7]. The 

chemical modification of nanoparticles surface is another way to disperse these nanoparticles 

in organic solvents. It generally involves reactive hydroxyl groups from the surface [8]. 

Recently, it was also shown that cellulose whiskers could be dispersed in dimethylformamide, 

dimethyl sulfoxide or N-methyl pyrrolidine without additives or any surface modifications 

[9]. A solvent exchange procedure can also be used. Other possible processing techniques of 

nanocomposites are filtration of the suspension to obtain a film and then immersion in a 

polymer solution [10]. 

Although being widely used for the processing of thermoplastic polymers and composites 

reinforced with short fibers, very few studies have been reported concerning the processing of 

cellulose nanocrystals reinforced nanocomposites by melt extrusion methods.  An attempt to 

prepare nanocomposites based on cellulose whiskers obtained from microcrystalline cellulose 

(MCC) and poly lactic acid (PLA) by melt extrusion technique was recently reported [11]. 

The suspension of nanocrystals was pumped into the polymer melt during the extrusion 

process. An attempt to use polyvinyl alcohol (PVA) as a compatibilizer to promote the 

dispersion of cellulose whiskers within the PLA matrix was reported [12]. 

In the present work, cellulose whiskers were functionalized by an esterification reaction with 

organic acid chloride aliphatic chains of different sizes. The objective of this surface chemical 

treatment was to enhance the non polar nature of the grafted nanocrystals and improve their 

dispersibility in a hydrophobic polymeric matrix. Low density polyethylene (LDPE) was 

chosen as the matrix and the properties of ensuing extruded nanocomposites were analyzed as 

a function of the whiskers content and length of the grafted chains. 

2. Materials and methods 

2.1. Materials 

Ramie fibers were obtained from Stucken Melchers GmbH & Co. (Germany). The low 

density polyethylene (LDPE) used for the study was PB-608 obtained from Braskem. It has a 

room temperature density of 0.915 g.cm-3 and Melt Flow Index (190°C/2.16 kg) of 30 g/10 

min. Sulfuric acid (95%), triehylamine (TEA, 99.5%), toluene (anhydrous, 99.8%), acetone 

(99%), hexanoyl chloride, lauroyl chloride and stearoyl chloride (99%) were all obtained from 

Sigma-Aldrich. The chemical structures of the various chemical grafting agents as well as 

their typical dimensions compared to cellulose whiskers are reported in Figure 1. 
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Figure 1: Chemical structures of the various chemical grafting agents and their typical 

dimensions compared to cellulose whiskers. 

2.2. Preparation of cellulose nanocrystals or whiskers 

Ramie fibers were first cut in small pieces and treated with a 2% NaOH solution at 80oC for 2 

hours to remove residual additives. Then, the ramie fibers were submitted to an acid 

hydrolysis treatment with a 65 wt% H2SO4 solution at 55oC for 30 min under continuous 

stirring. The suspension was washed with water until neutrality and dialyzed with deionized 

water. The obtained suspension was homogenized with an Ultra Turrax T25 homogenizer at 

13,500 rpm (2-5 min) and then filtered in sintered glass No 1. 

2.3. Surface chemical modification of cellulose whiskers 

The surface chemical modification of the cellulose whiskers was performed in a round-

bottomed reaction flask under reflux (4 hours) and under constant mechanical stirring in 

toluene medium. The toluene suspension was obtained by a solvent exchange procedure and 

centrifugation procedure (water to acetone, and then acetone to toluene, both four times). 

Ramie nanocrystals (2 g) were mixed with triethylamine (5 mL) and organic acid chloride 

(5.2 mL for hexanoyl, 8.8 ml for lauroyl or 12.5 mL for stearoyl chloride). Triethylamine was 

utilized to catalyze the reaction and as a complexing agent for HCl formed during the reaction 

[13]. The modified nanocrystals were submitted to a soxhlet extraction with acetone for 24 

hours. The ramie cellulose whiskers modified with hexanoyl chloride, lauroyl chloride and  

stearoyl chloride will be denoted WRC6, WRC12 and WRC18, respectively, whereas 

unmodified whiskers will be later on denoted WRU. The scheme of the reaction was 

published elsewhere [13]. 

