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Abstract: This paper investigates the effects of nonlinear soil behaviours on the structural responses 

of offshore wind turbines (OWTs) subjected to wind, wave and earthquake loadings. A novel seismic 

analysis framework (SAF) is developed for the assessment of seismic behaviours of OWTs with 

flexible and fixed foundations. The SAF consists of an improved QuakeDyn module that is 

implemented into an open source tool (FAST). SAF has been validated through benchmark studies 

using numerical tools and the results show good agreements. Fully coupled nonlinear simulations 

have been performed for OWTs with fixed and flexible foundations under operational, parked and 

emergency shutdown states. The flexible foundation is modelled using nonlinear p-y curves obtained 

using LPILE. For all the examined operating conditions, notable differences of magnitude and 

variation in the responses between the flexible and fixed cases are observed, indicating the need for 

soil effects to be accounted in seismic behaviour analysis of wind turbines. It is further observed that 

the earthquake induces more severe vibrations on wind turbines with a flexible foundation compared 

to the one with a fixed base. Also, aerodynamic damping dissipates more energy from earthquake 

excitation resulting in a smaller tower-top fore-aft displacement. The shutdown triggered by the 

earthquake causes a 34% increase in the mudline bending moment for the flexible foundation case, 

while a decreasing trend is observed for the fixed foundation model. Similar observations are made 
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regarding the tower-top displacements. The observations imply that ignoring the soil effect may lead 

to misjudgement of the consequence of an emergency shutdown. The relative orientation of the 

ground motion with respect to the wind direction causes significant difference in the seismic 

behaviour of the wind turbine. This confirms that it is necessary to interchange the horizontal 

components of an earthquake in order to consider the intersectional effect between ground motion 

and wind. 

Keywords: Offshore Wind Turbine; Dynamic Behaviour; Seismic Assessment; Nonlinear Soil Effect. 

1 Introduction 

As the demand for additional sources of cleaner energy continue to increase in order to meet the 

constantly increasing global energy consumption, renewable sourced power has become the energy 

source of choice due to environmental concerns. In particular, wind energy has a comparatively low-

cost process for increasing power generation around the world. Newly installed capacity in 2016 has 

contributed over 10% to the total cumulative installations of 500 GW [1], and 23.4% of this installed 

capacity was added in China. Most of these new installations are found along the earthquake prone 

areas of north-western and south-eastern coasts of China. Wind turbines installed in these locations 

are expected to be susceptible to damage caused by earthquake events. Similar circumstances exist 

for the wind farms located along the west coast of United States, Southern areas of European and 

New Zealand where there are rich offshore wind resources as shown in Fig. 1 [2]. It is therefore 

imperative to analyse the response of OWTs subjected to the combined effects of hazards associated 

with wind, wave and earthquake. 
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Fig.1: Global distribution for the more than 300 earthquake events with Richter magnitude 

values over 6 during 2007~2016. 

 

Analysis of seismic effects in the design of OWT is commonly performed using the Response 

Spectral Method (RSM). The method has been widely used to estimate seismic loading demand in 

the frequency domain for wind turbines [3-5]. Seismic loading demands are estimated based on modal 

analysis concept for a given response spectrum. The effects of damping due to aerodynamic loads 

and higher-order eigenmodes are usually ignored. A numerical analysis [6] indicates that the response 

specific method underestimates the maximum tower-base moment by over 70% compared to the 

results of time-domain simulation for a parked wind turbine. Some experimental studies [7-10] also 

indicate that earthquakes enhance the lateral tower-top displacement significantly to a level that 

makes it almost impossible to observe meaningful results when using RSM. In comparison, time-

varying seismic assessments using the finite element method (FEM) is considered as an alternative 

method. However, for a proper seismic behaviour assessment of wind turbines, time-domain analysis 

is required. Traditionally, wind turbines are treated as simplified models that lump rotor and nacelle 

as a point mass at tower-top [11-15]. The resulting aerodynamic loads are generally neglected or 

simplified as rotor thrust forces. Based on this simplification, a multi-body dynamic method is 

employed for an efficient assessment of the responses of wind turbines subjected to earthquake 
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loadings [16-19]. As prescribed in existing certification guidelines, seismic loading demand is treated 

as a linear combination of earthquake and wind loads that are calculated individually [20-22]. 

However, the influence of aerodynamic loads on the dynamic responses of wind turbines cannot be 

neglected, especially for wind turbines with large diameter rotors [23-24]. The combined effect of 

aerodynamic and seismic loadings should be included in the time domain analysis of wind turbines 

subjected to an earthquake event. 

