
1	Introduction
Since	its	discovery	in	the	early	1980s,	as	a	principal	factor	in	contraction	of	AIDS	(Acquired	Immune	Deficiency	Syndrome),	the	Human	Immunodeficiency	Virus	(HIV)	has	been	extensively	researched		[1,2].	As	part	of	this

effort,	drugs	which	inhibit	viral	replication	effectively,	through	interference	with	the	viral	replication	cycle,	have	been	shown	to	be	immensely	valuable.

State	of	the	art	treatment	regimes,	termed	Antiretroviral	Therapy	(ART)	consist	of	a	combination	of	different	drug	classes;	in	most	cases	at	least	three	are	used		[3].	The	most	common	drug	classes	are	Reverse	Transcriptase

Inhibitors	(RTIs),	more	specifically	Nucleoside	Reverse	Transcriptase	Inhibitors	(NRTIs)	and	non-Nucleoside	Reverse	Transcriptase	Inhibitors	(NNRTIs).	Such	substances	aim	to	inhibit	the	enzyme	Reverse	Transcriptase,	which	plays	a

major	role	during	cellular	infection.	Protease	Inhibitors	(PIs)	are	also	common	in	ART	and	are	targeted	at	the	virus	maturation	step,	which	results	in	non-infectious	virus	production.	Additionally,	the	recently-introduced	drug	class	of

Integrase	Inhibitors	(INSTIs)	aims	to	reduce	uptake	of	virus	into	healthy	cells.	Currently,	health	authority	recommendations	for	combination	therapy	include	two	NRTI	active	agents	and	a	third	drug	from	either	NNRTI,	PI	or	INSTI		[3].

These	therapies	are	termed	Highly	Active	Antiretroviral	Therapy	(HAART).	The	effect	of	the	drug	combination	is	the	ability	to	maintain	viral	load	levels	in	the	blood	below	critical	limits,	which	effectively	reduces	virus	multiplication,

fatal	damage	to	the	immune	system	and	eventual	progression	to	AIDS.	The	necessity	of	lifelong	adherence	to	a	strict	treatment	regimen,	with	toxic	side-effects,	has	motivated	investigations	on	feasibility	of	allowing	patients	to	interrupt

their	 treatment	 in	 a	 structured	manner.	With	 neither	 curative	medication	 for	 infection	 nor	 an	 effective	 vaccine	 yet	 within	 reach,	 however,	 risk	 assessment	 is	 required	 	 [2].	 The	main	 barrier	 to	 the	 former	 breakthrough	 is	 the

establishment	of	a	so-called	latent	reservoir	during	early	infection,	(see		[4]	and	references	therein).	This	reservoir	can	stimulate	an	increase	in	viral	load	(to	detectable	levels)	within	days	after	treatment	interruption;	an	effect	known

as	viral	rebound.	The	exact	composition	and	location	of	the	reservoir	is	still	not	completely	known,	and	quantification	is	difficult		[5].	Resting	blood	cells	are	thought	to	contribute	and	there	is	also	evidence	that	viral	replication	is

ongoing	in	parts	of	the	body	not	directly	targeted	by	the	drug(s)		[6].	Emergence	of	drug	resistant	strains		[7],	may	also	contribute	to	difficulties	in	managing	treatment	interruptions.	A	recent	study	has	suggested	also	that	short	term

pharmacological	effects	of	multi-drug	regimens	may	build	drug	resistance	during	treatment	interruptions		[8].	Currently,	new	drug	classes,	aimed	at	reactivating	resting	cells,	are	under	 investigation		[9]	but	have	yet	 to	provide	a

comprehensive	solution.
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In	recent	years,	Antiretroviral	Therapy	(ART)	has	become	commonplace	for	treating	HIV	infections,	although	a	cure	remains	elusive,	given	reservoirs	of	replicating	latently-infected	cells,	which	are	resistant	to	normal

treatment	regimes.	Treatment	interruptions,	whether	ad	hoc	or	structured,	are	known	to	cause	a	rapid	increase	in	viral	production	to	detectable	levels,	but	numerous	clinical	trials	remain	inconclusive	on	the	dangers	inherent

in	 this	 resurgence.	 In	 consequence,	 interest	 in	 examining	 interruption	 strategies	 has	 recently	 been	 rekindled.	 This	 overview	 considers	 modelling	 approaches,	 which	 have	 been	 used	 to	 explore	 the	 issue	 of	 treatment

interruption.	We	highlight	their	purpose	and	the	formalisms	employed	and	examine	ways	in	which	clinical	data	have	been	used.	Implementation	of	selected	models	is	demonstrated,	illustrative	examples	provided	and	model

performance	compared	for	these	cases.	Possible	extensions	to	bottom-up	modelling	techniques	for	treatment	interruptions	are	briefly	discussed.
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Until	relatively	recently,	patients	were	required	to	adhere	lifelong	to	daily	dosages	of	their	medication	in	order	to	maintain	viral	suppression.	In	practice	this	requirement	is	not	easy	to	fulfil,	given	the	considerable	cost	and	side

effects	of	the	drugs.	The	problem	is	especially	acute	in	resource-	limited	resource-limited	settings.	Avoidance	of	side-effects		[10],	fear	of	stigma		[11],	or	obstructed	access	to	therapy	due	to	political	instability		[12],	are	among	the	reasons

for	ad	hoc	treatment	interruptions,	which	cannot	be	completely	resolved.	These	unstructured	treatment	interruptions	remain	common.

Potential	benefits	(in	terms	of	patient	tolerance	and	resource	optimisation),	of	specific	treatment	interruption	schemes,	have	also	been	investigated.	Such	schemes,	termed	structured	treatment	interruptions	(STI),	have	followed

either	fixed	cycles,	(e.g.	week	on/week	off),	or	have	been	guided	by	concentration	thresholds	of	specific	markers,	such	as	CD4+	 	T-Lymphocytes,1	 in	the	blood,	(see		[13]	and	references	therein).	Motivations	for	this	research	focus

include	cost-effectiveness	of	therapy	administration	and	reduction	of	side	effects.	Earlier	studies	also	investigated	the	hypothesis	that	treatment	interruptions	act	as	a	stimulant	to	the	immune	system,	eventually	enabling	it	to	control

the	virus	without	further	treatment		[14].	Additionally,	it	was	hoped	that	drug-resistant	viral	mutations	might	be	dominated	by	wild	type	virus	following	interruption,	thus	improving	chances	for	successful	treatment.	The	largest	STI-

related	clinical	trial	to	date	(SMART)		[15],	used	a	(CD4+)-guided2	approach	to	trigger	treatment,	although	an	increase	in	fatalities	in	the	patient	group	with	treatment	interruptions,	led	to	premature	study	termination.	However,	the

percentage	of	cases	with	pre-existing	immune	system	impairment	(at	severe	stage)	was	high	among	the	participants	in	this	study,	which	may	have	contributed	to	the	outcome		[16].	Other	STI	studies	either	confirmed	an	increase	in

adverse	events,	or	remained	inconclusive		[13].	No	evidence	for	the	stimulating	effect	of	STIs	on	the	immune	system	could	be	shown.

