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Abstract

Two new Ru-based metathesis catalysts, 3 and 4, have been synthesized for the purpose of 

comparing their catalytic properties to those of their cis-selective nitrate analogues, 1 and 2. 

Although catalysts 3 and 4 exhibited slower initiation rates than 1 and 2, they maintained high cis-

selectivity in homodimerization and ring-opening metathesis polymerization reactions. 

Furthermore, the nitrite catalysts displayed higher cis-selectivity than 2 for ring-opening 

metathesis polymerizations, and 4 delivered higher yields of polymer.

1. Introduction

With increasing control of stereo and chemoselectivity, transition metal-catalyzed olefin 

metathesis is rapidly becoming ubiquitous and a preferred method for constructing carbon-

carbon double bonds.1 This process has gained widespread applicability in a variety of fields 

including organic synthesis, biochemistry, and materials science.2 Transition metal catalysts 

that could selectively produce the kinetically favored cis-products remained elusive until the 

discovery of Group VI-based systems by Schrock and Hoveyda.3 Cis-selective Ru-based 

metathesis catalysts were developed soon thereafter, all containing a N–heterocyclic carbene 

(NHC) ligand.4 In 2011, we reported that cis-selectivity could be achieved with a ruthenium 

catalyst where the N-adamantyl substituent of an NHC has undergone C-H activation at Ru 

to impose unique geometrical constraints.5 During olefin metathesis, side-bound 

ruthenacycles are formed where the N–aryl NHC substituent dictates a cis-conformation of 

metallacycle substituents, resulting in production of the corresponding Z-olefin.6,7 Later N–

adamantyl analogues with a bidentate nitrate ligand (catalysts 1 and 2) displayed greater 

activity and stability.8,9 In 2013, the Jensen and Hoveyda groups independently reported cis-

selective Ru-based metathesis catalysts with [H2IMes2] (H2I=imidazolidinylidene, 

Mes=mesityl) NHC ligands, but different X-type ligands.10,11
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In order to further probe the effect and role of the nitrate ligand in catalyst activity, stability, 

and selectivity of the Grubbs’ systems, we herein report the synthesis of the nitrite analogues 

of these catalysts, 3 and 4, and their reactivities for homodimerization and ring-opening 

metathesis polymerization reactions.12

2. Experimental

2.1 Materials and Methods

Unless otherwise stated, solvents and reagents were of reagent quality, obtained from 

commercial sources and used without further purification. Reactions involving catalysts 1-4 
were carried out in a nitrogen-filled glovebox. Substrates for homodimerization were 

degassed by sparging with Ar(g) and liquids were filtered through a short plug of basic 

alumina prior to use. THF was purified by passage through solvent purification columns and 

degassed prior to use.

2.2 Preparation of catalyst 3

In a N2-filled glovebox, reaction of 5 (50 mg, 0.74 mmol) with 25 equivalents of AgNO2 

(285 mg, 1.8 mmol) in benzene yields 3 (33.6 mg, 0.5 mmol, 69 % yield) within one hour at 

room temperature. The reaction mixture was filtered to remove unreacted starting material 

and AgI, and the solvent was removed in vacuo. The solids were triturated with an ether/

pentane solution to give catalyst 3 in a 63% yield. 1H-NMR (600 MHz, C6D6) (†, ppm): 

14.83 (s, 1H), 7.45 (d, 7.5 Hz 1H), 7.15 (m, 3H), 7.08 (dd, 7.5 Hz, 1 H), 7.02 (dd, 7.5 Hz, 

1H), 6.85 (t, 7.5 Hz, 3H), 6.47 (d, 8.5 Hz, 1H), 4.54 (hept, 6.0 Hz, 1H), 3.77 (m, 2H), 3.51 

(m, 1H), 3.34 (m, 1H), 3.24 (m, 1H), 3.08 (heptet, 6.5 Hz, 1H), 2.27 (s, 1H), 2.06 (s, 1H), 

1.94 (t, 9.5 Hz, 2H), 1.80 (m, 3H), 1.64 (d, 6.5 Hz, 4H), 1.41 (m, 3H), 1.35 (d, 6.5 Hz, 3H), 