2.4. Processing of nanocomposite materials 
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Nanocomposite materials were prepared by mixing LDPE and either unmodified or 

chemically modified ramie cellulose whiskers (whiskers content ranging from 0 to 15 wt%) 

using a twin-screw DSM Micro 15 compounder. The filler was used in the dry state after 

water or toluene evaporation for unmodified and functionalized cellulose whiskers, 

respectively. The components were introduced in the mixing chamber and allowed to melt at 

160°C. The mixing speed was set at 60 rpm for 10 min. The ensuing mixture was hot-pressed 

using a laboratory press (St-Eloi Mécanique) at 160oC under a force of 10 ton. This 

temperature was low enough, even under shear during the extrusion process, to avoid 

cellulose degradation. 

2.5. Characterization 

2.5.1. FTIR spectroscopy: FTIR spectrograms were obtained on a Perkin-Elmer Paragon 1000 

FTIR spectrometer. Both unmodified and chemically modified ramie cellulose whiskers were 

analyzed as KBr pellets (1:100). The spectra were obtained with a resolution of 1 cm-1, 

averaging over 16 scans. 

2.5.2. XPS spectroscopy: X-ray photoelectron spectrograms were performed using a XR3E2 

(Vacuum Generator, UK) instrument equipped with monochromated Mg K X-ray source 

(1253.6 eV) and operated at 15 kV under a current of 20 mA.  

2.5.3. Elemental analysis: Duplicate elemental analysis was carried out at the Laboratoire 

Central d’Analyses de Vernaison, France (CNRS). This technique is based on atomic 

absorption of the investigated elements. The carbon, nitrogen, and oxygen contents of 

cellulose nanocrystals were measured independently. 

2.5.4. X-ray diffraction: X-ray diffraction data were recorded in reflection mode for dry 

whiskers powder and LDPE based nanocomposite films at room temperature with a Siemens 

D500 diffractometer equipped with a CuK anode ( = 0.15406 nm). 

2.5.5. Transmission electron microscopy (TEM): Drops of cellulose whiskers suspension were 

deposited on carbon-coated electron microscope grids and negatively stained with uranyl 

acetate solution. A Philips transmission electron microscope at an acceleration voltage of 80 

kV was used. 

2.5.6. Contact Angle measurements: Contact angle measurements were performed at room 

temperature with an OCA20 (DataPhysiscs Intruments). Three different liquids (water, N,N-

dimethyl formamide and diiodomethane) with different dispersive and polar surface tensions 

were used to determine the surface energy of both unmodified and modified ramie whiskers, 

using the approach proposed by Owens and Wendt [14]. 

2.5.7. Thermogravimetric Analysis (TGA): TGA was carried out with a Shimadzu TA-50 

instrument at 20oC.min-1 in a nitrogen atmosphere, from 25 to 900oC. Samples were obtained 

by cutting the plates in circular form and weighed. 
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2.5.8. Differential Scanning Calorimetry (DSC): DSC was performed using a DSC Q100 

differential scanning calorimeter from TA Instruments. Samples were heated from -100 to 

150oC at a heating rate of 10oC min-1 under N2 atmosphere. 

2.5.9. Dynamic mechanical analysis (DMA): DMA measurements were performed with a 

RSA3 (TA Instruments) working in the tensile mode. The sample dimensions were 10 x 5 x 

0.2 mm3 and tests were performed under isochronal conditions at 1 Hz and the temperature 

was varied between -100 and 110oC at a heating rate of 5oC min-1. 

2.5.10. Tensile tests: The non linear mechanical properties of the composites were carried out 

with a RSA3 (TA Instruments) with a load cell of 100N. Experiments were performed at 

room temperature with a crosshead speed of 10 mm min-1. The sample dimensions were 10 x 

5 x 0.2 mm3 and the results were averaged over five measurements. 

3. Results and discussion 

3.1. Characterization of ramie cellulose whiskers 

3.1.1. Morphological analysis. Acid hydrolysis of native ramie cellulose fibers leads to 

aqueous suspensions of elongated nanocrystals with high aspect ratio. Figure 2A shows an 

electron micrograph of ramie cellulose whiskers. The length and diameter of these 

nanocrystals were determined by using digital image analysis (ImageJ). Both the obtained 

histograms and cumulative curves are shown in Figure 2B. The geometric average length and 

diameter were around 134 nm ± 59 nm and 10.8 nm ± 4.5 nm, respectively, giving rise to an 

aspect ratio around 12. A minimum of 228 and 70 measurements were used to determine the 

length and the diameter, respectively, of ramie whiskers. It is worth noting that more than 

50% of the nanoparticles have a length lower than 100 nm. 