Nonetheless,	 the	 topic	of	 treatment	 interruption	 is	 still	actively	under	discussion	since	causes	 for	 treatment	 failure,	 following	 interruption,	 remain	poorly	understood,	although	missed	drug	doses	 result	 in	decreased	drug

concentration	and	consequent	effectiveness.	 In	addition,	 loss	of	viral	control	and/or	 increase	 in	drug	resistant	mutations	may	contribute		[17].	Given	that	a	clinical	predictor	 for	 treatment	 failure	has	not	been	 found,	mathematical

modelling	has	a	role	in	using	and	augmenting	existing	clinical	data	to	explore	alternative	solutions.

1.2	Modelling	HIV:	differential	equations	(top-down)
HIV	 attracted	 the	 attention	 of	 the	modelling	 community	 shortly	 after	 the	 virus	was	 discovered.	 Dynamic	modelling	was	 first	 applied	 at	 population	 scale	 	 [18],	 and,	 subsequently,	 to	 viral	 dynamics	 within	 the	 host	 	 [19].

Traditionally,	dynamic	models	have	relied	on	systems	of	nonlinear	ordinary	differential	equations	(ODE),	which	have	their	origin	in	predator–prey	modelling.	Such	models	have	proved	helpful	in	the	HIV	context,	e.g.	in	the	discovery

that	turnover	rates	of	HIV	and	infected	cells	were	much	higher	than	anticipated		[20].	Extensions	and	modifications	of	these	models	have	also	been	applied	to	many	other	aspects	of	HIV	infection,	including	treatment.	A	set	of	ODE

representing	a	basic	model	is	given	by

The	 system	 consists	 of	 three	 separate	 ‘units’	 or	 entities,	 (often	 designated	 in	 epidemiological	 studies	 as	 a	 ‘compartmental	 model’),	 while	 in	 our	 example,	 the	 ‘units’	 are	 the	 three	 cell	 types,	 where	 variable	 denotes

uninfected/susceptible	cells,	 infected	cells	and	 free	virus	particles.	Parameter	 is	the	replenishment	rate	of	healthy	cells	from	the	Thymus,	and	 is	the	infection	rate.	Parameters	 ,	 and	 are	death	rates	for	healthy	cells,

infected	cells	and	virus,	respectively,	and	are	not	directly	related	to	infection	events.	The	model	assumes	a	virus	formation	rate	 ,	however,	which	is	proportional	to	the	number	of	infected	cells.	Thus,	viral	production	rate	is	of	second

order,	being	dependent	both	on	virus	and	uninfected	cell	numbers.	This	basic	model	also	includes	a	term,	which	accounts	for	antiretroviral	treatment.	Parameter	 represents	treatment	effectiveness,	which	reflects	reduction	in	the

overall	infection	rate.

While	this	model	is	simple	enough	to	be	used	for	mathematical	analysis,	clinical	assays	are	available	also	to	directly	observe	compartment	behaviour,	with	estimates	for	formation	and	death	rates	available	in	the	literature.

Thus,	the	model	can	be	used	to	estimate	crucial	parameters,	such	as	infection	rate	and	drug	effectiveness	through	the	inverse	problem		[21].

However,	given	the	complex	mechanisms,	which	have	been	identified	for	HIV	infection,	this	model	is,	at	best,	a	crude	approximation.	Biological	features	must	be	added	through	additional	components	and	parameters,	while

preserving	the	basic	model	core.	A	model	with	higher	degree	of	realism,	for	example,	is	given	in		[22]	to	be

(1a)
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where,	 in	 addition	 to	 the	 system	 in	 (1),	 Eqs.	 (2)	 include	 latently-infected	 cells	 and	 immune	 response	 captured	 by	 the	 ‘effector	 cells’3	 compartment	 .	 Additional	 parameters	 include	 the	 fraction	 of	 cells	 entering	 the

reservoir	upon	infection,	and	those	exiting	the	reservoir	and	becoming	actively	infectious,	with	rate	 .	Inside	the	reservoir,	cells	proliferate	and	die	according	to	rates	( ).	Effector	cells	reduce	the	amount	of	infected	cells	through

the	first-order	relation	and	rate	 .	Size	of	the	effector	cell	compartment	depends	on	a	constant	formation	rate	term	 and	first-order	death	rate	 similar	to	the	susceptible	cell	compartment.	Moreover,	effector	cells	are	assumed	to

proliferate	and	die	following	Michaelis–Menten	kinetics		[23],	where	infected	cells	serve	as	‘substrate’,	with	maximum	rates	of	 and	 and	Michaelis–Menten	constants	of	 and	 respectively.

The	ODE-approach	assumes	all	model	properties	to	be	continuous	variables.	Thus,	the	system	observed	is	envisaged	as	a	‘well-mixed	container’,	although	this	applies	loosely	at	best	for	the	human	organism,	which	naturally

consists	of	sections	of	different	tissues	and	cavities,	which	are	separated	anatomically	but	connected	through	transport	mechanisms,	such	as	the	blood	and	lymph	stream	and	which	are	populated	by	discrete,	cellular	entities.	In	the

case	 of	HIV,	 infections	 occur	 predominantly	 in	 lymphatic	 tissues	where	 the	 greatest	 proportion	 of	 susceptible	 lymphocytes	 resides.	 Intuitively,	 one	would	 assume	 that	 the	 neighbourhood	 of	 virus-shedding	 infected	 cells	 is	more

susceptible	to	infection	than	that	of	remote	cells.	There	is	also	evidence	that	HIV	infection	is	more	likely	to	occur	through	cell-to-cell	contacts	than	uptake	of	free	viral	particles		[24],	which	appears	to	support	this	view.

To	analyse	this	spatial	heterogeneity	associated	with	HIV	infections,	additional	dimensions	may	be	introduced	in	models	of	Differential	Equation	type	(by	means	of	partial	differentiation	terms).	The	resulting	systems	of	Partial

Differential	Equations	 (PDEs)	are	widely	used	 to	mathematically	model	biological	 tissues	 in	oncology	and	 for	 liver	conditions,	 such	as	hepatitis		[25].	For	HIV,	a	 system	of	coupled	PDEs	on	a	 regular	grid	has	been	analysed	 	 [26],

assuming	viral	diffusion	and	spatial	dependence	of	healthy	cell	production	given	by

In	 outline,	 the	 system	 described	 by	 Eqs.	 (3)	 is	 almost	 identical	 to	 that	 of	 Eq.	 (1).	 Additional	 here	 is	 the	 dependency	 of	 the	 recruitment	 rate	 of	 healthy	 cells	 on	 grid	 location,	 and	 a	 viral	 diffusion	 term	 with	 diffusion

coefficient	 and	Laplacian	 .

Moreover,	the	PDE	approach	is	not	limited	to	modelling	spatial	dependency.	In		[27],	for	example,	the	authors	use	a	partial	model	derived	from	that	of	basic	ODE	form	to	reflect	the	age-dependent	variation	of	infectiousness	and

burst	rates	of	the	infected	cell	compartment,	thus	permitting	more	in-depth	analysis.

