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Abstract

The application of remote sensing techniques for WPET mapping in data scarce regions is gaining 

more recognition since it can cover large areas with minimal field observations. Important 

concerns are the generation of high-resolution WPET maps and addressing the question on how 

accurate the results are. This study aims at high resolution (10m) mapping and evaluation of the 

spatial variability of biomass, yield, ET and WPET in the Makanya river catchment using the 

automated Surface Energy Balance Algorithm for Land (pySEBAL) with SENTINEL-2 and 

LANDSAT-8 images, local land use map and locally calibrated leaf area index (LAI) inputs. A 

coupled phenological variability and supervised classification approach on high resolution images 

generated a high accuracy LULC layer which was used to map the WPET in the agricultural lands. 

The pySEBAL results were evaluated in view of local information on crop yields, water allocation 

and agricultural management practices in the different agro-ecological zones within the catchment. 

Calibration of high-resolution satellite LAI generated products with error estimates within 

acceptable levels of uncertainty. The simulated crop yields were in agreement with reported crop 

yields. The results showed relatively high WPET in the highlands and low WPET in the midland 

and lowland areas of the catchment. The latter was attributed to high transmission losses, low 

irrigation efficiencies, poor agricultural practices and pest/disease attack. When applying SEBAL 

in African cultivated catchments, it is highly recommended to use SENTINEL-2 data in addition 

to LANDSAT-8, and to use local information, especially for the ground truthing of land use maps, 

phenology, crop practices and crop yields. 

Keywords: evapotranspiration, Makanya, SEBAL, remote sensing, water efficiency, water 

productivity.



1. Introduction 

Population growth imposes a steady increase in demand for food production around the world, 

which in turn puts a lot of pressure on the limited resources (Mancosu et al., 2015; Gerland et al., 

2014). Particularly in sub-Sahara Africa, a region that will reach 25% of the world’s projected 

population by 2050 (Gerland et al., 2014), water for agriculture and the availability of arable land 

are becoming increasingly scarce (Rockström and Falkenmark, 2015). Studies in the region have 

announced a water crisis with a critical and continuous reduction in freshwater quantity and quality 

exacerbated by climate change effects (Freitas, 2013; Pickering and Davis, 2012; Kula et al., 

2013). A change of strategies in the current water resources management should include better and 

more efficient field management practices (Rockström and Falkenmark, 2015) in order to alleviate 

the water stress in sub-Saharan Africa thus improving agricultural water productivity (WPET). 

Most farming communities rely on rainfed agriculture for their livelihoods and unless 

improvements in WPET are made, projections in the crop water consumption will increase by 70% 

- 90% by 2050 under the current practices (de Fraiture et al., 2006). 

Agricultural Water Productivity (WP) is defined as the crop produce derived from a specific 

volume of water regardless of its source whereas Agricultural Water Productivity (WPET) is 

defined as the crop yield derived from a specific volume of water evapotranspired (Perry et al., 

2009; Kijne et al., 2003). For this study we will limit ourselves to Agricultural Water Productivity 

(WPET). In semi-arid regions, crops consume less than 30% of the rainfall, up to 50% is lost 

through soil evaporation and the rest flows as runoff and recharges groundwater (Rockström and 

Falkenmark, 2015). Farms that are near rivers can benefit from extra water supply through 

irrigation strategies while for distant farms this might be impractical. Mapping WPET at catchment 

scale, can help to identify areas with good and poor water management practices, assess 

effectiveness of the agricultural practices and evaluate the efficiency of rainfed and irrigated 

systems (Zwart et al., 2010). By carrying out WPET mapping, areas of low WPET can be spatially 

highlighted and used as focus for improvements by carrying out better land and water management 

practices (Cai and Sharma, 2010).

With a relatively stable, high population growth rate over the last decade that has been reported to 

be averaging between 6%–7% per annum (World Bank 2016), Tanzania has also exponentially 

reduced the renewable internal freshwater resource from 7862 m3 per capita estimated in 1962 to 



1621 m3 per capita in 2014 (World Bank Database 1962-2014). In addition, the water resource in 

Tanzania is unequally distributed both spatially and temporally and therefore threatening the 

agricultural development and economic growth (URT, 2007). In the context of WPET, it is 

important to know the effective uses of water under the current agricultural practices and aim for 

solutions for crop yield improvement under water stress conditions. Makurira (2010) estimated the 

WPET for crops at field scale; however, little research has been done on the quantification at 

catchment level especially with the recent improvement in the spatial and temporal resolutions of 

satellite images. Increasing water productivity especially at catchment scale is key for improved 

water management through sustainable agriculture, food security and healthy ecosystem 

functioning. The ultimate goal is that cultivation practices meet the present and future challenges 

of agricultural water resource management at both field and catchment scales. Mapping water 

productivity at catchment scale however comes with the challenge of obtaining complete products 

for use to achieve the desired temporal resolutions due to cloud cover interference. Local validation 

of the catchment products has also been a challenge due to difficulties in implementing them along 

with high costs involved of obtaining local data to assist with producing high accuracy catchment 

products. Whenever field measurements are available, upscaling them to catchments has been 

difficult due to the nature of high spatial variability in many catchments.