1.29 (d, 7.0 Hz, 3H), 1.18 (d, 7.0 Hz, 3H), 1.15 (d, 7.0 Hz, 1H), 1.10 (d, 6.0 Hz, 2H), 1.08 

(m, 2H), 0.88 (d, 6.0 Hz, 3H), 0.58 (d, 7.5 Hz, 1H). 13C-NMR (126 MHz, C6D6) (δ, ppm): 

261.3, 212.1, 154.3, 147.4, 146.9, 142.8, 136.0, 128.5, 125.9, 124.0, 123.6, 123.1, 122.9, 

122.9, 112.5, 74.4, 72.8, 67.4, 62.8, 54.0, 42.6, 41.2, 39.9, 37.6, 37.5, 37.3, 32.9, 30.5, 29.4, 

28.3, 28.1, 28.1, 27.2, 26.4, 25.4, 25.4, 23.3, 22.4, 20.8, 20.1. HRMS (FAB+) calculated for 

C35H46O3N3Ru [(M+H)-H2]+ 658.2583; found 658.2583.

2.3 Preparation of catalyst 4

In a N2-filled glovebox, reaction of 6 (50 mg, 0.79 mmol) with 7 equivalents of AgNO2 (85 

mg, 0.55 mmol) in benzene cleanly forms 4 (30.7 mg, 0.50 mmol, 63 % yield) over a 

reaction time of two hours at room temperature. The reaction mixture was filtered to remove 

unreacted starting material and AgI, and the solvent was removed in vacuo. The solids were 

triturated with ether for a 69% yield of catalyst 4. 1H-NMR (600 MHz, C6D6) (δ, ppm): 

14.83 (s, 1H), 7.40 (d, 7.5 Hz 1H), 7.18 (t, 7.9 Hz, 1H), 6.84 (td, 7.4 Hz, 1H), 6.81 (s, 1H), 

6.74 (s, 1H), 6.52 (d, 8.7 Hz, 1H), 4.59 (heptet, 6.45 Hz, 1H), 3.61 (s, 1H), 3.41 (heptet, 10.5 

Hz, 1H), 3.23 (m, 3H), 2.45 (s, 3H), 2.32 (m, 1H), 2.23 (s, 3 H), 2.12 (t, 3.3 Hz, 3H), 2.09 (s, 

3H), 2.00 (m, 2H), 1.91 (br d, 11.0 Hz, 1H), 1.79 (d, 12.0 Hz, 1H), 1.65 (m, 1), 1.48 (m, 

2H), 1.39 (d, 6.4 Hz, 3H), 1.26 (m, 1H), 1.12 (m, 3H), 0.91 (d, 6.2 Hz, 7H), 0.61 (d, 12.2 

Hz, 1H). 13C-NMR (400 MHz, C6D6) (δ, ppm): 259.5, 214.1, 154.3, 143.0, 137.4, 136.8, 

136.3, 135.3, 129.4, 128.8, 125.8, 123.0, 122.9, 112.4, 74.3, 73.5, 67.4, 62.7, 51.3, 42.7, 
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41.3, 39.9, 37.6, 37.4, 37.1, 33.0, 30.6, 29.5, 25.4, 20.9, 20.6, 20.0, 18.3, 18.2. HRMS 

(FAB+) calculated for C32H40RuN3O3 [(M+H)-H2]+ 616.2114; found 616.2119.

2.4 General procedure for homodimerizations

To an open 4 mL vial charged with a stir bar in a N2-filled glovebox, 1.23 mmol of the 

olefin substrate and the appropriate volume of THF were added such that the total volume of 

the resulting solution was 225 μL. A solution of 1.23 μmol catalyst in 200 μL THF was 

added to the substrate and the reaction was stirred at 35 °C. At appropriate time points, 10 

μL aliquots were taken and diluted with 0.70 mL chloroform-d1 and analyzed using 1H-

NMR spectroscopy. The reactions were performed in duplicate and the numbers reported are 

the average of the two runs and the standard deviation observed.