Simple	ODE	forms	have	been	extended	also,	by	inclusion	of	terms	to	reflect	intracellular	delay	behaviour		[28].	These	Delay	Differential	Equation	extensions	(DDE),	despite	some	advantages,	are	not	widely	used	in	the	HIV

context,	however,	possibly	because	they	are	less	tractable	to	mathematical	analysis.

Finally,	 it	 is	worth	noting	that	biological	systems	are	inherently	complex	with	very	large	number	of	variables	and	with	parameter	estimates	difficult	to	obtain,	(not	least	as	these	vary	between	subjects	or	are	influenced	by

unknown	factors).	A	not	unreasonable	assumption	for	simplification	is	that	some	model	properties	are	stochastic.	Stochastic	Differential	Equation	systems,	where	ODE	models	are	augmented	by	inclusion	of	probabilities	ascribed	to

given	events,	have	been	considered,	e.g.		[29],	where	the	authors	analyse	stochasticity	in	infection	and	inter-patient	variation	in	early	HIV	onset.

In	summary,	ODE-type	models	can	provide	a	good	approximation	to	some	aspects	of	HIV	 infection	and	have	been	widely	used	for	biological	systems,	permitting	explicit	 (in	some	cases)	description	of	biological	properties.

Shortcomings,	in	terms	of	biological	realism,	may	be	compensated	by	versatility	and	improved	tractability	for	mathematical	analysis,	together	with	availability	of	powerful	numerical	solution	methods.

However,	attempting	to	optimise	biological	realism,	using	DE	model	variants,	can	pose	challenges.	For	example,	despite	the	arguably	higher	degree	of	realism	of	the	model	defined	by	Eq.	(2),	its	scope	is	more	constrained	than

that	of	Eq.	(1).	This	not	least	because	components,	such	as	latent	reservoir	size,	are	difficult	to	determine		[5],	so	that	obtaining	reliable	clinical	data	is	typically	non-trivial,	as	highlighted	in	Section		2.	Together	with	the	increased

number	of	(patient-specific)	parameters,	this	hampers	application	of	the	model	for	inverse	problem	approaches.	Parameter	values	are	thus	assumed	to	be	constant	and	are	usually	taken	from	published	literature.	Furthermore,	the

higher	the	complexity,	the	less	tractable	to	direct	mathematical	analysis,	so	that,	despite	improved	realism,	the	more	sophisticated	DE	models	are	mainly	used	for	theoretical	studies,	e.g.	to	assess	the	impact	of	variations	of	parameter

values	or	the	model	structure,	(see	e.g.		[30]	for	a	recent	review).

1.3	Modelling	HIV:	bottom-up
The	top-down	approach	described	above	derives	fundamental	relations	for	a	specific	system,	 including	further	detail	as	more	biological	knowledge	 is	 incorporated.	However,	biological	organisms	consist	of	distinct	entities

operating	over	multiple	scales,	from	genes	and	individual	cells	to	organs,	with	emergent	behaviour	at	fundamental	levels	contributing	to	that	of	the	overall	system.	A	bottom-up	modelling	approach	takes	account	of	changes	to	these

separate	entities	to	infer	outcomes	overall.	Therefore	bottom-up	approaches	appear	to	be	well-suited	to	model	biological	systems	on	the	premise	that	the	underlying	mechanisms	are	known	in	sufficient	detail.	These	concepts,	however,
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are	less	readily	described	in	mathematical	terms	(as	for	models	of	DE	type),	but	do	obey	simple	rules.

An	intermediate	approach	considers	ODE	models,	described	by	continuous	variables,	where	these	are	considered	to	be	discrete	entities	with	formation	and	deletion	events	controlled	by	stochastic	rules.	Similar	mechanisms	to

that	of	ODE	apply	but	rates	are	treated	as	probabilities.	A	popular	algorithm		[31],	proposed	to	implement	such	stochastic	simulations	for	chemical	reactions,	has	been	applied	also	to	HIV		[32].	Interestingly,	results	of	the	stochastic

simulation	approach	those	of	ODE	equivalents	when	the	number	of	modelled	entities	is	large,	(mean	field	approximation),	suggesting	that	the	former	may	be	particularly	useful	for	initial	or	relatively	low	viral	loads,	as	found	for	early

(or	potentially	resurgent)	HIV	infection,	which	is	of	interest	here.

The	Cellular	Automata	(CA)	formalism	was	originally	conceptualised	as	a	way	of	representing	and	computing	change	in	the	human	nervous	system		[33].	Models	do	not	rely	on	a	global	system	of	differential	equations	but	on	a

set	of	local	rules	applied	to	sites	on	a	regular	grid	(or	lattice),	in	which	each	individual	site	is	updated,	depending	on	neighbouring	site	status.	The	behaviour	of	such	models	is	similar	to	processes	in	real	biological	systems	where	cells

act	as	separate,	independent	entities,	but	are	influenced	by	signals	coming	from	their	neighbourhood.	Since	cells	are	usually	considered	to	be	fixed	relative	to	each	other,	these	models	provide	a	means	to	explore	effects	of	spatial

heterogeneity	of	infection	within	solid	tissues,	where	viral	particles	are	more	likely	to	interact	with	neighbouring	cells.	This	model	form	therefore	relies	on	similar	assumptions	to	those	for	PDEs,	while	assuming	a	bottom-up	view	by

observing	each	entity	independently,	where	these	act	without	supervisory	control,	unlike	the	top-down	case.

CA	models	have	been	used	also	to	model	certain	aspects	of	the	immune	system		[34]	and	have	been	extended	to	HIV		[35].	With	some	refinements,	it	has	proved	possible	to	reproduce	the	time	course	of	HIV	infection		[36],	to

expand	this	subsequently	to	include	treatment		[37],	the	latent	viral	reservoir		[38]	and	different	classes	of	drugs		[39,40].	One	widely-cited	example	for	HIV	has	been	the	model	of	Zorzenon	dos	Santos	et	al.		[36],	which	can	be	used	to

reproduce	the	three	phases	of	HIV	infection	with	a	simple	set	of	rules.	This	is	covered	in	greater	detail	in	Section		3.

More	elaborate	bottom-up	approaches	include	Agent	Based	Models	(ABM),	which	explicitly	examine	individual	entities	with	specific	properties	and	enable	more	complex	rules	representing	an	extension	of	the	CA	formalism.

Agents	are	able	to	act	 independently	and	roam	the	model	space,	giving	a	more	realistic	representation	of	a	biological	system	from	the	biologist’s	point	of	view.	Several	versions	have	been	applied	to	HIV,	 (see		[41]	and	references

therein).

Using	bottom-up	models,	the	time-course	of	basic	entities,	(such	as	susceptible	and	infected	cells		[36],	and	immune	system	properties		[42],	amongst	others),	can	be	followed—as	with	ODE	models.	Furthermore,	the	emergence

of	 these	properties	 can	be	observed	directly,	 enabling	analyses	of	 specific	 entity	 contributions,	which	are	not	 accessible	 in	 formula-based	ODE-type	models.	However,	 a	detailed	knowledge	of	 the	processes	underlying	 the	model

assumptions	is	necessary,	which	is	often	more	difficult	to	obtain	than	the	broad-based	view	for	top-down	modelling.