Regarding their arrangement in solution, it is noteworthy that because of electrostatic 

repulsions between surface-grafted sulfate ester groups resulting from the sulfuric acid 

hydrolysis, the cellulose whiskers repel each other and then do not flocculate in water. The 

overall concentration of these sulfate moieties is related to the sulfur ratio, which was 

determined by elementary analysis to be 0.57% of dry matter [15]. According to these sulfur 

ratios and to the average geometry of cellulose nanocrystals, the average surface charge of 

rods was estimated to 0.60 e.nm-2 (considering rod-like nanoparticles with an average 

diameter of 6-8 nm and a length of about 150-250 nm). 
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Length : 134 nm ± 59 nm 

(228 measurements) 

Diameter: 10.8 nm ± 4.5 nm 

(70 measurements) 

Figure 2: Transmission electron micrograph (A) and length and diameter histograms and 

cumulative curves of ramie cellulose whiskers (B). 

 

3.1.2. FTIR investigation. The FTIR spectra recorded for both unmodified and chemically 

modified ramie whiskers are shown in Figure 3A. Compared to unmodified whiskers, the 

spectra corresponding to modified cellulose nanoparticles display an extra peak at 1737 cm-1, 

attributed to carbonyl groups. The signals at 2953, 2919 and 2850 cm-1 are ascribed to the 

presence of grafted alkane chains. The concomitant decrease of the magnitude of the broad 

band around 3300 cm-1 for modified whiskers compared to unmodified is attributed to the 

partial disappearance of OH groups, confirming the success of the grafting reaction with 

organic acid chlorides. 

3.1.3. XPS analysis. Figure 3B shows the XPS spectra for both unmodified and chemically 

grafted ramie whiskers. The signals observed around binding energies of 531 and 287 eV 

correspond to the 1s orbital electron of oxygen and carbon, respectively. The elemental 

surface composition (%) and the oxygen-to-carbon ratios of the different samples are 

summarized in Table 1. It decreases from 0.51 for the unmodified cellulose whiskers to 0.36 

for the sample grafted with C18 chains. It is also observed that the O/C ratio decreases with 
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increasing the length of the aliphatic grafted chains typical of organic acid chloride aliphatic 

chains. Figure 4 presents the deconvolution of the C1s peak that is composed of the C1 peak 

corresponding to C-C/C-H linkages, C2 peak corresponding to C-O of alcohols and ethers, C3 

peak corresponding to the O-C-O and C=O from the acetal moieties and C4 peak, 

corresponding to O-C=O and representing the ester carbon contribution. The peak 

corresponding to carbon was deconvoluted for each sample using curve fitting software 

(Spectrum NT). 
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Figure 3: FTIR spectra (KBr pellets) (A) and general XPS spectra (B) of unmodified ramie 

cellulose whiskers (a) and surface modified with hexanoyl chloride (b), lauroyl chloride (c) 

and stearoyl chloride (d), after  soxhlet extraction with acetone. 

Table 1: XPS analysis of ramie cellulose whiskers after and before surface chemical 

modification with hexanoyl, lauroyl and stearoyl chloride. 

  Binding energy (eV)  

 

Sample 

 

 

O/C 

C1 
285 ± 0.1 

C-C/C-H 

C2 
286.4 ± 0.1 

C-O 

C3 
287.7 ± 0.1 

O-C-O/C=O 

C4 
289 ± 0.1 
O-C=O 

 

SC (%) 

WRU 0.51 27.4 52.8 17.2 2.6 ---- 
WRC6 0.53 34.5 46.4 14.6 4.5 7.1 

WRC12 0.41 45.0 38.4 12.6 3.9 17.6 
WRC18 0.36 50.4 37.8 9.8 1.9 23.0 

 

A B 
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Figure 4: Decomposition of C1s signal into its constituent contributions for unmodified ramie 

cellulose whiskers (A) and modified with hexanoyl chloride (B), lauroyl chloride (C) and 

stearoyl chloride (D). 

Considerable changes can be observed in the intensities of the C1 peak, referring to aliphatic 

chains (C-H), for modified samples when compared to the pristine sample. This behavior can 

be attributed to the chain grafting at the whisker surface and provides additional proof of 

successful grafting of aliphatic chains to cellulose. Indeed, XPS is a powerful tool to 

investigate chemical changes resulting from surface modification since the investigated 

thickness is of the order of about 6 nm. Values of the C1, C2, C3 and C4 contributions are 

reported in Table 1. The surface coverage by large alkane chain (SC) is confirmed, as 

estimated by the C1 relative area according to equation 1 [16]. 

   SC = AC1m – AC1um     (1) 

where, AC1m and AC1um are the areas of the modified and unmodified samples, respectively. 