2.5 General procedure for ROMP

In an 8 mL vial charged with a stir bar, 1 mL of 0.32 M stock solution of monomer was 

added under an argon atmosphere. A solution of 3.2 μmol catalyst in 275 μL THF was added 

and the reaction was stirred at room temperature. After 1 hour, the reaction was quenched 

with 50 μL ethyl vinyl ether. The reaction mixture was then precipitated into methanol. The 

polymer samples were collected on a fine frit, washed with several portions of methanol, 

and dried under vacuum.

2.6 General procedure for initiation rate determination

In a N2-filled glovebox, a 4-mL vial was charged with catalyst (0.012 mmol) and dissolved 

with 100 μL C6D6. A portion of the stock solution (0.2 mL, 0.003 mmol) was added to a 

NMR tube and diluted with C6D6 (0.4 mL). The NMR tube was sealed with a septum cap 

and placed in the NMR spectrometer at 30 °C. Butyl vinyl ether (12 μL, 0.09 mmol) was 

added and the disappearance of the benzylidene proton resonance was monitored by 

arraying the ‘pad’ function in VNMRj. All reactions showed clean first-order kinetics over a 

period of at least three half-lives. Spectra were baseline corrected and integrated using 

MestReNova.

2.7 Instrumentation
1H-NMR spectra for homodimerization reactions were taken on Varian Inova 300 MHz and 

automated Varian Inova 500 MHz instruments. 1H and 13C spectra for catalysts 3 and 4 
were recorded on a Varian Inova 600 MHz instrument or an automated Varian Inova 500 

MHz instrument (126 MHz for 13C). Initiation rate experiments were monitored using 

Varian Inova 500 MHz and Varian Inova 600 MHz instruments. High-resolution fast atom 

bombardment (FAB) mass spectrometry was performed at the California Institute of 

Technology Mass Spectrometry Facility. Molecular weights and polydispersity indexes of 

polymer samples were determined using multi-angle light scattering gel permeation 

chromatography, employing an Agilent 1200 UV-Vis detector and a Wyatt Technology 

miniDAWN TREOS light scattering detector, Viscostar viscometer, and OptilabRex 

refractive index detector. dn/dc values were determined by assuming 100% mass recovery of 

the sample to calculate molecular weights.
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3. Results and Discussion

3.1 Synthesis

Previous studies demonstrated the nitrato X-type ligand on catalysts 1 and 2 exchanges to 

form the corresponding iodo complexes 5 and 6 (Scheme 1) upon exposure to excess NaI in 

THF.5a It was found that these iodo complexes could be readily converted to the 

corresponding nitrito complexes, 3 and 4, using excess AgNO2 in benzene. Trituration with 

pentane/ether afforded the pure catalysts. The 1H-NMR spectra of 3 and 4 were recorded in 

C6D6. Both complexes showed a characteristic singlet at 14.82 ppm, which can be assigned 

to the benzylidene proton and is slightly, but distinctly, shifted from the corresponding 

benzylidene singlets of the nitrate catalysts 1 and 2 (15.22 ppm). The corresponding carbon 

is observed at 261.3 ppm and 259.5 ppm for 3 and 4, respectively, compared to 267.5 and 

265.8 for the corresponding nitrato-ruthenium catalysts.

3.2 Homodimerizations

In order to elucidate differences in reactivity and Z-selectivity between the nitrato and nitrito 

catalysts, we subjected them to a standard set of substrates. The homodimerization of 

allylbenzene (7) is a good benchmark to determine the activity and stability of olefin 

metathesis catalysts. Since allylbenzene homodimerization occurs quickly with catalysts 1 
and 2, a low catalyst loading of 0.1 mol% was used to differentiate the new nitrite-

containing catalysts from the highly active and Z-selective nitrate catalysts. Both catalysts 3 
and 4 proved to be slower than the nitrate analogues, achieving 88% and 78% conversion, 

respectively, at 3 hours. In comparison, the reaction reached completion after approximately 

one hour with the nitrate catalysts. While slower, 3 and 4 are able to retain the high Z-

selectivity seen in the nitrate catalysts. In the case of allylbenzene, catalyst 4 with the less 

bulky N–Mes substituent was found to achieve higher conversion over the course of the 

reaction compared to catalyst 3 with the more sterically hindered N-DIPP substituent. Such a 

difference is not observed with the nitrato catalysts.5a, 9a

Conversion to the olefin migration product 9 is indicative of catalyst stability. At long time 

points when conversion of allyl benzene is complete or nearly complete, the ratio of 8 to 9 is 

comparable for all four of the catalysts (reported in Figure 2). This supports our observation 

that the new nitrite-containing catalysts are stable metathesis catalysts. We plan to further 

investigate isomerization and decomposition pathways of these catalysts, particularly since 

the nitrite-containing catalyst 4 appears to promote less formation of the olefin isomerization 

product than 1-3.