In	consequence,	bottom-up	models	typically	rely	on	numerical	methods	for	solution,	where	these	are	frequently	computationally	demanding,	requiring	e.g.	parallelisation	and	related	techniques,	such	as	grid	computing		[43].

However,	given	our	growing	knowledge	of	biological	mechanisms	involved	in	HIV-infection	and	advances	in	computing	technology,	we	believe	that	these	model	forms	deserve	further	consideration.	Therefore,	the	primary	focus	here	is

the	use	of	these	alternative	models	for	HIV	treatment	interruption	to	date,	together	with	suggestions	on	how	selected	bottom-up	models	may	be	plausibly	extended.	We	take	a	broad	view	on	ways	in	which	these	models	can	be	used	to

explore	implications	for	interrupted	HIV	treatment.

2	Treatment	interruption	modelling
A	review	of	purely	DE-based	models,	while	attractive	from	the	point	of	view	of	coherence	and	comparison,	neglects	other	less	common	approaches	and	their	achievements.	A	contextual	overview	of	top-down	and	bottom-up

approaches	has	not,	to	our	knowledge,	previously	been	attempted	for	HIV	treatment	modelling.

Given	the	common	criticisms,	levelled	at	representation	of	biomedical	systems,	special	attention	is	paid	to	the	degree	of	biological	realism	built	into	the	model	structures	for	individual	studies,	(in	so	far	as	this	is	made	explicit).

The	basis	for	parameter	estimation	and	the	use	made	of	clinical	data	are	examined	also,	with	a	view	to	highlighting	these	key	study	aspects,	in	order	to	suggest	directions	for	(and	constraints	on)	future	research.

2.1	Model	properties
The	systematic	approach,	used	for	model	assessment,	based	on	predefined	criteria,	(see	Table	1),	includes	general	model	properties,	representation	of	key	biological	and	physiological	features,	and	use	of	clinical	data	within	the

study.

Table	1	Biological	features	implemented	against	model	formalism.

Formalism Total	number	of	models Models	including	biological	features



Immune	response Resistance Pharmacology Latent	reservoir Spatial	aspects

ODE 35 14 20 12 13 0

ABM 5 5 0 0 5 5

Exponential 1 0 0 0 0 0

SDE 1 0 1 0 0 0

Stoch.	Sim. 2 0 2 1 2 0

In	total,	44	separate	modelling	studies	were	identified,	(see	Table	1).	The	degree	of	biological	realism	varied	greatly	across	models	examined.	Earlier	studies	of	treatment	interruptions	were	published	over	the	time	period	from

2006	 to	2010,	with	an	almost	equal	number	appearing	 in	 the	 last	5	years,	 indicating	 that	 the	 topic	 is	 still	 actively	discussed	 in	 the	modelling	community.	Commonly-implemented	 features	were	drug	 resistance,	a	 latent	 reservoir

compartment,	immune	response	and	pharmacology.	In	contrast,	spatial	aspects	were	much	less	frequently	considered,	which	is	not	surprising	given	the	‘well-mixed’	assumption	of	ODE	models.

With	respect	to	model	purpose,	most	analyses	(25	studies)	were	mathematical	and	of	ODE	type,	e.g.	analysis	of	Filippov	systems		[44],	or	involved	combining	mathematical	analysis	with	numerical	solutions		[45,46].	The	common

aim	of	the	studies	identified,	was	to	obtain	threshold	settings	of	model	properties.	In	the	case	of	treatment	interruptions,	these	typically	include	baseline	viral	load	or	interruption	schedules,	which	keep	viral	rebound	within	certain

limits.	Model	parameters	were	usually	based	on	values	obtained	from	previously	published	studies,	where	these	were	derived	from	basic	model	forms	or	estimated	based	on	clinical	findings	(see	e.g.		[19]).

In	addition,	a	number	of	publications	(10	studies)	deal	with	so-called	optimal	control	approaches.	Following	principles	of	control	theory,	the	models	describe	controlled	system	output,	usually	pertaining	to	viral	load,	or	number

of	 infected	or	healthy	cells.	Treatment	acts	as	an	external	 input.	Various	designs	have	been	proposed,	 from	that	of	continuous	dosage		[47],	 to	discrete	drug	administration		[48].	Once	again,	model	parameters	were	based	on	 the

literature.

A	novel	 optimal	 control	 approach,	 for	 observation	of	 treatment	 interruptions,	has	been	 reported	also	by		[49].	The	Castiglione	et	al.	 C-IMMSIMM	model	 is	 agent-based	 and	 includes	 a	 very	 detailed	 reproduction	 of	major

functions	 of	 the	 immune	 system.	 Different	 immune	 cell	 types,	 such	 as	 various	 T-cells	 and	Macrophages	 are	 modelled	 as	 moveable	 agents,	 acting	 on	 a	 simulated	 section	 of	 a	 lymph	 node,	 (as	 spatial	 component).	 The	 authors

demonstrated	that	their	model	could	be	used	to	calculate	optimal	schedules	for	model	instances	under	specified	conditions,	with	pre-tuned	parameters	termed	‘virtual	patients’.

This	successful	application	of	a	model,	following	bottom-up	formalisms	for	treatment	interruptions,	has	motivated	the	experiments	described	in	the	following	sections,	in	which	potential	for	augmentation	is	also	explored.

Before	we	go	into	further	detail,	we	will	briefly	discuss	the	issue	of	availability	of	suitable	clinical	or	experimental	data.

2.2	Data	limitations	of	Structured	Treatment	Interruption	(STI)	models
Data,	collected	during	clinical	studies	for	STI	evaluation,	e.g.		[15],	were	found	to	be	insufficient	to	provide	precise	time-course	information	on	properties	required	for	accurate	modelling.	In	general,	clinical	study	criteria	focus

on	different	outcomes	of	specific	treatment	regimes,	(such	as	interruption	schemes	or	similar).

A	small	sub-	group	sub-group	(nine),	 of	 the	modelling	 studies	 identified,	 used	 clinical	 data	 to	 estimate	parameters	 of	ODE	models.	We	 found	 that	 clinical	 datasets	were	 sourced	 from	 studies,	 conducted	over	 the	 timespan,

2000–2006.	We	 identified	 six	 separate	clinical	datasets		[14,50–54],	 common	 to	 the	 sub-group	of	nine	 studies.	Frequently-used	data	 included	 those	 from	 the	AutoVac	 study		[51],	 in	which	12	patients	were	 subjected	 to	 a	 series	 of

treatment	interruptions.	Cases	of	model	calibration,	based	on	a	different	dataset	to	that	used	for	calibration,	were	rare.	Only	one	study	was	found		[49],	which	sought	to	validate	the	applied	model	in	a	qualitative	way,	using	previously

published	data		[55].

The	datasets	(identified	above)	provide	a	limited	view	on	disease	progression	and	outcomes	by	current	criteria,	not	least	since	assay	techniques	have	evolved	in	terms	of	sensitivity,	detectable	cell	types	and	virus	subspecies.