The SC values are reported in Table 1 and its evolution as a function of the number of 

carbons of the grafted chain is shown in Figure 5. The increase of the surface coverage gives a 

clear evidence of the occurrence of the expected surface chemical modification of the ramie 

cellulose whiskers. 

A B 
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Figure 5: Evolution of the surface coverage area and degree of substitution (DS) as a function 

of the length of grafted chains. The lines serve to guide the eyes. 

3.1.4. Elemental analysis. The elemental analyses of both unmodified and modified samples 

are given in Table 2. The degree of substitution (DS) of the modified ramie whiskers was 

determined from the data obtained by elemental analysis [17]. The DS values obtained from 

this technique are reported in Table 2 and its evolution as a function of the number of carbons 

of the grafted chain is shown in Figure 5. A decrease of DS is observed when the number of 

carbon atoms of the chloride acid increases and it seems to stabilize for highest chain lengths. 

This behavior was also observed after esterification of lignocellulosic materials [18]. 

 

 

 

 

 

Table 2: Elemental analyses of ramie cellulose nanocrystals before and after chemical 
modification with hexanoyl, lauroyl and stearoyl chloride. 

Sample C (%) H (%) O (%) DS 

WRU 43.08 6.41 50.51 ---- 

WRC6 52.90 7.67 39.43 0.68 
WRC12 53.57 8.12 38.31 0.32 
WRC18 56.90 8.88 34.22 0.31 

 

3.1.5. X-ray diffraction. Natural lignocellulosic fibers are known to display X ray diffraction 

(XRD) patterns typical of cellulose type I, with the main diffraction signals at 2 values of 

15o, 16o, 22,5o and 34o, attributed to the diffraction planes 101, 101 , 002 and 040, 

respectively. Figure 6A shows the XRD patterns obtained for the modified ramie cellulose 

whiskers samples as well as the one corresponding to the pristine sample. Even after chemical 

modification, the cellulosic nanoparticles remain semicrystalline and display the same XRD 
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patterns leading to the conclusion that the initial crystallinity was retained. Then, the surface 

chemical modification did not alter the crystallinity of cellulose nanocrystals. Upon chemical 

modification, a new ill-defined peak, located by an arrow, appears around 21° that is 

attributed to the presence of grafted aliphatic chains. In a previous work [19], a similar but 

much more defined peak was observed for polycaprolactone-grafted starch nanocrystals. This 

peak was much less defined for PCL-grafted cellulose whiskers because a strong diffraction 

peak due to cellulose I occurred in the same diffraction angle range. 
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Figure 6: Wide-angle X-ray diffraction patterns for ramie cellulose whiskers (A): unmodified 

(a) and modified with hexanoyl chloride (b), lauroyl chloride (c) and stearoyl chloride (d), and 

nanocomposite films (B): neat LDPE matrix (a) and related nanocomposite films reinforced 

with 10 wt% ramie cellulose whiskers: unmodified (b) and modified with hexanoyl chloride 

(c), lauroyl chloride (d) and stearoyl chloride (e). 

3.1.6. Contact angle measurements. Table 3 shows the values of contact angle measured for 

ramie cellulose whiskers at longer times, i.e. when the equilibrium was reached. The values of 

the surface energy as well as the polar and dispersive contributions are also reported. The 

dynamic behavior of the contact angle for a drop of distilled water onto the surface of the 

materials is shown in Figure 7. The untreated cellulose surface gave the lowest initial contact 

angle value, which is an expected finding since the surface of cellulose nanoparticles contains 

OH-rich macromolecules, the most capable to establish hydrogen bonds with water. The 

initial contact angle is two times higher for grafted substrates, indicating that chemical 

treatments induced dramatic changes in surface polarity of cellulose nanocrystals. The contact 

angle value increases as the length of the grafted chain increases. Moreover, whereas the 

contact angle value decreases with time for WRU and WRC6 substrates, it remains almost 

B A 
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constant for WRC12 and WRC18. Then, contact angles measurements give a clear evidence 

of the change in hydrophobicity of the modified samples compared to the unmodified sample. 

These results were confirmed by the decrease of the polar contribution to the surface energy 

(Table 3). 

The initial contact angle values, corresponding to times ~ 0, for WRU and WRC6 are 45 and 

87, respectively. After few seconds, it remains almost constant with values of 35 and 72. It 

was checked that the decrease of the contact angle value was due a spreading of the drop 

rather than a penetration by capillarity because of the porous character of the pellets prepared 

for these measurements. It was checked that the diameter of the drop increased and that the 

volume of the drop remained constant during time. 