The use of remote sensing data to determine actual evapotranspiration for irrigation management 

started back in the 1980’s (Jackson, 1984; Jackson et al., 1981; Till and Bos, 1985; Menenti et al., 

1989). However, operational algorithms were not available at that time. Later, Surface Energy 

Balance models were developed for using remote sensing to map evapotranspiration at different 

spatial scales (Bastiaanssen et al., 1998; Stewart et al., 1999; Choudhury et al., 1993; Rango and 

Shalaby, 1998). The Surface Energy Balance Index (SEBI) is an early example which is based on 

the contrast between dry and wet regions by deriving evapotranspiration from evaporative fraction 

(Choudhury and Menenti, 1993). Based on this principle, the Surface Energy Balance Algorithm 

for Land (SEBAL) was developed to map different aspects of the hydrological cycle and therefore 

to estimate the actual crop water consumption (Bastiaanssen et al., 1998). The SEBI model was 

then improved with the introduction of a simplified version, called the Simplified Surface Energy 

Balance Index (S-SEBI) (Roerink et al. 2000). In this algorithm, partitioning of available energy 

into sensible and latent heat fluxes was successfully achieved by establishing a contrast between 

the maximum and minimum surface temperature for dry and wet conditions through the reflectance 



(albedo). Another modified form of the SEBI was later developed and named the Surface Energy 

Balance System (SEBS) by Su. Z (2002). SEBS estimates sensible and latent heat fluxes from 

satellite data and routinely available meteorological data. Most recently, the Mapping 

Evapotranspiration at high Resolution with Internalized Calibration (METRIC) algorithm (Allen 

et al. 2007) was introduced which is a modified version of SEBAL. The METRIC algorithm 

includes the integration of reference ET as computed from ground-based weather data. SEBAL 

has been identified as the most promising approach currently available to estimate 

evapotranspiration. SEBAL can be used without prior knowledge of the existing field conditions 

such as the soils, existing crops and management practices (Bastiaanssen et al., 2005). It also has 

the advantage of requiring minimum ground weather data, making it useful for places with limited 

data such as in some developing countries. With little ground data available, SEBAL can compute 

the surface energy balance components, both at local and regional scales. The innovation part in 

SEBAL is that the surface energy balance modelling uses a near-surface temperature gradient 

which is indexed to radiometric surface temperature. This has eliminated the need for absolute 

surface temperature calibration, which has been a major challenge with operational satellite ET 

(Allen et al. 2011). SEBAL has been widely applied since its creation, around 303 articles and 

review publications have been identified (Scopus Database until July 2017); however just a few 

have been carried out in the sub-Sahara Africa (Kiptala et al., 2014; Andam-Akorful et al., 2014). 

This method has been verified in several climatic conditions for both field and catchment scales 

with typical accuracy at field scale of 85% and 95% for daily and seasonal scales, respectively, in 

over 30 countries worldwide. SEBAL has been used extensively for ET estimation and most 

recently it has been further improved through the pySEBAL system, a complete automated user-

friendly python-based system, to include biomass estimation and mapping for different land use 

classes as well as fields with different irrigation methods at catchment scale (Ahmad et al., 2006; 

Jarmain et al., 2011, 2013; Jarmin and Meijninger, 2012). Most recently, the Sentinel family of 

remote sensing images has been introduced with images with as high as 10-meter resolution. 

Products from interpretation of these images are expected to provide better spatio-temporal 

resolution results which when coupled with other images could provide even more valuable 

information for both local and regional studies. In this study, we investigate the joint use of 

Sentinel-2 and LANDSAT-8 images for high resolution (10 m) ET and WPET mapping using 



SEBAL in a cultivated tropical catchment in Tanzania. Few studies have been evaluating the use 

of Energy Balance Models in cultivated Sub-Saharan tropical catchments.  

Validation of estimated ET results from SEBAL and other RS algorithms is usually achieved using 

field-based ET measurement techniques. Most of these ET measurement techniques are quite 

expensive to implement and require highly skilled and experienced personnel to operate. They also 

require a lot of care during installation and maintenance. Some of the known and widely used ET 

measurement techniques that are also used for validation of remote sensing ET estimates are; the 

Bowen ratio Energy Balance (BREB), soil water balance, Eddy covariance, lysimeters, mass 

balance over large areas, Scintillometers, sap-flow. When correctly installed, operated and ET 

computations correctly done, accurate sub-hourly ET measurements could be achieved of about 

5% for lysimeters, 10% for BREB systems and soil water balance techniques, 10-15% for eddy 

covariance and Scintillometers (Allen et al 2011a). 

This paper presents the application of the recently introduced Sentinel-2 images and the newly 

developed pySEBAL tool for Landsat images to easily map biomass, yield, LAI, and ET in the 

Makanya catchment in Tanzania. It also presents a methodology of applying data fusion techniques 

of Landsat-8 and Sentinel -2 aimed at downscaling the Landsat products to spatial resolutions of 

10-meters, together with field data and local information on water allocation and water 

management practices. The main objectives of this study were (1) to map and evaluate the spatial 

variation of biomass, LAI, yield, ET and WPET in the different agro-ecological zones using the 

Sentinel-2 images and the SEBAL model through its newly developed pySEBAL system for 

Landsat images, (2) to evaluate the results using local information, and (3) to discuss the water 

management practices by linking it to the water and field management practices. 

2. Methodology

2.1 Study area

2.1.1 Location

The Makanya catchment (375 km2) lies within the Pangani river basin, located in the north-eastern 

part of Tanzania. The Makanya River flows between two mountain ridges in the South Pare 

Mountains in the Kilimanjaro region of Tanzania (Figure 1). 



Figure 1: Location of the Makanya river catchment

2.1.2 Climate

The climate is dry sub-humid to semi-arid with a bimodal rainfall pattern having a longer rainy 

season between March and June (Masika), and a shorter rainy season between October and 

December (Vuli) (Enfors and Gordon 2007). The average annual rainfall in the Makanya 

catchment ranges from 500-800 mm per annum (Mul, 2009). The mean minimum temperature 

ranges from 16 to 18°C and mean maximum temperature ranges from 26 to 32°C (Mutiro et al., 

2006). The potential evaporation during the short rain season varies between 1120 and 1610 mm 

and between 870 and 1325 mm during long rain season (Kinoti et al., 2010). 