Moreover,	 typically	only	viral	 load	has	been	measured	over	 time,	so	 that	parameter	estimation	relates	 to	basic	model	 types.	Nevertheless,	 these	datasets	offer	 the	 finest-grained	trajectories	of	patient-specific	data	 for	 interrupted

treatment	to	date.	More	recent	datasets	with	appropriate	granularity	have	not	been	identified	by	this	review.

This	scarcity	of	experimental	data	may	explain	the	relatively	infrequent	mention	in	the	literature	of	more	complex	top-down	model	forms,	due	to	the	difficulty	of	obtaining	reliable	parameter	estimates.	Furthermore,	treatment

interruptions	can	follow	quite	varied	patterns,	or	be	subject	to	different	rules	if	structured,	which	also	affects	model	parameterisation.



2.3	Additional	experiments
A	series	of	experiments	for	selected	examples	of	top-down	and	bottom-up	approaches	were	implemented	using	descriptions	from	literature,	or	by	means	of	code	obtained	from	the	author,	(where	accessible).	For	the	top-down

formalism	we	used	the	ODE	model,	reported		[22],	and	given	in	Eq.	(1)	as	a	reference,	since	this	provided	a	trade-off	between	biological	realism	and	complexity.	As	examples	for	the	bottom-up	approach,	we	implemented	several	Cellular

Automata	models	[37–39],	based	on	the	model	proposed	by	Zorzenon	dos	Santos	et	al.		[36],	which	successfully	reproduced	the	three-phase	dynamics	of	HIV.	We	chose	these	model	types	to	emphasise	localised	spatial	aspects	of	HIV

infection,	which	contribute	to	the	immune	system	interactions	(as	referred	to	in	C-IMMSIMM		[49]).

In	the	original	Zorzenon	dos	Santos	et	al.	model		[36],	HIV	infected	cells	are	represented	by	sites	on	a	square	lattice	of	otherwise	healthy	cells	and	can	infect	cells	in	their	neighbourhood.	Infected	cells	lose	potential	to	infect

and	eventually	die	after	a	fixed	number	of	time	steps.	Dead	cells	may	regenerate	to	healthy	cells	or	become	infected,	with	given	probability,	upon	regeneration.	Over	time,	regular	structures	of	infected	cells	form	over	the	lattice.	A

mean	field	approximation	of	the	cell	states	over	time	gives	a	qualitative	representation	of	the	time-course	of	HIV	infection.

Its	remarkable	properties	motivated	Burkhead	et	al.		[56],	to	conduct	a	thorough	mathematical	analysis	of	the	Zorzenon	dos	Santos	et	al.	model.	Amongst	other	findings,	they	postulated	simplified	models	for	each	of	the	HIV

phases	reproduced	by	the	model.	For	the	primary	phase,	they	found	that	an	approximate	quadratic	relation	applied,	while	the	second,	(latent)	phase	was	found	to	depend	on	the	formation	of	‘chronic	sources’	of	infected	cells	which	act

as	drivers	in	spreading	infection.	The	third	phase,	however,	which	denotes	transition	to	onset	of	AIDS	as	healthy	cell	levels	decline,	was	found	to	follow	a	radically	different	pattern.	The	authors	state	that,	in	this	phase,	each	lattice	site

can	be	described	as	an	independent	Markov	Chain,	where	state	changes	depend	only	on	the	last	state	of	the	chain	(or	site)	and	not	on	those	of	neighbouring	cells,	as	for	the	previous	two	phases.	Based	on	this	formalism,	the	authors

argue	that	antiretroviral	therapy	reduces	the	transition	probabilities	from	healthy	to	infected	states	(for	RTI	drugs)	and	increases	death	rates	for	cells	that	have	an	infected	state	(for	PI	drugs).	By	analysing	the	stochastic	matrix	of	the

Markov	chain,	the	effect	of	drug	intervention	could	thus	be	quantified.	The	approach	was	recently	analysed	in	more	detail	by	Hawkins	et	al.		[57].	However,	no	forms	of	interrupted	treatment	were	considered	in	either	case,	nor	were

findings	explicitly	used	to	infer	biological	outcomes	or	make	predictions.

More	recently	also,	a	set	of	PDEs	have	been	inferred	from	the	Zorzenon	dos	Santos	et	al.	model		[58],	and	used	to	simulate	numerically	the	spatial	distribution	of	infected	cells	inside	a	lymph	tissue	patch.	Conclusions	on	points

of	stability	were	drawn.	However,	the	authors	emphasize	emphasise	both	the	complexity	of	the	resulting	model,	(which	also	does	not	consider	any	treatment	effects),	and	the	difficulty	in	obtaining	stable	numerical	solutions.

In	general,	therefore,	treatment	interruptions	have	received	little	attention	in	investigations	of	the	Zorzenon	dos	Santos	et	al.	model,	with	the	notable	exception		[59],	which	builds	on	the	Sloot	et	al.	formulation		[37],	to	optimise

treatment	regimes.	Unfortunately,	no	detailed	analysis	of	this	model		[37],	in	the	context	of	treatment	interruptions	has	been	reported.	In	consequence,	the	models	implemented	here,	while	derived	from	the	Zorzenon	dos	Santos	et	al.

baseline,	 explicitly	 consider	 different	 ways	 of	 including	 treatment.	 These	 are	 described	 in	 the	 following	 sections	 and	 are	 then	 further	 adapted	 (for	 both	 top-down	 and	 bottom-up	 approaches)	 to	 support	 structured	 treatment

interruptions.	Parameter	estimates	were	obtained	from	the	literature.

3	Results	and	discussion
3.1	Results

In	 our	 experiments,	 the	 effect	 of	 a	 treatment	 interruption	 of	 8	 weeks	 on	 the	 system,	 otherwise	 under	 treatment,	 was	 modelled.	 Results	 were	 obtained	 as	 either	 a	 numerical	 solution	 of	 the	 ODE	 or	 as	 the	 mean	 field

approximations	for	the	CA	model.

Fig.	1	(top	section)	shows	how	an	ODE	model,	(Eq.	(2)—type	given	by		[22])	behaves	when	treatment	effectiveness	is	temporarily	lowered.	A	rapid	increase	in	viral	load	and	number	of	infected	cells	can	be	observed	at	the	time	of

interruption,	as	well	as	a	delayed	cytotoxic	response.	However,	after	treatment	re-initiation,	the	system	assumes	a	state	almost	identical	to	pre-interruption.



Results	of	a	similar	experimental	setup	using	three	different	CA	models	are	shown	in	Fig.	1	(bottom	section).	In	the	cases	of	two	of	the	three	CA	models,	simulated	treatment	caused	a	rapid	increase	of	the	viral	number,	(see

also	Fig.	1),	which	corresponds	to	the	effect	of	viral	rebound	in	terms	of	clinical	observation.	Due	to	the	discrete	nature	of	the	CA	approach,	trajectories	are	less	smooth	than	for	the	continuous	ODE	model.	Remarkably,	the	Shi	et	al.

model		[38],	shows	no	significant	response	despite	being	the	only	model	explicitly	including	a	latent	reservoir.	However,	reservoir	activation,	as	implemented	in	the	model,	appears	to	be	slow	compared	to	interruption	duration.	For	the

remaining	models,	viral	rebound	is	marked	and	follows	on	rapidly	from	initial	interruption,	with	viral	load	doubling	(or	concentration	of	infected	cells	increasing	by	one	to	several	hundred	percent),	and	proliferation	of	virus	checked

only	on	re-introduction	of	treatment.