0

20

40

60

80

100

120

0 5 10 15 20

Time (s)

W
a
te

r 
C

o
n
ta

c
t 
A

n
g

le
 (

°)

a

b

c

d

 

Figure 7:  Water contact angle with time for unmodified ramie cellulose whiskers (a) and 

modified with hexanoyl chloride (b), lauroyl chloride (c) and stearoyl chloride (d). 

Table 3: Contact angles and surface tension contributions of the ramie cellulose whiskers 
before and after modification with hexanoyl, lauroyl and stearoyl chloride. 

               Contact Angle    

Sample Water Formamide Diiodomethane S
p
 (mJ/m

2
)
 

S
d 
(mJ/m

2
) S

T
 (mJ/m

2
) 

WRU 35 19 40 35.2 25.3 60.5 

WRC6 
WRC12 

WRC18 

72 40 61 12.5 25.6 38.1 

90 55 61 2.9 30.0 32.9 

101 75 56 0.2 31.3 31.5 

 

3.1.7. Thermal analysis. The thermal degradation behavior of the cellulose nanocrystals was 

investigated from TGA measurements. Results are reported in Figure 8. The unmodified 

sample displays a weight loss from room temperature to 130°C. It is ascribed to the presence 

of water. This effect is decreased for the sample modified with C6 and absent for other 

specimens, i.e. nanocrystals modified with C12 and C18. It is obviously ascribed to a lower 

accessibility of surface OH groups after the grafting reaction. Then, a higher weight loss is 

observed in the range 250-350°C. The thermal decomposition temperatures, associated with a 
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2% weight loss and maximum of derived signal, were determined and results are collected in 

Table 4. The degradation temperature is lower for modified nanoparticles compared to the 

pristine cellulose whiskers and it decreases as the length of the grafted chains increases as 

already reported for another system [20]. 

0

20

40

60

80

100

0 200 400 600 800 1000

Temperature (°C)

W
e

ig
h
t 
(%

)

a
b

c

d

 

-0,5

0

0,5

1

1,5

2

2,5

3

3,5

0 200 400 600 800 1000

Temperature (°C)

-d
T

G
A

a

b

c

d

 

Figure 8: TGA curves (A) and dTGA (B) for unmodified ramie cellulose whiskers (a) and 

modified with hexanoyl chloride (b), lauroyl chloride (c) and stearoyl chloride 

Table 4: Degradation data obtained from TGA measurements for unmodified and modified 

ramie whiskers: Tonset corresponds to the beginning of the degradation process, and Td1 and 
Td2 to the thermal decomposition temperature associated with a 2% weight loss and 

maximum of derived signal, respectively. Measurements were performed under nitrogen flow 
at 20°C.min-1. 

Samples 
Tonset 

( 0.5% weight loss)  

Td (°C) 
(at 2% weight loss) 

Td maximum by 
dTGA (°C) 

WRU 210 240 368 

WRC6 242 267 320 
WRC12 200 236 321 

WRC18  215 248 305 

 

The DSC thermograms obtained for both unmodified and chemically modified nanoparticles 

are shown in Figure 9. Panel A corresponds to the first temperature scan, whereas panel B 

corresponds to the second temperature scan, the samples being quenched between each 

temperature scan. An endothermic peak is observed around 110°C for the pristine sample 

during the first temperature scan. This peak is not observed during the second temperature 

scan and was ascribed to the vaporization of water. For modified samples, it is not observed 

because of the increased hydrophobicity of the nanoparticles. However, the thermogram 

recorded for cellulose whiskers modified with C18 during the first temperature scan (Figure 

9A-curve d) shows a double endothermic peak between 25 and 80°C. It is ascribed to the 

melting of covalently linked chains at the cellulose nanocrystal surface that were sufficiently 

long to crystallize. The formation of a crystalline brushlike structure of stearate moieties 

grafted to starch nanoparticle surface was reported elsewhere [13]. Even after quenching, a 
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melting endotherm is observed for the WRC18 sample (Figure 9B) showing that the kinetics 

of crystallization of grafted chains is fast. However, the global aspect of this melting 

endotherm is different from the one recorded during the initial temperature scan. 
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Figure 9: DSC traces for unmodified ramie cellulose whiskers (a) and modified with 

hexanoyl chloride (b), lauroyl chloride (c) and stearoyl chloride (d). First temperature scan 

(A) and second temperature scan recorded after the first temperature scan and subsequent 

quenching (B). Traces have been shifted vertically. 