2.1.3 Agro-ecological Zones

Based on elevation, the catchment stretches across three agro-ecological zones; highlands, 

midlands and lowlands, whereby the climate, ecology and demographics vary among these three 

zones. Highlands (>1350 m a.s.l.) are characterized by having water availability throughout the 

year, agriculture and agroforestry as the main land use, and a high population density. Midlands 

(750 – 1350 m a.s.l.) are distinguished by having hotter and drier areas compared to the highlands, 

landscape is dominated by cropland and bushland for grazing, small-scale farming as well as 

livestock keeping. Lowlands (< 750 m.a.s.l.) exhibit very low rainfall, and therefore crops depend 

on spate irrigation from flash floods, which occurs a few times in the year. Farmers experience 



crop failures due to water shortages making livestock the most important source of livelihood 

(Enfors and Gordon, 2007).

2.1.4 Water allocation practices

In the highlands and midlands, the river water is diverted mainly for supplementary irrigation 

during the wet and dry seasons. This water is also used for domestic and livestock uses. In these 

areas, farmers make use of micro dams constructed for purposes of night storage and providing a 

hydraulic head to supply the downstream farmers in the midlands. Lowland farmers have jointly 

developed a system of diversion canals that are used to divert flood waters into the crop fields. The 

catchment has over 100 hand-dug unlined irrigation furrows mostly made from rudimentary 

materials. Each of the furrows supplies water to a farm land ranging from 0.5 to 400 ha. Total 

water losses in the Makanya catchment irrigation systems have been recorded to be very high, 

ranging  between 75% and 85% (Mul et al., 2011).

Existing agreements among irrigators specify a water sharing system on a rotational basis at 

different spatial scales within the same sub-catchment. In addition, there is a specific agreement at 

sub-catchment level between the highlands and the midlands where the highlands are allowed to 

use the water for irrigation only during the day. At night, water is released to the midlands where 

it can be stored in micro-dams for midlands to use it during the next day. There are no water sharing 

agreements in the lowlands of the Makanya catchment. The water sharing arrangements are 

negotiated through social networks of the smallholder farmers and are therefore built on the social 

ties between the communities up to sub-catchment scale, without the intervention of the national 

authorities. 

2.2 Data collection

2.2.1 Remote sensing data 

Landsat 8 OLI and Sentinel-2 images were used as the remote sensing data for this study. This 

decision was arrived at as the Sentinel products provided the highest spatial resolution of free 

products for land cover, Leave Area Index (LAI), Vegetation Indices (VI), Fraction of Absorbed 

Photosynthetically Radiation (FAPAR), Biomass and yield mapping. Landsat on the other hand 

provides the highest spatial resolution of free thermal band, which is critical for ET estimation 

efforts in small to large areas. Further improvements on the resolution of the thermal band is also 

possible through thermal sharpening using other higher resolution bands within this satellite 



platform. In this study, the spatial resolution of the thermal band was improved through thermal 

sharpening to match the spatial resolution of 30m of the other Landsat products. This thermal 

sharpening procedure is built within the pySEBAL system used for our study.

2.2.2 Meteorological data

Meteorological data that is also required for ET estimation from SEBAL were obtained from the 

local weather station of the Tanzania Meteorological Agency in Same town. More meteorological 

data was also obtained from a weather station within the catchment that had been installed during 

a previous research project. 

The weather data used in this study were; instantaneous air temperature, average air temperature 

over 24 hours, instantaneous relative humidity, average relative humidity over 24 hours, 

instantaneous wind speed at two (2) meter height, average wind speed over 24 hours, instantaneous 

solar radiation and average solar radiation over 24 hours.

2.2.3 Ground measurements

A ground truthing campaign was carried out in the Makanya catchment during different times of 

the year 2017 for land use - land cover (LULC) characterization and classification along with water 

use through irrigation and crops yields obtained from the farms. The campaign was carried out by 

taking GPS coordinates for the different LULC categories. Detailed land use patterns and crop 

characteristics were also recorded as well as the irrigation frequency, crop yield, crop rotation and 

crop growth cycles, observations and interviewing farmers. During the field campaign, a 

heterogeneous landscape was observed, with patches of agriculture and sparse houses along the 

catchment. The crops in highlands are a mixture of banana, coffee and fruit trees; however, the 

main crop cultivated in the three agro-ecological zones is maize, which is mainly used for 

household consumption. The crop maturity depends mainly on the crop variety, micro climate and 

water availability. The growth stages, health conditions and humidity of the agricultural fields are 

highly variable within the catchment. 

Leaf Area Index (LAI)

The SS1 Sunscan Canopy Analysis System (Delta-T Devices Ltd) was used for ground LAI 

measurements. This system uses two sensors, the BF5 sensor, which captures all incident radiation 

from the sun, and the Sunscan probe, which measures the total transmitted light through the 



canopy. By acquiring the incident and transmitted radiation of the canopy, LAI is computed using 

a model developed by Campbell (1986) which also uses constants for Ellipsoidal Leaf Area Angle 

Distribution Parameter (ELADP) and Absorption (percentage of incident Photosynthetically 

Active Radiation (PAR) absorbed by the leaf) (Campbell 1990). Default values of Absorption = 

0.85 and ELADP = 1.0 were used (Webb et al., 2016). The LAI was measured in maize fields 

under different growth stages over different parts of the catchment. These measurements were 

carried out in the second week of March in order to capture typical values of LAI of maize at 

different stages of growth. These LAI measurements were used to validate the Sentinel-2 and 

Landsat-pySEBAL generated RS products of LAI. High LAI variability from some field 

measurements came from heterogeneity in some fields. Human error when taking measurements 

was also a possible cause of the variability. Whenever possible, measurement values that appeared 

as outliers were rejected.

Selection of study fields

Five field sites with maize crops in their late stages were randomly selected for validation of the 

LAI estimated with remote sensing products (Table 1); however, no field sites were selected from 

the lowlands because during the field campaign none of the fields were at their late stage of growth. 

In these fields, a minimum of five (5) measurements of LAI were taken within each field that 

would later be used for validation of the RS products through the different pixel values in the 

fields. Other fields with maize at the mid or early stages were also selected for validation of the 

RS LAI products.