The	different	implementations	of	treatment	and	effects	of	interruption	for	the	different	CA	models	are	considered	in	more	detail	below.

3.1.1	Treatment	modelling
Since	CA	models	feature	diverse	response	functions	to	treatment,	trajectories	of	viral	load	behave	differently	for	the	same	‘effectiveness’	setting.	For	the	Sloot	et	al.	model		[37],	an	exact	response	function	could	not	be	obtained,	while	assuming

‘constant	effectiveness’	caused	an	increase	in	infected	cell	concentration,	despite	‘highly	effective’	treatment.	However,	model	rules	for	treatment	(reduction	of	susceptibility/infectiousness	on	a	stochastic	basis)	were	found	to	be	similar	to	the	Gonzalez

et	al.	model.	For	reasons	mentioned	here,	therefore,	the	Sloot	et	al.	model	was	excluded	from	further	analysis.	Regarding	the	two	remaining	models,	the	respective	authors	approached	implementation	of	treatment	response	differently.

In	 the	Gonzalez	et	al.	model		[39],	 the	response	 function	 takes	 the	 form	of	a	distribution,	controlled	by	baseline	effectiveness	and	 infected	cell	 concentration	at	 treatment	 initiation,	 i.e.	its	maximum.	This	 corrected	effectiveness	 controls	 the

probability	of	a	healthy	cell’s	entry	to	a	protected	state,	(applicable	to	any	healthy	cell	on	the	lattice).	This	behavior	behaviour	was	found	to	interfere	with	a	characteristic	of	the	original	Zorzenon	dos	Santos	et	al.	model		[36],	namely	the	formation	of	regular,

wave-like	structures,	which	reflect	the	slow	decline	until	non-recoverable	depletion	of	healthy	cells,	as	described	in		[56].	Since	random	healthy	cells	may	become	protected	in	the	Gonzalez	et	al.	model,	these	act	as	a	kind	of	wave	breaker	because	the

remaining	rules	(e.g.	for	infected	cells)	remain	unchanged.	Fig.	2	(top)	depicts	the	dissolution	of	regular	structures	after	a	few	steps	under	simulated	treatment,	(showing	‘Markovian’	behaviour	as	suggested	in		[56]).	Replication	of	infected	cells	is	ongoing,

despite	a	high	level	of	suppression	through	treatment,	which	is	not	immediately	evident	from	the	mean	field	approximation,	as	in	Fig.	1.	This	model	does	not	include	latently-infected	dormant	cells,	which	are	also	thought	to	contribute	to	the	reservoir		[4].

Fig.	1	Simulation	of	a	treatment	interruption	(shaded	grey)	and	subsequent	re-initiation	using	an	ODE	model	(top)	and	three	bottom-up	models	using	the	CA-approach	(bottom),	baseline	treatment	effectiveness	is	set	to	95%,	average	of	90	runs	for	CA	models.



The	Shi	et	al.	model		[38],	also	features	an	additional	state	of	latent	infection,	not	present	in	the	original	Zorzenon	dos	Santos	model.	Latent	cells	have	a	long	discrete	latency	period,	after	which	they	become	actively	infected.	Treatment	in	the	Shi

et	al.	model	is	handled	by	way	of	reducing	susceptibility	of	healthy	cells,	while	avoiding	a	‘protected	cell’	state	and	also	by	taking	into	account	spatial	context	of	the	cells.	Here,	an	exponential	response	function	effectively	controls	the	size	of	neighbourhood

around	healthy	cells,	depending	on	treatment	effectiveness	and	duration.	Smaller	neighbourhoods	decrease	the	likelihood	of	infection	since	infected	cells	need	to	be	close	to	healthy	cells.	Under	treatment,	disruption	of	the	characteristic	Zorzenon	dos

Santos	et	al.	wave	structures	can	also	be	observed	as	in	the	Gonzalez	et	al.	model	(Fig.	2,	bottom).

3.1.2	Treatment	interruption
Considering	 the	 impact	 of	 treatment	 interruption	 in	 the	Gonzalez	 et	al.	model		[39],	 lattice	 structure	 appears	 to	 preserve	 infected	 cell	 configurations	 prior	 to	 treatment	 initiation.	 Clusters	 of	 infected	 cells	 can	 continue	 to	 propagate	 during

treatment.	In	consequence,	control	of	further	spread	through	protected	cell	states	is	lost	upon	treatment	interruption	and	infected	cells	re-occupy	this	space,	with	rapid	rebound	of	infected	cell	numbers.	Fig.	3	shows	different	baseline	levels	of	infected-cell

concentrations	due	to	different	 treatment	 initiation	 times.	After	simulated	 treatment	 initiation,	viral	 levels	stabilise	at	a	certain	 level,	which	appears	 to	depend	on	baseline	viral	 levels.	After	simulated	 treatment	 interruption	 (causing	an	effect	of	viral

rebound	as	shown	in	Fig.	1),	and	subsequent	re-initiation	with	the	same	effectiveness	as	that	in	pre-interruption,	viral	levels	stabilise	again.	Interestingly,	these	levels	appear	to	be	raised	permanently	due	to	the	interruption.

For	the	Shi	et	al.	model,	regular	wave-like	structures	for	healthy	cell	numbers	reappear	after	 interruption	ends	thus	preserving	model	behaviour,	(see	Fig.	2).	The	inclusion	of	 latently	 infected	cells,	which	are	not	present	 in	the	other	models,

contributes	to	this	behaviour.	However,	significant	viral	rebound	does	not	occur	(as	seen,	Fig.	1).	This	effect	appears	to	be	related	to	the	parameter	value	for	latency	activation	rate	and	the	nature	of	the	response	function	chosen	by	Shi	et	al.	which	reflects

slow	re-establishment	of	the	virus,	in	contrast	to	the	other	models.

Fig.	2	2D	lattice	configuration	of	two	CA	models	(A,	B,	C:	Gonzalez	et	al.;	D,	E,	F:	Shi	et	al.)	at	different	time	points	during	simulated	treatment	and	interruption:	pre-treatment	(A,	D)	at	step	200,	shortly	after	treatment	initiation	(B,	E)	at	step	205	and	shortly	after	interruption	(C,	F)

at	step	410.	Green	cells	denote	healthy	states,	while	orange	and	yellow	indicate	infected	states.	Pre-treatment	states	show	wave-like	structures,	dissolved	during	treatment.	(For	interpretation	of	the	references	to	colour	in	this	figure	legend,	the	reader	is	referred	to	the	web	version

of	this	article.)