3.2. Characterization of ramie cellulose whiskers reinforced LDPE nanocomposite films 

3.2.1. Morphological analysis. Figure 10 shows photographs of the unfilled LDPE film and 

ramie cellulose whiskers based nanocomposite films reinforced with 10 wt% of WRU and 

WRC18. The neat PE is obviously translucent as any low thickness polymeric film with a 

relatively low degree of crystallinity. When adding 10 wt% of cellulose whiskers, the film 

becomes dotted with black. These heterogeneities reveal the poor and inhomogeneous 

dispersion of the filler within the polymeric matrix. It is obviously ascribed to the highly 

hydrophobic nature of the matrix and highly hydrophilic character of the cellulose 

nanoparticles. When the cellulose whiskers were chemically modified with aliphatic chains, 

the occurrence of these aggregates progressively vanish and the appearance of the composite 

film reinforced with WRC18 becomes similar to the one of the unfilled film. In addition, it is 

worth noting that it seems that the cellulose whiskers are not orientated when extruded in the 

melt. Indeed, we observed that no difference was reported for extruded films reinforced with 

cellulose whiskers when testing the film in the flow or transverse direction. These results are 

reported in a forthcoming publication. 
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Figure 10: Photographs of the neat film and ramie cellulose whiskers based nanocomposite 

films reinforced with 10 wt% of WRU and WRC18. 

3.2.2. Thermal analysis. The thermal characterization of ramie cellulose whiskers reinforced 

LDPE nanocomposite films was carried out using DSC. From the analysis of DSC traces, the 

melting temperature (Tm), associated heat of fusion (ΔHm) and degree of crystallinity (χc) 

were obtained for the unfilled LDPE film, and nanocomposite materials reinforced with either 

unmodified or modified whiskers. The resulting experimental data are listed in Table 5. It is 

worth noting that for the calculation of the degree of crystallinity of the composite materials, 

the heat of fusion was normalized to the matrix content. 

Table 5: Melting characteristics of LDPE-based nanocomposites reinforced with ramie 

cellulose whiskers obtained from DSC measurements: melting temperature (Tm), enthalpy of 

fusion (Hm) and degree of crystallinity (c). 

Sample Whisker Content (%) Tm (oC) Hm (J.g-1) c
a
 

LDPE 0 103 110.1 0.38 

 3 104 114.0 0.41 
LDPE-WRU 5 103 113.4 0.41 

 10 103 127.2 0.49 
 15 103 124.0 0.51 

 3 104 110.2 0.39 

LDPE-WRC6 5 103 116.3 0.43 
 10 104 124.3 0.48 

 15 105 127.1 0.52 

 3 103 112.4 0.40 
LDPE-WRC12 5 104 119.2 0.44 

 10 103 130.9 0.51 
 15 104 125.2 0.51 

 3 105 115.7 0.41 
LDPE-WRC18 5 103 122.0 0.45 

 10 105 132.9 0.51 

 15 104 126.1 0.52 
a
 χc = ΔHm/w ΔHm

°
, where ΔHm

°
= 290 J/g (heat of fusion for 100% crystalline LDPE) and w is the 

weight fraction of polymeric matrix in the composite. 
 

 

The melting point remains roughly constant between 103 and 105°C upon whiskers addition, 

regardless their modification state. It is an indication that the size of the crystallites is not 

affected by the filler. On the contrary, the degree of crystallinity of the LDPE matrix was 

found to increase with the whiskers content nearly independently of their nature (Figure 11), 

their surface being chemically modified or not. It seems that the cellulosic nanoparticles 

probably act as nucleating agents for the polymeric matrix. This nucleating effect is 

surprisingly not influenced by the grafting of aliphatic chains at the nanoparticle surface. 

Indeed, because it has been shown from DSC measurements that, at least for WRC18 
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nanoparticles, grafted chains can crystallize at the surface of cellulose whiskers, one could 

expect a possible co-crystallization of covalently linked chains at the nanoparticles surface 

with those from the matrix. However, it is worth noting that for modified whiskers reinforced 

composites, the nanocrystal content refers to the weight fraction of grafted nanoparticles and 

that the effective whisker content is lower compared to unmodified. It means that 

experimental data for modified nanoparticles based composites in Figure 11 should be shifted 

horizontally towards the lower whiskers content. 
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Figure 11: Evolution of the degree of crystallinity of the LDPE matrix as a function of the 

ramie cellulose whiskers content for nanocomposite films reinforced with unmodified (●) and 

modified with hexanoyl chloride (○), lauroyl chloride (▲) and stearoyl chloride (∆) whiskers. 

The lines serve to guide the eyes. 