Table 1: Selected study fields with maize at different growth stages 

Field Location

Water 

Application Latitude Longitude

Average 

LAI Remarks

A Highlands Rainfed -4.21088 37.88592 0.99
Irrigated once after sowing, 

terraces, organic mulching 

B Highlands Rainfed -4.21192 37.88549 1.46 Terraces, organic mulching

C Highlands Irrigated -4.20926 37.88659 2.32 Terraces, chemical fertilizers

D Midlands Irrigated -4.22973 37.85413 1.20 Soil bunds, no fertilizer

E Midlands Irrigated -4.22901 37.85194 1.70 No soil bunds, no fertilizer

F Midlands Irrigated -4.23610 37.84399 1.38 Soil bunds, no fertilizer

G Lowlands Rainfed -4.36959 37.82850 0.97 No soil bunds, no fertilizer

H Lowlands Rainfed -4.37031 37.82482 0.63 No soil bunds, no fertilizer

I Lowlands Rainfed -4.37059 37.82482 0.79 No soil bunds, no fertilizer



2.3 Biomass, yield, water use and water productivity mapping

The methods for biomass, yield, water use and WPET mapping using remote sensing are described 

in this section and consist of: i) LULC classification to delineate the agricultural area, ii) Actual 

ET mapping for the season using SEBAL, iii) Crop yield mapping calculated from biomass maps 

generated from Sentinel-2 and SEBAL products, and iv) Water productivity mapping considering 

the conversion factors.

2.3.1 Land Use -Land Cover (LULC) classification

Sentinel-2 images with resolution of 10 m were downloaded from the ESA Copernicus website. 

Cloud free Images or images with minimal cloud cover covering different times of the year from 

the wet to the dry season were downloaded to assist with accurate and efficient LULC 

interpretation. The Semi-Automatic Classification (SCP) tool developed for QGIS was used for 

image pre-processing which included radiometric and atmosphere correction, layer stacking and 

haze removal. This tool was also used to generated NDVI products for all the downloaded Sentinel-

2 images. Interpretation of the NDVI products assisted with performing preliminary LULC 

classification where agricultural lands were mapped based on phenological variability while other 

classes such as forests, bare soil and settlements were identified based on their NDVI values. The 

products from this classification were later coupled with supervised classification using training 

data obtained from the ground truthing data and the maximum likelihood classifier. A total of 6 

LULC classes were defined which included forest, shrubs, agriculture, bare soil, sisal plantation 

and settlements. 

Accuracy assessment for the LULC classification

Accuracy of the produced LULC map was evaluated using ground truthing data as an independent 

reference data by overlaying the GPS points of the ground truth data on the LULC layer and 

evaluating the level of agreement. We then adopted the approach described by Olofsson et al. 

(2013) to estimate accuracy of the LULC classification. Using the SCP tool in QGIS an error 

matrix statistic was generated. This produced the errors of omission and commission for each 

LULC class, Producer’s accuracy, User’s accuracy, and Overall accuracy



2.3.2 Actual evapotranspiration mapping

The approach involved the use of remotely sensed data, a combination of LULC classification and 

actual ET computation for crops using the Surface Energy Balance Algorithm for Land (SEBAL). 

The pySEBAL is a surface energy balance model comprising of twenty-five computational sub 

models that uses digital image data / satellite imagery to compute evapotranspiration (ET) and 

other land surface energy exchanges (Bastiaanssen et al., 1998). The PySEBAL is a version of the 

SEBAL algorithm that has been developed in Python, an open source platform that runs SEBAL 

through semi-automatic processing of selected satellite images (Hessels et al., 2017). It has been 

used for water use monitoring, water use efficiency, water productivity and planning purposes for 

various crops in several Asian and African countries (Cai et al., 2017). The PySEBAL model uses 

satellite images that allow calculations for atmospheric correction using empirical equations, 

DEM, meteorological and soil data characteristics. For this case study, an SRTM-DEM product 

downloaded from earthexplorer.usgs.gov was used and clipped to the size of the study area. 

Meteorological data, obtained from Same weather station, included instantaneous (hourly) and 

daily air temperature (°C), relative humidity (%), wind speed (m/s), height of measuring wind 

speed (m) and incoming solar radiation (W/m2). 

Actual evapotranspiration by crops was determined using the SEBAL model. SEBAL calculates 

the energy balance using satellite (visible, infrared, and thermal infrared radiation) images as input 

as well as meteorological data such as humidity, wind speed, solar radiation and air temperature 

and soil variables. It solves the instantaneous energy balance and uses extrapolation to calculate 

daily evapotranspiration. The actual ET is obtained using the surface energy balance equation:

………………………………………………………………………. Equation 1

where λET is the latent heat flux in the atmosphere boundary layer (W/m2), Rn is the net radiation 

(W/m2), H is the sensible heat flux (W/m2) and G is the soil heat flux (W/m2). The instantaneous 

ET flux is calculated for each pixel of the image as a “residual” of the surface energy budget 

equation and is expressed as the energy consumed by the evaporation process. A latent heat flux 

of 28 W/m2 is equal to an evapotranspiration rate of 1 mm/d. 

Satellite radiances are converted into land surface characteristics such as surface albedo, surface 

temperature and vegetation indices such as leaf area index (LAI), Normalized Difference 



Vegetation Index (NDVI) and Soil Adjusted Vegetation Index (SAVI) which are used to compute 

the different fluxes in the energy balance equation. The net radiation (Rn) is computed by 

subtracting all outgoing radiant fluxes from all incoming radiant fluxes. The soil heat flux (G) is 

calculated as a G/Rn fraction using NDVI, surface temperature and surface albedo. Sensible heat 

flux (H) is computed using wind speed observations, estimated surface roughness and surface to 

air temperature differences that are obtained through calibration of hot (λET=0) and cold (H=0) 

pixels. The soil heat flux (G) and sensible heat flux (H) are then subtracted from the net radiation 

flux at the surface Rn to compute the residual energy available for evapotranspiration (λET). The 

instantaneous latent heat flux, λET is then converted into daily λET24 assuming a constant 

evaporative fraction (Ʌ) for 24 hours calculated from the instantaneous energy fluxes as observed 

in the satellite data as:

……………………………………………………….…………………..….Equation 2

The daily actual evapotranspiration can then be determined as:

……………………………………………………...Equation 3

where Rn24 is the average net radiation for the day computed from raw products of instantaneous 

satellite spectral radiance, vegetation indices and satellite surface temperatures which are then 

expressed as average day estimates. G24 is the daily soil heat flux (W/m2) which is computed from 

instantaneous satellite products of NDVI, surface temperature and surface albedo before 

converting them also to average day estimate, λ is the latent heat of vaporization used to convert 

the energy to mm of evaporation and is a function of temperature and ρw is the density of water 

(kg/m3) (Singh et al., 2008). 