Fig.	3	Effect	of	the	time	of	treatment	initiation	on	infected	cell	concentrations.	Treatment	initiation	was	simulated	from	100	to	250	time	steps,	each	represented	by	a	different	plot.	Treatment	interruption	occurred	at	step	400	for	8	time	steps.



3.2	Discussion
3.2.1	Clinical	data	use	and	biological	mechanisms

The	 evidence,	 from	 comprehensive	 search	 of	 the	 literature,	 is	 that	 clinical	 data	 are	 rarely	 used	 in	 these	 modelling	 efforts.	 Even	 where	 available,	 data	 for	 HIV	 treatment	 interruption	 are	 dated,	 scarce	 and	 insufficiently	 fine-grained	 for

parameterisation	of	complex	model	forms.	Typically,	those	datasets,	which	are	widely	cited,	are	more	than	a	decade	old	and	feature	few	measured	biomarkers.	No	newer	studies	appear	to	have	been	conducted	to	provide	more	detailed	measurements	over

the	short	time	intervals	suitable	for	rigorous	calibration	and	validation	of	any	dynamic	model.	Given	the	dearth	of	new	data,	it	is	possible	that	the	truncation	of	the	SMART	study		[15],	has	discouraged	further	efforts	to	investigate	treatment	interruptions	in

human	subjects.	In	the	past	decade,	however,	assays	for	biomarkers	have	become	more	sensitive	and	some	data	on	organs,	other	than	blood,	are	now	available		[60].

3.2.2	Model	forms
The	almost	exclusive	reliance	on	top-down	approaches,	to	model	diverse	aspects	of	HIV	treatment	interruptions	and	adherence,	is	marked.	Since	models	are	built	from	the	same	baseline	(Eq.	(1))	this	is	not	surprising,	and	their	application	to	viral

infection	problems	is	wide-ranging.	Rough	agreement	with	experimental	data	has	been	obtained,	e.g.	in	investigation	of	viral	and	immunological	properties	of	blood.	However,	all	DE	models	make	similar	compromises	and	provide	limited	representation	of

the	detailed	immune	system	or	become	analytically	non-tractable	on	inclusion	of	additional	features.

Some	important	effects	of	HIV	treatment,	 in	particular,	are	rarely	considered	in	such	models.	For	example,	clinical	evidence	suggests	that	HIV-infected	cells	mainly	reside	 in	 lymph	tissue		[4]	which	resembles	structure	similar	to	solid	tissue.

Lowered	drug	concentrations,	caused	by	poor	penetration	into	these	highly	infected	areas,	have	been	found	to	be	insufficient	to	suppress	viral	propagation	completely		[6].	This	evidence	suggests	a	highly	heterogeneous	distribution	of	HIV	infection	in

different	tissues,	even	of	the	same	type,	e.g.	lymph.	Therefore,	localised	effects	should	be	taken	into	account	in	any	model	postulated,	(see		[61]	and	references	therein).

Typically,	simulations	are	employed	for	both	these	more	complex	systems	of	equations	and	for	bottom-up	approaches,	where	the	latter	have	been	applied	more	recently	also	to	the	problem	of	treatment	interruption.	In	particular,	the	success	of	the

C-IMMSIMM	model	for	related	questions	in	immunological	modelling,	suggests	that	bottom-up	CA	and	agent-based	approaches	offer	a	viable	alternative	for	modelling	HIV	treatment	interruption.	This	notion	is	reinforced	by	the	growing	knowledge	of

biological	mechanisms	 involved	 in	HIV	 infection	 and	 advances	 in	 computing.	 Since	C-IMMSIMM	historically	 puts	 strong	 emphasis	 on	 faithful	 reproduction	 of	major	 functions	 of	 the	 immune	 system,	 this	 suggests	 that	 a	 plausible	 strategy	 for	model

enrichment	for	treatment	interruption,	should	involve	different	interruption	intervals	and	duration,	as	well	as	e.g.	pharmacological	factors,	subjected	to	rigorous	sensitivity	analysis.

Partial	Differential	Equations,	which	are	commonly	used	to	describe	spatial	heterogeneity,	e.g.	of	a	patch	of	lymph	tissue,	have	rarely	been	applied	in	the	HIV	context.	Analytical	challenges	for	more	complex	PDE-systems,	as	pointed	out	in		[58],

possibly	contribute	to	this	limited	use.	However,	inference	based	on	simplified	PDEs	can	provide	theoretical	underpinning,	where	only	numerical	solutions	are	otherwise	available,	(as	in	bottom-up	modelling).

Conversely,	rigorous	mathematical	analysis	of	bottom-up	models,	as	described	in	Burkhead	et	al.		[56],	may	provide	improved	descriptions	of	distinct	model	features	and	could	be	used	to	infer	additional	system	properties.

3.2.3	Experiments	with	CA	models
Recent	clinical	evidence,	(as	noted	above),	indicates	that	the	distribution	of	infected	cells,	in	different	parts	of	the	lymphatic	system,	may	be	highly	heterogeneous.	Rapid	viral	rebound	to	pre-treatment	concentration	appears	to	reflect	impaired

protection	from	treatment	interruption	and	healthy	cell	depletion	on	the	lymphatic	tissue	scale.

The	Zorzenon	dos	Santos	et	al.	model	and	its	modifications		[36–39],	aim	to	describe	localised	effects	on	a	matrix	of	lymphatic	tissue.	However,	authors	do	not	relate	the	matrix	to	specific	organs	(e.g.	single	lymph	nodes)	in	detail;	in	consequence,

these	models	appear	to	represent	a	generalised	overview	of	lymphatic	tissues	inside	an	organism.	Furthermore,	no	CA	model,	implemented	here,	has	been	designed	explicitly	to	investigate	treatment	interruptions,	so	their	capability	for	this	extension	must

be	critically	considered.

The	model	of	Shi	et	al.		[38],	offers	some	potential,	since	it	defines	a	latently-infected	cell	state.	However,	the	choice	of	an	exponential	treatment	response	function	does	not	appear	suitable	for	interruption	study,	since	it	assumes	a	fixed	time	period

(e.g.	300	weeks)	for	treatment	initiation,	and	does	not	take	into	account	the	possibility	of	repeated	initiations.	Some	scope	for	possible	alternatives	does	exist	and	includes	specification	of	functions,	which	depend	on,	and	respond	to,	variable	properties	such

as	e.g.	cell	counts.

For	the	 Gonzalez	et	al.	model		[39],	the	configuration	of	infected	cells,	occupying	the	lattice,	appears	to	play	a	major	role	in	viral	rebound.	During	treatment,	ongoing	replication	and	latently-infected	cells	are	still	present	on	the	lattice,	despite

low	viral	loads.	Upon	interruption,	these	latently-infected	cells	rapidly	‘reclaim’	uninfected	neighbours,	resulting	in	significant	rebound.	Essentially,	the	behaviour	of	the	model	indicates	that	the	effectiveness	of	the	viral	reservoir	is	influenced	by	its	spatial

occupation	of	the	lattice,	which	offers	interesting	possibilities	for	further	research.	Furthermore,	the	interruption-induced	increase	of	the	areas	containing	infected	cells	on	the	lattice	appears	not	to	be	reversed	by	subsequent	treatment	re-initiation.	The

aspect	of	infection	leaving	an	‘imprint’	on	the	infected	tissue	has,	to	our	knowledge,	not	been	considered	before	in	HIV	treatment	modelling	and	appears	to	be	a	feature	of	lymph	involvement.	Interestingly,	recent	experimental	results	also	suggest	a	strong

CA	



relationship	between	ongoing	HIV	infection	and	structural	damage	of	lymphatic	tissues,	which	can	be	delayed	but	not	reversed	through	ART		[62].