The thermal degradation behavior of ramie cellulose whiskers reinforced LDPE 

nanocomposite films was investigated from TGA measurements. Results are reported in Table 

6. The onset temperature of the weight loss process was systematically lower for composites 

than for the neat matrix. It is ascribed to the water content of the cellulosic filler. The 

degradation temperature associated to the maximum of the dTGA signal remains roughly 

constant regardless the cellulose whiskers content and its surface modification. 

Table 6: Thermal degradation characteristics (Tonset : onset of the degradation, Td : thermal 
decomposition temperature associated with a 2% weight loss, and Td maximum : maximum 

of the derived signal) for LDPE-based nanocomposite films reinforced with ramie cellulose 
whiskers immersed in water. 

Sample Whisker 

Content (%) 

Tonset 
( 0.5% weight loss) 

Td (°C) 
(at 2% weight loss) 

Td maximum 

by dTGA (°C) 

LDPE 0 321 354 482 

 3 263 310 488 
LDPE-WRU 5 255 297 487 

 10 247 283 484 

 15 239 268 485 

 3 293 334 480 

LDPE-WRC6 5 280 306 485 
 10 276 293 487 
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 15 271 288 488 

 3 297 333 490 

LDPE-WRC12 5 281 320 474 
 10 286 310 487 
 15 281 302 493 

 3 297 335 491 
LDPE-WRC18 5 290 324 495 

 10 275 301 489 
 15 256 282 480 

 

3.2.3. X-ray diffraction. Figure 6B shows the X-ray diffraction patterns obtained for the neat 

LDPE matrix and related nanocomposites reinforced with 10 wt% cellulose whiskers. No 

alteration of the diffraction pattern of LDPE is observed upon ramie whiskers addition 

indicating that the crystallinity of LDPE is not affected upon whiskers addition. However, it is 

worth noting that there might be local changes in crystallinity that the diffractometer cannot 

spatially resolve. 

3.2.4. Mechanical properties. Figure 12 shows the evolution of the logarithm of the storage 

tensile modulus as a function of temperature for ramie cellulose whiskers reinforced LDPE 

nanocomposites. Panels A, B, C and D correspond to filler contents of 3, 5, 10 and 15 wt%, 

respectively. The behavior of the neat LDPE matrix has been added in each Figure for 

reference and modulus values have been normalized at low temperature. The modulus drop 

observed around -40°C is ascribed to the anelastic manifestation of the glass transition of the 

polymeric matrix. The modulus drop corresponding to this relaxation is weak because LDPE 

is a semicrystalline polymer. Indeed, the rubbery modulus is known to depend on the degree 

of crystallinity of the material, the crystalline regions of LDPE acting as physical cross-links 

for the elastomer. In this physically cross-linked system, the crystalline regions would also act 

as filler particles due to their finite size, which would increase the modulus substantially. At 

higher temperatures, E’ decreases continuously because of the progressive melting of LDPE. 

At the melting point of the polymeric matrix, the modulus drops irreversibly and the setup 

fails to measure it, due to irreversible chain flow. 
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Figure 12: Evolution of the logarithm of the storage tensile modulus as a function of 

temperature for the neat LDPE matrix (●) and related nanocomposite films reinforced with 3 

(A), 5 (B), 10 (C) and 15 wt% ramie cellulose whiskers: unmodified (○) and modified with 

hexanoyl chloride (▲), lauroyl chloride (∆) and stearoyl chloride (■). 

When adding ramie whiskers, the rubbery modulus slightly increases. This low but significant 

increase can be ascribed to a reinforcing effect of the cellulose whiskers and/or to the increase 

of the degree of crystallinity reported from DSC measurements. Surprisingly, no effect of the 

chemical grafting of aliphatic chains on the surface of the nanoparticles is observed. This is 

probably ascribed to two antagonist effects. Indeed, the chemical grafting should improve the 

dispersion of the filler within the polymeric matrix, but at the same time it decreases the 

possibility of inter-whiskers interactions. These interactions were reported to be the basis of 

the reinforcing effect for cellulose whiskers reinforced nanocomposites [21]. However, it is 

worth remember that for modified whiskers reinforced composites, the effective whisker 

content is lower than for its unmodified counterpart as previously emphasized. 