In performing the analysis of dynamic responses of wind turbines subjected to wind loads and 

further excited by ground motion corresponding to the earthquake, a seismic module was added in 

GH Bladed [6]. With the use of GH Bladed, Santangelo et al. [25-26] conducted a set of time-domain 

simulations for the wind turbine under multiple loadings. The differences between the results of fully-

coupled and uncoupled time-domain simulations were investigated. Katsanos et al. [27] also 

implemented the capability of seismic analysis in HAWC2. The dynamic response of an OWT under 

wind and wave loadings coupled with earthquake excitation has been obtained using HAWC2. On 

the basis of the results of the three typical operating scenarios (operational, parked and emergency 

shutdown), a fragility analysis was performed. Meanwhile, Asareh and Prowell developed a 

numerical analysis tool named Seismic, for the conduct of seismic analysis of wind turbines using 

FAST [28-30]. In this Seismic tool, a damped actuator was located at the base of the tower in order 

to replace the degree of freedom (DOF) in translational direction. The earthquakes load in each 

considered direction is calculated using the modal properties of the actuator. Jin et al. [31] used the 

Seismic tool to predict the wind turbine’s dynamic responses under combined wind and earthquake 

conditions. Asareh et al. [32] employed the Seismic tool in performing dynamic analysis of a 5MW 

wind turbine under a set of conditions associated with winds and earthquakes. The relationship 

between pseudo spectral acceleration (PSA) and demands of tower displacement and tower moment 
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was discussed. However, it is noted that these literatures focused more on the effect of earthquake on 

land-based wind turbines. With the growing global interest in offshore wind power, it is necessary to 

investigate the seismic behaviour of OWTs. It is important to note that any investigation on this topic 

should include the interactions between aerodynamic, hydrodynamic and seismic responses due to 

the increased nonlinearities from the hydrodynamic loading. In addition, the soil effect, which has a 

significant influence in the dynamic responses of OWTs under earthquake excitations compared to 

the land-based wind turbines due to their larger dimension, should be included in any study. 

Kim et al. [33] investigated the seismic fragility of a monopile OWT. Using the p-y curve method, 

the soil-structure interaction (SSI) was modelled as a set of springs. Based on the responses of the 

wind turbine for 22 different earthquakes, it was found that the prediction of fragility is significantly 

influenced by the variation of earthquake ground motion through different soil layers. Mo et al. [34] 

performed a seismic fragility analysis of an OWT under different operational states by considering 

the SSI. The probability of reaching damage states was obtained for different wind speed conditions. 

Alati et al. [35] studied the seismic responses of bottom-fixed OWTs under different earthquakes and 

the soil effect was considered. They found that the resultant demands of tower-base moment and 

tower-top displacement were significantly increased by the earthquakes. In the emergency shutdown 

state induced by the earthquake, the blade root bending moment was enhanced, which could not have 

been be observed in analyses without considering the combined effect of wind and earthquake. For 

an OWT subjected to an earthquake, the substructure bears the underlying seismic loads and the 

higher modes of the wind turbine are more likely to be excited. The SSI effects generally play an 

important role on the seismic loading for OWTs. Despite this, most available literatures model the 

soil effects on OWT foundation as linear whereas, in reality, this should be modelled as nonlinear. 

This deficiency therefore constitutes an OWT foundation design problem that should be addressed. 
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In view of the need to solve such a fundamental problem, this study examines the influence of 

combined loadings on the OWT foundations. This is achieved following the development and 

integration of a module, QuakeDyn, into FAST to form the novel seismic analysis framework (SAF). 

The simulation of the coupled OWT foundation models with nonlinear SSI has been noted as major 

shortcomings of the existing numerical tools [28-30]. Therefore, this tool (SAF) makes it possible for 

the dynamic behaviour of an OWT with flexible or fixed foundations subjected to seismic loadings 

to be adequately simulated by including the SSI. The earthquake loads are evaluated using a more 

generic method that is commonly used in the seismic analysis of buildings. The SSI model is 

represented by a set of nonlinear lateral springs whose stiffness is determined using LPILE in order 

to better reflect the actual response of wind turbines. By using SAF for the analysis, seismic 

behaviours of the wind turbine under three typical operating states, i.e. operational, parked and 

emergency shutdown conditions triggered by the earthquake are obtained. The differences between 

the results corresponding to the fixed and flexible foundations are presented in the time domain and 

frequency domain for a better understanding of the SSI effect. Furthermore, the maximum responses 

of the wind turbine with both flexible and fixed foundations under different wind conditions are 

obtained to illustrate the significance of wind loading in seismic analysis. In addition, the direction 

of ground motions with respect to the inflow wind direction has been considered in examining the 

intersectional effect of wind and earthquake loadings. 

This paper is organized in five sections. The environment loadings are presented in Section 2. 

Section 3 describes the development of SAF. The results obtained from the investigations are 

presented and discussed in Section 4, while the findings and conclusions are presented in Section 5. 
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2 Descriptions of the models and load cases 

2.1 Reference wind turbine model 

In order to support concept studies of onshore and offshore wind technology, the National 

Renewable Energy Laboratory (NREL) developed a 5 MW wind turbine known as “NREL 5MW 

wind turbine” [37]. The NREL 5MW wind turbine with monopile was used in the Offshore Code 

Comparison Collaboration (OC3) project to demonstrate the suitability of monopile for applications 

in 20 m water depth areas [38]. The OC3 project used a monopile which has a length of 30 m above 

the mudline and a penetration of 36 m. The diameter along the monopile (D) is 6 m. This study 

employs the NREL 5MW monopile OWT as the examined model whose geometry and main 

specifications are presented in Fig. 2.  