Two more challenging homodimerization substrates, methyl undecenoate (10) and allyl 

acetate (12), were tested to further examine catalyst activity. At three hours, both nitrate 

catalysts achieved high conversion to the methyl undecenoate homodimer. In contrast, 

catalyst 4 had a modest conversion of 63% whereas 3 only achieved minimal conversion 

(13%). At twelve hours, 4 had a reasonable 81% conversion while 3 had reached 61% 

conversion. Here, there is a clear difference in conversion between the DIPP-NHC catalyst 3 
and the Mes-NHC catalyst 4 that is not apparent with the nitrato catalysts 1 and 2. This 

observable differentiation may be due more to an induction period before metathesis rather 
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than less active catalysts. For all four catalysts, the Z-selectivity remained above 95% at all 

conversions of methyl undecenoate. For allyl acetate, which is a challenging substrate for 

metathesis catalysts, we observed low conversions by catalysts 2, 3 and 4 at three hours, but 

by five hours all catalysts were achieving comparable conversions, although the nitrito 

catalysts had slightly lower Z-selectivity. There is no clear difference in the rate of 

conversion for catalysts 2, 3 and 4 for allyl acetate. In contrast, the DIPP-NHC nitrato 

catalyst 1 maintains a similar rate of conversion across the time period monitored. This 

difference in behavior will be investigated further through initiation rate studies.

With this obvious induction period where the nitrite-containing catalysts are initially slow 

but reach comparable overall conversion and similar Z-selectivity compared to catalysts 1 
and 2, we tested the initiation rate of catalyst reaction with butyl vinyl ether (BVE) 

substrate.13 Consistent with the results of the homodimerizations, the DIPP-NHC catalyst 3 
was much slower than catalysts 1, 2 and 4. There is a clear trend that the DIPP–NHC 

catalysts have slower initiation when compared to the Mes-NHC catalysts and the nitrito-

containing catalysts are slower to initiate than the nitrato catalysts. The order of magnitude 

difference seen for 3 is somewhat greater than expected, particularly as this is an extremely 

active and productive metathesis catalyst.

In previous initiation rate studies, electron donating ligands such as 2,2 

dimethoxypropanoate (16) imparted greater initiation rates compared to a pivalate (17) X-

ligand (2.5 × 10−3 s−1 vs. 0.87 × 10−3 s−1, respectively).5a Steric bulk also increased the rate; 

the much larger dicyclohexyl carboxylate group (18) has an initiation rate constant of 6.9 × 

10−3 s−1 while the smaller methyl group (19) has a constant of 0.17 × 10−3 s−1.5a Finally, the 

hapticity of this X-ligand plays a large role in the magnitude of initiation rate as 

monodentate X-ligands (20) required much longer times at elevated temperature (70 °C) to 

initiate. Recent theoretical studies predict the ability of nitrato and carboxylato ligands to 

convert between monodentate and bidentate conformations is critical for metallacycle 

stabilization.14,15 The inability of monodentate X-ligands to form multiple coordination 

modes may be the reason these catalysts often are slow to initiate and have negligible 

metathesis activity. The fact that 3 and 4 are metathesis active and stable supports a 

bidentate binding mode. In the case of the nitrite X-ligand, the Mes-NHC initiates at 

approximately half the rate constant of the nitrate analogue, and this trend is seen in the 

homodimerization reactivity. However, the DIPP-NHC nitrite catalyst 3 has an initiation rate 

constant an order of magnitude lower than its nitrate analogue, which is apparent in the low 

conversions at early time points. It is not a simple relationship between initiation rate and 

metathesis reactivity since catalyst 3 has comparable conversions at later time points for 

allylbenzene and allyl acetate.