In addition, most of the nanocomposite films display a two-steps modulus drop in the rubbery 

region of the LDPE matrix. Indeed, apart the one associated as for the neat matrix to the glass 

transition of LDPE, a high temperature modulus drop, around 35°C is observed. This new 

relaxation process is well identified through the maximum of the loss angle in Figure 13. The 

existence of the second tan delta peak could suggest that the main relaxation process, 

associated with Tg of the polymeric matrix, splits into two well-defined peaks. This splitting 

of the relaxation process could be ascribed to strong interactions between the functionalized 

cellulosic nanoparticles and the LDPE matrix. These interactions could lead to the formation 

of an interfacial layer surrounding the filler and which mobility is restricted compared to the 

bulk matrix. This phenomenon could be obviously emphasized because of the nanometric 

scale of the filler and omnispresence of the surface. However, if such an effect is at the origin 

of the splitting of the relaxation process, then the relative magnitude of the high temperature 

peak should increase when increasing the whiskers content, which was not observed. 
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The second explanation is related to the possible cellulose whiskers-induced crystallization of 

the polymeric matrix. This explanation is highly speculative but the origin of this modulus 

drop remains mysterious. It is worth noting that the temperature of this second peak 

corresponds to the one of the melting endotherm observed for WRC18 in Figure 9. 
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Figure 13: Evolution of the tangent of the loss angle (tan d) as a function of temperature for 

the neat LDPE matrix (●) and related nanocomposite films reinforced with 3 (A), 5 (B), 10 

(C) and 15 wt% ramie cellulose whiskers: unmodified (○) and modified with hexanoyl 

chloride (▲), lauroyl chloride (∆) and stearoyl chloride (■). 

Tensile tests were performed at room temperature. From the obtained stress-strain curves, the 

strength, tensile modulus and elongation at break for ramie cellulose whiskers reinforced 

LDPE were determined. Figure 14 shows the evolution of these parameters as a function of 

the whiskers content. A slight increase of the tensile modulus (Fig. 14B) and a slight decrease 

of the tensile strength (Fig. 14A) upon whiskers addition are observed. Again, no 

discriminating effect of the filler-matrix compatibilization is reported. However, as for other 

tests the comparison is difficult because both the effective whiskers content and the degree of 

crystallinity of the specimen differ depending on the chemical modification of the filler. 
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Figure 14: Evolution of the tensile strength (A), tensile modulus (B) and elongation at break 

(C) as a function of the ramie cellulose whiskers content for nanocomposite films reinforced 

with unmodified (●) and modified with hexanoyl chloride (○), lauroyl chloride (▲) and 

stearoyl chloride (∆) whiskers. The lines serve to guide the eyes. 

The elongation at break decreases upon whiskers addition as expected and tends to roughly 

stabilize at high filler loading (Fig. 14C). However, an interesting feature is observed. When 

the grafted chains are sufficiently long (C18-grafted nanoparticles), the elongation at break is 

systematically much higher for a given composition than for other samples. It could be due to 

a possible co-crystallization between covalently linked chains at the surface of the 

nanoparticles with those from the matrix, but this co-crystallization was not evidenced from 

other measurements. Entanglements between grafted chains and macromolecular chains from 

the polymeric matrix are highly unlikely because of the low molecular weight of the grafted 

moieties. The most probable explanation could be the highest dispersion level of cellulose 

whiskers chemically modified with C18 chains. 

4. Conclusions 

The surface of cellulose nanocrystals or whiskers prepared by acid hydrolysis of ramie fibers 

was chemically modified using organic acid chloride aliphatic chains of different sizes, 

namely hexanoyl chloride, lauroyl chloride and stearoyl chloride. The evidence of occurrence 

of chemical modification was evidenced by FTIR and X-ray photoelectron spectroscopies. It 
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was checked from X-ray diffraction analysis that the initial crystalline structure was 

preserved. The reduction of the polar character as determined by contact angle measurements 

showed that the surface chemical modification allowed enhancing the nonpolar nature of 

original cellulose nanocrystals, thereby allowing the use of nonpolar polymers as matrices for 

the processing of nanocomposite materials. Most of the studies reported in the literature with 

cellulose whiskers reinforced nanocomposites involve casting/evaporation processing 

technique. In the present study, we used a highly hydrophobic commodity plastic which is not 

soluble in common solvents or available in the form of latex, viz. low density polyethylene 

(LDPE). Indeed, almost no study of the processing of cellulose whiskers reinforced 

nanocomposites using industrial techniques such as extrusion has been reported. Both 

unmodified and functionalized nanoparticles were extruded with LDPE to prepare 

nanocomposite materials. The homogeneity of the ensuing nanocomposites was found to 

increase with the length of the grafted chains. The thermomechanical properties of processed 

nanocomposites were studied by DSC, DMA and tensile tests. A significant improvement in 

terms of elongation at break was observed when sufficiently long chains were grafted on the 

surface of the nanoparticles. 
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