SEBAL generates actual evapotranspiration (ETa) maps in mm/day for each of the input satellite 

images. For this study, five cloud free Landsat images were obtained for the months of October, 

December, January, February and March. With these products, a seasonal polynomial fit was 

implemented to estimate the seasonal ET. Using the input meteorological data, it generates 

reference evapotranspiration (ETo) maps. Crop coefficient (Kc) maps are then computed as a ratio 

of the ETa and ETo maps in the pySEBAL code. PySEBAL interpolates linearly among the Kc 

maps to generate daily Kc maps then calculates daily ETa maps by multiplying each Kc image with 



the corresponding ETo value. The ETa maps are then summed up for the user defined crop growing 

season to generate the seasonal ETa map. For this research, a cropping period of 90 days was used 

for the season starting on 8th December 2016 to 8th March 2017 leaving out days before crop 

emergence.

2.3.3 Calibration and validation of Sentinel-2 and Landsat-8 LAI results

For this study, we were not able to implement any ET measurement and validation techniques. But 

as the Sentinel Application Platform (SNAP) and the pySEBAL calculates 10- and 30-meter 

resolution LAI respectively as an important intermediate step in the procedure to calculate ET and 

biomass, we chose to validate these products using field measurements of LAI. The ground 

measured LAI values in the selected study fields were used to validate the Sentinel-2 and Landsat-

pySEBAL results of LAI at the time of satellite overpass by computing error estimates using 

standard and root mean-square errors and estimating the uncertainty of the LAI products.

2.3.4 Crop biomass and yield mapping

First the Landsat Biomass maps were generated by the pySEBAL tool in kg/ha/day, representing 

the dry biomass generated that day per hectare. The pySEBAL calculates biomass by first looking 

at the biomass that can be produced when there is always water available, and then multiplies this 

by constraining factors (heat, vapor and moisture stresses) which are obtained from meteorological 

data, potential ET and actual ET. These biomass products are therefore a function of the fraction 

of absorbed photosynthetically active Radiation (FAPAR), photosynthetically active Radiation 

(PAR) and the light use efficiency (LUE). Some of these parameters, especially those related to 

vegetation, such as the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) can 

also be generated from the biophysical processor built into the Sentinel Application Platform 

(SNAP) for Sentinel-2 and the pySEBAL for Landsat-8. LUE and LAI have been reported to have 

strong correlation making it possible to integrate LAI from both platforms together leading to 

downscaled LUE to produce high-resolution and improved LUE products. The high-resolution 

products of APAR and LUE were then used to generate the high-resolution, 10m, biomass 

products. From the daily biomass products, we applied a polynomial fit to generate monthly 

biomass which were later summed up to get biomass generated for the season. The season’s 

biomass map was used to calculate the agricultural crop yield for the delineated agricultural areas 

by multiplying the biomass by a field computed average harvest index for maize of 0.47 for the 



area under the assumption that maize is the most dominant crop in the catchment. This harvest 

index was obtained from the ratio between the biomass measured in the area and the average yields 

measured and what was reported by the farmers.

2.3.5 Water productivity mapping

WPET [kg/m3] was obtained by dividing the crop productivity (agricultural yield) [kg/m2] by the 

actual evapotranspiration expressed in [m3/m2].

……………………………………………………….………………Equation 4

3. Results and Discussion

3.1 Land Use Land Cover (LULC) Classification

The LULC map of 2017 for Makanya catchment (Figure 2) shows bushland (55%) as the dominant 

land cover class mainly in the highlands followed by agricultural areas at about 20% occurring 

mostly in highlands and midlands. The forests came at the third place and occurs mostly in the 

highland (Table 2). Bare soil (7%) covers a small area that occurs in small patches in the entire 

midland and lowland. Settlements also present a low percentage in the catchment although the area 

is characterized by small sparse houses in various parts of the catchment that were quite hard to 

visualize in the map except for the small market centers. The small patches of rocky areas known 

to be located on the peaks of the mountains were not classified because of their small size and the 

proximity to other classes such as bushland or forest that influence the visual identification and 

the precision in the training stage. 



Figure 2. a) Land use map and b) Agricultural areas for the Makanya catchment

Table 2. Percentage of LULC classes for Makanya catchment.

LULC Class  
Area 

(Ha)

Percentage 

(%)

Agriculture 7,446 20%

Bare soils 2,666 7%

Forests 5,759 15%

Settlement 142 1%

Bushland 20,587 55%

Sisal Plantation 918 2%

Total 37,518 100.0%

Tables 3 shows the results of accuracy assessment, in terms of omission error, commission error, 

producer’s accuracy, user’s accuracy and overall accuracy of LULC map. The results revealed an 

overall accuracy of 82%. Considering the categories accuracy, the LULC mapping provided 

different producer’s and user’s accuracy levels indicating different levels of omission and 

commission errors. High variability was however noted in the producer and user accuracy results 



of the bushland. This variability was especially caused by some sisal plantations that have since 

been abandoned leaving the plantations to be filled with bushes. During classification these 

plantations are easily confused with bushland.