In	addition,	introduction	of	stochastic	treatment	effects	into	the	deterministic	Gonzalez	et	al.	base	model		[36],	causes	overall	behaviour	changes,	namely	disruption	of	wave-like	patterns	to	that	of	disparate	or	unordered	spread	of	infected	cells.

This	transition	has	been	found	to	be	irreversible	in	the	experiments	we	have	conducted,	except	for	very	low	numbers	of	infected	cells.	According	to	the	analysis	by	Burkhead	et	al.		[56],	lattice	sites	in	clumped	areas	of	infection,	follow	behaviour,	which	can

be	related	to	that	of	independent	Markov	chains,	which	corresponds	to	our	findings.	Their	results	also	show	that	introduction	of	simulated	treatment	leads	to	a	more	aggressive	disease	progression	due	to	the	onset	of	‘mathematical	chaos’.	However,	the

behaviour	described	relates	to	homogeneous	treatment	and	infection	of	the	lattice,	so	that	Markovian	behaviour	applies	throughout.	Heterogeneous	infection	(localised	area	or	shape	of	‘chaotic’	regions)	was	not	considered,	nor	were	(repeated)	treatment

interruptions	 taken	 into	account.	 Incorporating	 these	aspects	 into	 the	Markovian	argument	could	provide	an	 interesting	 target	 for	extension	of	 the	mathematical	analysis.	A	possible	direction	could	 include	assessment	of	 the	 impact	of	 the	 treatment

interruption-induced	change	of	size	and	shape	of	non-Markovian	regions	on	the	long	term-behaviour	of	the	system,	obtained	through	the	stochastic	matrix.	These	shape	and	size	effects	may	account	for	a	correction	to	the	estimates	obtained	under	the

assumption	of	homogenous	infection	and	treatment.

Further,	assessment	of	stochasticity	in	model	rules,	and	how	this	affects	outcomes,	remains	to	be	explored	together	with	choice	of	alternative	response	functions	to	treatment,	ideally	to	include	pharmacological	effects.	Incorporation	of	stochastic

features	in	this	way	implies	use	of	parallelisation	methods,	not	least	for	optimisation	of	the	parameter	space,	together	with	additional	sensitivity	analyses.	Nevertheless,	given	these	and	other	highlighted	potential	refinements,	CA	models	can	offer	further

insight	in	understanding	the	effects	of	HIV	treatment	interruptions.

4	Conclusion
Through	 advancements	 in	 treatment	 regimes,	HIV	 is	 now	 viewed	 as	 a	 chronic	 disease.	However,	 treatment	 interruptions,	 (both	 unstructured	 and	 structured),	 are	 common	 and	 can	 seriously	 disrupt	management	 of	HIV

infection,	with	potentially	fatal	outcome.

Our	review	of	the	literature	has	shown	that	mathematical	(ODE)	models	of	HIV	treatment	interruptions	predominate	and	that	clinical	data	are	rarely	used	in	modelling,	owing	to	their	scarcity	and	poor	granularity.	Extended	DE

models,	such	as	PDEs	have	not	been	widely	used	to	date	and,	while	useful,	present	considerable	challenge	due	to	the	mathematical	treatment	of	perturbations	in	these	systems,	which	require	extensive	numerical	methods.

Given	the	limitations	of	top-down	models	in	terms	of	detailed	representation	of	the	immune	system,	bottom-up	approaches	can	provide	a	viable	alternative	and	offer	additional	insight,	(supported	by	experimental	findings).

While	unified	Agent	Based	approaches	exist	for	immune	system	models,	such	as	C-IMMSIMM	or	SIMMUNE		[42],	treatment	interruptions	have	attracted	limited	attention	in	the	modelling	literature	to	date,	but	remain	an	important

clinical	 concern.	 Of	 particular	 interest	 is	 the	 spatial	 heterogeneity	 in	 lymphatic	 tissues	 of	 both	 infected	 cells	 and	 antiretroviral	 drug,	 the	 distribution	 of	 which	 has	 been	 found	 to	 be	 critical	 in	 recent	 clinical	 studies.	 Our	 own

experimental	results	indicate	that	there	is	an	irreversible	change	in	spatial	structure	of	infection	patterns	in	simulated	lymph	tissue	due	to	interrupted	treatment.	This	may	account	for	the	detrimental	effect,	of	such	interruptions,	to

the	lymphatic	tissues	and	the	immune	system	which,	while	clinically	observed,	has	yet	to	be	clearly	quantified.	Mathematical	analysis	on	the	extended	model,	(possibly	extending	the	approach	of	Burkhead	et	al.		[56])	may	prove	useful

in	obtaining	enhanced	top-down	representation	in	this	context.

In	summary,	extending	the	simple	rules	of	bottom-up	models	(like	CA	and	ABM),	in	the	context	of	HIV	treatment	interruptions,	provides	a	different	perspective	to	that	of	traditional	top-down	models.	Additionally,	it	may	suggest

new	directions	for	investigation	of	changes	in	lymphatic	tissue	structure	from	which	top-down	modelling	quantification	and	analysis	can	benefit.	Augmented	CA	model	sensitivity	analysis	is	clearly	required,	together	with	practical

solutions,	(efficient	parallelisation	and	clustering),	to	meet	computational	demands.	Nevertheless,	it	does	seem	that	revisiting	bottom-up	approaches,	(CA	and	AB	models),	may	contribute	further	insight	to	successful	management	of

HIV	treatment	interruptions.
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Footnotes
1CD4+		T-Lymphocytes	act	as	indicators	to	impairment	of	the	immune	system	due	to	HIV	infection.	Low	levels	of	these	in	blood	are	associated	with	opportunistic	disease	and	onset	of	AIDS.

2CD4+-guided	STI	schedules	for	treatment	interruption	and	re-initiation,	base	decisions	on	the	violation	of	predefined	limits	of	patient	CD4+		count	in	blood.

3‘Effector	cells’	in	the	cellular	immune	system,	after	activation	from	a	naïve	state,	cause	a	cytotoxic	response	to	pathogen.	CD8+		T-cells	is	the	effector	cell	type,	found	to	be	most	effective	in	the	HIV	context.

Highlights

• Treatment	Interruption	models	almost	entirely	Differential	Equation-based	to	date.

• Model	calibration	reliant	on	a	small	number	of	datasets,	more	than	a	decade	old.

• Bottom-up	methods	can	help	enhance	aspects	of	the	problem.

• Cellular	Automata	models	may	give	insights	into	e.g.	latent	reservoir	persistence.

• Treatment	interruptions	though	pose	challenges	to	existing	models	of	either	type.