When applied to ring-opening metathesis polymerization, the slow initiation rate of catalyst 

3 is evident in the corresponding low yields, high PDI and, for poly-23, high Mn.1e High Mn 

can be attributed to a high rate of propagation (kp) relative to the rate of initiation (ki) or 

incomplete catalyst initiation. This was observed for catalyst 2, which has a slow initiation 

rate compared to faster initiating catalysts (21) not containing the Hoveyda chelate. The 

nitrite X-ligand catalysts resulted in greater cis content compared to catalyst 2, although 
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higher PDIs were observed in the case of poly-22. In contrast to homodimerization reactions 

where 4 outperformed 2 in terms of Z-selectivity, in ROMP reactions 4 had comparable 

yields and higher Z-selectivity.1e The generally poor initiation rates were evident in the 

resulting PDIs of the polymers. The tacticity and functional group tolerance of this catalyst 

will be investigated further, in addition to further testing of both 3 and 4 in 

homodimerizations and cross metathesis reactions.

4. Conclusion

In summary, salt metathesis of I-ruthenium complexes 5 and 6 with AgNO2 results in stable, 

chelated Z-selective ruthenium olefin metathesis catalysts 3 and 4. The nitrite-containing 

catalysts are slower initiating than the nitrito analogues and, therefore, have lower 

conversions at early time points in homodimerization and ring-opening metathesis 

polymerization. Both types of X-ligands result in exceptional Z-selectivity. This high Z-

selectivity is retained at longer reaction times where, in many cases, catalysts 3 and 4 reach 

comparable conversions. Both 3 and 4 exhibit greater cis-selectivity in ring-opening 

metathesis polymerization than previously observed with 2, and 4 gave higher yields.1e 

Given that 3 and 4 have much slower initiation rates, the retention of reactivity and 

selectivity merits further investigation of these catalysts as well as examination of other X-

type ligands.
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Figure 1. 
Catalysts 1-4 used for homodimerization and ring-opening metathesis polymerization 

reactions.
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Scheme 1. 
Preparation of Catalysts 3 and 4
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Figure 2. 
Plots of percent conversion versus time for the homodimerization reaction of allylbenzene 

using 0.1 mol% 1-4 at 35 °C. aPercent conversion and Z-selectivity were determined 

using 1H-NMR spectroscopy. bCross:Isomerization ratio was determined using 1H-NMR 

spectroscopy at 12 hours.
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Figure 3. 
Plots of percent conversion versus time for the homodimerization reaction of methyl 

undecenoate using 0.1 mol% 1-4 at 35 °C. aPercent conversion and Z-selectivity were 

determined using 1H-NMR spectroscopy.
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Figure 4. 
Plots of percent conversion versus time for the homodimerization reaction of allyl acetate 

using 0.1 mol% 1-4 at 35 °C. aPercent conversion and Z-selectivity were determined 

using 1H-NMR spectroscopy.
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Figure 5. 
Previously reported NHC-Ru metathesis catalysts.
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Table 1

Initiation rates of the reaction of catalysts 1-4 with butyl vinyl ether as determined by 1H-NMR spectroscopy.

Catalyst Temp (°C) Initiation Rate Constant (10−4 s−1)

1 (DIPP; NO3) 30 5.3

2 (Mes; NO3) 30 8.4

3 (DIPP; NO2) 30 0.4

4 (Mes; NO2) 30 3.2
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Table 2

Ring-Opening Metathesis Polymerization of Monomer 22 with Catalysts 2-4.1e

Catalyst % cisa Yield (%) Mn (kDa) PDI

2 (Mes; NO3) 88 94 347 1.87

3 (DIPP; NO2) >95 15 24.9 2.44

4 (Mes; NO2) 94 >95 17.5 2.24
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Table 3

Ring-Opening Metathesis Polymerization of Monomer 23 with Catalysts 2-4.

Catalyst % cisa Yield (%) Mn (kDa) PDI

2 (Mes; NO3) 86 91
— 

c
— 

c

3 (DIPP; NO2) 90 10 278 1.42

4 (Mes; NO2) 94 >95 57.2 1.23

c
Mn and PDI could not be determined due to insolubility in THF.1e
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