Table 3: Error matrix

Reference Data Total
Area 

(ha)
Accuracy (%)

Classified Data

Ag Bul SP St BaS Fr   Producer's User's Overall

Agriculture 

(Ag)
34 5 0 0 0 1 40 7,446 73.9 85.0

Bushland (Bul) 4 80 19 0 3 7 113 2,666 88.9 70.8

Sisal plantation 

(SP)
7 4 137 3 0 19 170 5,759 86.2 80.6

Settlement (St) 0 0 2 25 0 3 30 142 86.2 83.3

Bare Soils 

(BaS)
1 0 0 0 22 0 23 20,587 88.0 95.7

Forest (Fr) 0 1 1 1 0 72 75 918 70.6 96.0

82.0

Total 46 90 159 29 25 102 451 37,518    

3.2 Leave Area Index (LAI)

Field measured LAI corresponded fairly well with the satellite estimated LAI in the midlands and 

lowlands, however, this was not the case in the highlands. Improved remote sensed LAI was 

therefore needed and could only be achieved through calibration. This was implemented by 

plotting and developing a model from the field measured and satellite estimated LAI from the field 

where the RS LAI best matched the field measurements as presented in figure 3 below. The 

equation from this relationship followed a near linear pattern that yielded an equation applied over 

the satellite LAI. This led to improved estimates of LAI for the entire catchment that better 

matched the field measured LAI values. satellite LAI values in the highlands were however still 

slightly higher than the ground measured values since the farms in the highlands are mainly small 

and strongly heterogenous as characterized by mixed vegetation especially with the presence agro-

forestry systems (trees on farms). The high LAI vegetation in the farms or around the small farms 

in the highlands contaminated the RS estimated maize LAI values. High LAI variance was also 

noted in the lowlands as not all the farms were cultivated during this season. During this season 

the rainfall amounts are usually quite low with no benefit of irrigation water therefore most farmers 

prefer not to farm leaving most of the agricultural lands bare or with small stacks of naturally 



growing vegetation as they await the long rains. This also explains the reason for low ET values 

in the agricultural blocks in the lowlands. Few farmers however usually gamble and cultivate their 

farms during this season, and this explained the presence of slightly high LAI values from these 

farms. 

The results of RS LAI showed a clear negative gradient from the highlands to the lowlands. The 

highlands, on average, receive and consume more water than the other zones thereby producing 

more biomass which explains the high LAI values observed in this zone. Despite the midlands 

receiving almost similar amount of rainfall as the lowland, higher LAI values were observed in the 

midlands. This was because the midlands benefited from supplementary irrigation leading to more 

biomass and in turn high LAI values. The lowlands receive the least amount of water thereby 

having the least seasonal water use, biomass as well as yields. 
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Figure 3: Field measured LAI plotted against remotely sensed LAI



Figure 4. Leaf Area Index for the Makanya catchment in March 2017

Table 4: Sentinel-2 LAI Error estimates

Zones Field Standard Error
Ave. Standard 

Error
RMSE Ave. RMSE

A 0.317 0.245

B 0.088 0.036Highlands

C 0.144

0.183

0.122

0.134

D 0.177 0.125

E 0.589 0.340Midlands

F 0.174

0.313

0.134

0.200

G 0.274 0.245

H 0.044 0.036Lowlands

I 0.132

0.150

0.114

0.132



Figure 5. Leaf Area Index error estimates for the sample fields in the highlands (top), midlands 

(center) and lowlands (bottom)



While efforts were made to improve the accuracy remotely sensed LAI by minimizing on the 

errors, uncertainties from numerous sources could not be eliminated. Numerous sources of 

uncertainties exist, however, the commonly known sources include: (1) natural variability, (2) 

measurement error from in situ optical LAI devices, (3) human errors during field measurements, 

(4) spatial scale differences between the ground sampling footprint and the resolution of satellite 

imagery and (5) spatial averaging error in the aggregation process, and (6) GPS uncertainty. This 

research identified these common sources as having contributed to the uncertainty in the LAI 

results obtained. Quantification of the errors associated with all these sources along with 

propagation of uncertainty through to the final LAI products was however out of the scope of this 

study. We instead attempted to estimate the uncertainty based on the error estimates associated 

with LAI field measuring device, sampling uncertainty, satellite product radiometric and 

atmospheric calibration uncertainty and data processing approach by assuming that the errors were 

additive. The SS1 Sunscan Canopy Analysis System along with potential systematic biases due to 

data processing decisions are estimated to be 10–20% (Richardson et al. 2011). Sentinel-2 Level 

1C Top-Of-Atmosphere reflectance products (L1C-TOA) have typical radiometric calibration 

uncertainty better than 3% with the worst-case, but rare, uncertainties being about 5% (Gascom et 

al. 2017, Kaan et al. 2016) while atmospheric corrected sentinel-2 products have uncertainty under 

3% (Mannschatz et al. 2014). Sampling uncertainty is an additional source of uncertainty, but this 

is usually relatively small (Richardson et al. 2011). Together all these individual uncertainties add 

up to overall RS LAI uncertainty of 20-30%. In most of the fields where LAI measurements were 

taken, the standard error of the remotely sensed LAI were under 0.2. This demonstrated that the 

LAI estimates were well within acceptable limits making the products within the acceptable range 

of uncertainty. 

Studies on LAI uncertainty propagation have shown that LAI errors under 0.3 present small to 

moderate uncertainty to Soil–Vegetation–Atmosphere models that are applied to simulate how 

vegetation affects the water balance and energy fluxes (Mannschatz et al. 2014). The results from 

this study are therefore expected to have small to moderate effects on the uncertainty of the ETa, 

Biomass, yield and WPET products coming out of this study.



3.3 Seasonal actual evapotranspiration (ETa)

We assumed that the entire agriculture LULC was covered by maize crops. This was because 

maize was the dominant food crop grown by the farmers in the area. The seasonal average ETa of 

maize crops in the agricultural areas for the period December 8th, 2016 to March 8th 2017 was 331 

mm, with the pixel values ranging from 152 mm to 476 mm along with a standard deviation of 48 

mm. The large seasonal ET range observed may be attributed to the different daily ET estimates 

for the different farms due to different growth stages of the maize crops and the presence of other 

crops such as bananas, coffee and fruits trees in agriculture lands. The different growth stages of 

the maize crops are common in the area especially during the Vuli season as the farmers don’t all 

grow at the same time. Some farmers plant as early as mid-October while others grow as late as 

mid-December. In turn the water sharing arrangements in the midland area doesn’t provide an 

efficient and effective system that allows for the practice of supplementary irrigation in an 

equitable manner. Farmers with large maize fields may sometimes irrigate a section of their fields 

before the reservoirs runs out of water with no possibility of getting more irrigation water in the 

following day to irrigate the remaining sections. This leads to highly varying ET estimates in 

sections that received irrigation water compared to those that didn’t receive any water. This 

variation can also be explained by the presence of rainfed and irrigated farms in the catchment, 

especially in the midlands along with varying agricultural practices by the different farmers. The 

large seasonal ET range may also be attributed to the different agro-ecological zones in the 

catchment as observed in Figure 5 and the fact that not all the agriculture lands had crops during 

this season. The highlands displayed the highest ETa with an average of 343 mm for the season, 

followed by the midlands with an average seasonal ETa of 293 mm, and the lowlands averaging 

241 mm (Figure 6).



Figure 6. Seasonal ETa a) for the entire catchment, and b) for the agricultural areas
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Figure 7. Average Seasonal ETa for the agro-ecological zones



The average ETa for the maize crop for the midlands season is lower than the crop water 

requirements of about 349 mm computed for the midlands using daily weather data for the areas. 

This indicates that the maize crop in the catchment is water stressed. Other factors that may be 

have contributed to low ETa were soil fertility, poor agricultural practices and pest/disease attack. 

Overall, the ETa variations display a similar spatial trend as shown by yield, although in some parts 

of the catchment, especially in the midlands, relatively high ETa is accompanied by low yield. 

Other than water stress, the high variability of ETa estimates in the entire catchment may be 

attributed to other factors such as soil fertility and presence of trees on farms, high ETa crops such 

as banana and coffee plantations. The agricultural block within the lowlands with very low ETa 

had no crops growing during this season as farmer hardly farm these lands during this season. 

Therefore, the block had bare soils or very small stacks of naturally growing vegetation. During 

the long rains farmers in this agricultural block rely on rainfed agriculture and spate irrigation from 

flood water coming from the highland and midlands.

The three fields in the highlands (A, B and C) have comparable higher yields and higher actual ET 

than the ones in the midlands. This is because the highlands have been reported to receive higher 

amounts of rainfall than in the other parts of the catchment. Mean annual rainfall in Makanya 

catchment varies from 500 to 800 mm annually. The midland fields (D and E), although with 

supplementary irrigation, registered less ETa. Based on the sampled fields, Field C registered the 

highest WPET because it attained the highest yields whereas field D registered the lowest WPET 

because of its low Biomass and subsequent low yields. Fields D and E were both under 

supplementary irrigating and under the same environmental conditions in the midlands, thereby 

reporting a slight difference in their Biomass, LAI and ETa, and in turn a slight difference in the 

yields of the fields indicating that the two fields must have been under very similar field 

management practices.

WPET in the mid and lowland areas of Makanya catchment were very low  when compared to 

global values as presented by Zwart & Bastiaanssen (2004), which range from 1.1 to 2.7 kg/m3 

and an earlier study by FAO which reported a range of 0.8 to 1.6 kg/m3 (Doorenbos and Kassam, 

1979). This is because of the low yields obtained in the mid and lowland areas of catchment. These 

results are comparable to earlier observations reported in the catchment by means of field 

observations by Makurira et al. (2011) who reported a range from 0.35 kg/m3 to 0.51 kg/m3. 



Similarly, studies by Mutiro et al. (2006) reported a range from 0.1 to 0.6 kg/m3 in these zones of 

Makanya catchment. 

The Highlands however reported relatively higher WPET due to its higher suitability for maize 

farming as a result of the high rainfall and higher soil fertility in the zone.

Table 5. SEBAL/Sentinel-2 and field measurements on study plots at the late stage

SEBAL/Sentinel-2 Field

Field Location
Water 

application
Biomass 

(kg/ha)

ETa 

(mm)

Yield 

(kg/ha)

WPET 

(kg/m3)
LAI LAI

A Highlands Rainfed 12,023 404 5,650 1.4 1.61 1.20

B Highlands Rainfed 13,130 409 6,171 1.5 1.86 1.46

C Highlands Irrigated 14,898 419 6,954 1.6 2.55 2.32

D Midlands Irrigated 4,955 337 2,329 0.6 1.20 1.20

E Midlands Irrigated 5,024 332 2,361 0.7 1.20 1.37

3.4 Crop Productivity (biomass production and yield)

The biomass production pattern over the entire catchment (Figure 8a) corresponds with the ETa 

variation in the season (Figure 6a), whereby forested areas have the highest biomass production. 

The area that once was a wetland located in the lowest part of the catchment has the lowest ETa 

and consequently low biomass production since the wetland is now dried up and covered with bare 

soils, sparse shrubs/ bushes. 

The average biomass production for maize crops in the catchment over the season was 6804 kg/ha 

with values ranging from 0 kg/ha to 14796 kg/ha with the areas that reported no biomass being 

cultivated lands with no crops growing at the time of this study. The highest maize biomass 

production was achieved in the highlands, in the higher altitude parts of the midlands and in most 

of the areas located along the river course that benefitted from irrigation. The highlands have the 

highest average maize biomass production for the season with an average of 7583 kg/ha followed 

by the midland areas averaging 4311 kg/ha and lastly the lowland areas with 2766 kg/ha (Figure 

9).



Figure 8. Seasonal biomass production a) for the entire catchment, and b) for the agricultural 

areas
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Figure 9. Average biomass and maize yield for the agro-ecological zones



The average maize yield for Makanya catchment for the season was 3171 kg/ha, with average 

yields attained in the highlands, midlands and lowland areas being 4086 kg/ha, 2986 kg/ha and 

1955 kg/ha, respectively. It is also worth noting that the yields attained in each zone varied 

spatially.

During the field campaign, many farmers in the Makanya catchment reported getting yields 

ranging from 600kg/ha to 3000 kg/ha depending on the conditions for the season (mainly water 

availability and pests). The results from Sentinel-2 biomass and yield are within the range reported 

by farmers. These yields however do not reach their full potential of about 5000 kg/ha as reported 

by Mutiro et al. (2006) for the entire catchment. The average yield of 3171 kg/ha that was attained 

in the catchment during this season under study was higher than the typical maize yields of about 

1000kg/ha reported by Makurira et al. (2011) and the yields of 1500 – 2000kg/ha reported by 

Kinoti et al (2010) in the various parts of Makanya Catchment. 

Figure 10. Agricultural yield map



3.5 Water Productivity

The average maize WPET in the Makanya catchment for the Vuli season was 0.79 kg/m3 with 

values ranging from 0.00 kg/m3 to 2.54 kg/m3 with a standard deviation of 0.49 kg/m3 (Figure 11). 

The values for the highlands, midlands and lowlands are 0.84, 0.74 and 0.53 kg/m3, respectively 

(Figure 12). Figure 10 also shows that the WPET variation closely follows the pattern of yield 

variation in the area. 

Figure 11. Water Productivity map
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Figure 12. Average WPET



The results of ETa, biomass, yield and WPET showed a clear negative gradient from the agricultural 

areas of highlands to lowlands in terms of actual ET and productivity. With the highlands, on 

average, receiving & consuming more water thereby producing more yield and the lowlands with 

the least seasonal water use as well as yields. In turn, the WPET in the highlands is higher than in 

the midlands and lowlands (producing more crop per drop). This may be attributed to inefficient 

and ineffective supplemental irrigation in the midland and lowland areas as the irrigation systems 

currently in place do not provide enough irrigation water mainly due to high conveyance losses 

along with significant losses through evaporation and runoff.

4.  Conclusion and recommendation

In this study, we successfully demonstrated a coupled stepwise phenological variability-

Supervised classification approach to generate high accuracy LULC layers. We also demonstrated 

the use of SEBAL and remote sensing data for WPET mapping in a cultivated African catchment. 

But, local information on land use, phenology and LAI are seen as essential inputs. Calibration of 

the remotely sensed LAI generated improved estimates of LAI that were within acceptable levels 

of errors and uncertainty reported in other similar studies. An innovative approach of Landsat-8 

and Sentinel-2 data fusion was used that relied on LAI obtained from both satellite platforms 

supported with downscaling of RS biomass and yield thereby obtaining high-resolution and high 

accuracy biomass and yield estimates. Good estimates of ETa from Landsat-8 were also obtained 

which together with yield were used to map the WPET in the catchment. Final estimates of WPET 

were within acceptable levels of uncertainty.

A comparative analysis of biomass, yield, ETa, and WPET maps gives an indication that there is 

great potential for improvement in the WPET in the Makanya catchment especially in many parts 

of the midlands and lowland areas which exhibit the lowest WPET. This can be achieved by 

practicing field management techniques that reduce soil moisture loss through evaporation (e.g. 

mulching), reduce surface runoff (e.g., mulching and soil bunds), promote transpiration for 

biomass production (e.g. application of fertilizers, adapted varieties, weed control), and use the 

irrigation water more effectively (e.g. by timely application of the right quantity) so water stress 

can be reduced with the limited amount of irrigation water available. 



Farmers in all parts of the catchment indicated lack of water as a major constraint to crop 

production and additionally pest attacking the crops were also listed by farmers as a major 

hindrance to high production. However, low WPET in many fields within the midland areas of the 

catchment can be attributed to poor irrigation practices, poor agricultural management practices 

and poor irrigation scheduling in most of the farms. High irrigation water losses is also rampant 

since the irrigation canals are unlined, un-gauged and manually controlled. Furthermore, there is 

no system to calculate the net water requirement for crops at a particular time for the areas that 

practice supplementary irrigation. With this system in place, it would promote the practice of 

deficit irrigation where application of the right quantities of this limited water resources would be 

done at the critical phenological stages of crop development such as the flowering stage. This 

system can go a long way in improving the yields in the catchment as well as improving the WPET. 

Since on average the seasonal water use of 331 mm is lower than the crop water requirement for 

the typical maize varieties in the area estimated as about being above 349 mm we infer that water 

stress is indeed a major constraint to crop productivity and consequently WPET. When a crop is 

water stressed at the critical stages of development (flowering), yields are considerably reduced 

irrespective of the amount of water applied in the later stages of development. This scenario is 

common in Makanya especially in the midland and lowlands. It’s also important that farmers adopt 

smart agricultural management strategies aimed at conserving soil water as most of the 

unproductive water losses comes from evaporation from the soil.

As WPET is strongly related to water availability and weather conditions, the level of WPET may 

vary from season to season, year-to-year, even if field and water management practices are similar 

in all situations. We therefore recommend further analysis of WPET mapping over both Vuli and 

Masika seasons for different years. 

Crop water use and WPET products can be further improved by developing better downscaling 

approaches from the Landsat products. Temporal resolutions can also be further improved by 

developing field-based models from field measurements. The model results can then be linked 

with remote sensing products for improved seasonal simulations. This involves field-based 

measurements, modeling and analysis throughout the season. There is need to also measure 

biomass and ET to support with validation of the RS products.



In this study, high resolution products of 10-meter resolution were developed that provided better 

representation of biomass, yield, water use and water productivity for small catchments. Future 

improvements in satellite product spatial and temporal resolutions are also expected to greatly 

contribute to better estimation and analysis of the spatial and temporal crop water use and WPET 

given the high spatial variability of African cultivated catchments. 
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