  

Fig. 2: Schematic diagram of the NREL 5 MW monopile OWT 

2.2 Soil-pile interaction model 

In modelling the soil structure interaction of the NREL 5MW monopile OWT, a layered soil 

profile is considered with relatively softer soil in the upper layer and denser soil in the lower layer. 

The SSI between monopile and the soil has been modelled using coupled springs placed at the 
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mudline as reported in several recent studies [34-35, 39-42]. A notable shortcoming of this method is 

that the responses of the embedded pile cannot be obtained correctly. As an alternative means of 

overcoming the shortcomings, the Winkler spring-dashpot model is well suited for modelling pile in 

a multi-layered soil condition to reveal the soil-pile interaction more specifically. Fig. 3 presents a 

schematic diagram of the soil condition and the Winkler model adopted in this study. The springs are 

distributed linearly from the mudline to the pile bottom at spacing of 1m apart. For each depth, 2 

orthogonal springs are used to represent the lateral soil reactions as recommended by the OC3 project. 

 

Fig. 3: The soil condition and Winkler model adopted in this study 

Each of the soil layers is defined as a sandy soil but with different properties in accordance with 

the design parameters in the OC3 project. This study used the nonlinear p-y curves of the Winkler 

springs under cyclic loadings obtained using LPILE by Passon et al. [43]. Each of the soil layers is 

defined as a sand based on the American Petroleum Institute (API) recommendation. A shear force of 

3.91 MN, a bending moment of 124.4 MN·m and an axial load of 8.6MN are applied at the pile head 

to define the cyclic loading. The number of cycles of the loading is 5000. With the use of LPILE, the 

nonlinear p-y curves corresponding to the springs at different depths are obtained and presented in 

Fig. 4. It should be noted that API criteria are used in LPILE for the determination of p-y curves. The 

API method is pertinent and efficient in calculating p-y curves for piles with diameter less than 2 m. 

Yang et al. [44] investigated the discrepancy of soil reaction between the API model and finite element 
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(FE) model in ABAQUS for piles with different diameters. It was found that the difference between 

the maximum bending moments from the API and FE results is 6.5% for the 6 m diameter pile. In 

another study, API p-y curves were used by Kim et al. [33] for a fragility analysis of an offshore wind 

turbine under earthquake excitation uncoupled with wind loading. Sahasakkul et al. [45] conducted 

a comparative study on the p-y curves between the API and FE models for a 5MW OWT. The 

differences in responses of fore-aft tower-top displacement and out-of-plane bending moment at 

tower-base were around 5% and 3% for the examined condition respectively. Although the API 

method is not absolutely perfect in determining the nonlinear p-y curves for a large diameter pile, 

nevertheless it has been extensively used for offshore monopile design [46-49] and it has also been 

recommended in several design guidelines [50-52]. Furthermore, the p-y curves used in this study 

have also been used in OC3 project (for a 6m diameter pile), a well-known project, for the validation 

of concepts and numerical tools for OWT design. 

 

Fig. 4: p-y curves of the springs derived using LPILE (z denotes the depth below the sea bed) [43] 

 

The radiation damping due to diffracted waves spreading away from the pile and the material 
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damping due to hysteretic action in the soil are considered. The model developed by Gazetas et al. 

[53] is used for the damping calculation. 

1/46 ( ) 2 s
s s s

s

kd
C V d

V


 



               (1) 

where C is the damping; s  and sV   are the mass density and shear wave velocity of the soil, 

respectively. D is the diameter of the pile.   is the first natural angular frequency of the support 

structure. s  is the hysteresis damping ratio with a value of 5% as suggested by Gazetas et al. [53]. 

sk  is the stiffness per unit length of the pile that could be derived by p-y curves. 

The soil reaction sF   due to relative displacement sd  and velocity sv   between the support 

structure and soil is derived as:  

s s s sF k d C v                    (2) 

Table 1 presents the natural frequencies of the wind turbine with the fixed and flexible 

foundations. As shown in Table 1, the eigen-frequencies for the support structure of the flexible 

foundation model are lower than those of the fixed foundation model as expected. It is noted that the 

natural frequencies of the 2nd flap modes of the blade changed with the soil effect. 

Table 1: The natural frequencies of the wind turbine with flexible and fixed foundations 

Mode Description Flexible Fixed 

1 1st order Fore-Aft mode of the support structure 0.249 0.277 

2 1st order Side-Side mode of the support structure 0.248 0.274 

3 1st order drivetrain torsion mode 0.600 0.607 

4 1st order asymmetric flapwise yaw mode of the blade 0.660 0.660 

5 1st order asymmetric flapwise pitch mode of the blade 0.666 0.665 

6 1st order collective flap mode of the blade 0.694 0.696 
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7 1st order asymmetric edgeise pitch mode of the blade 1.077 1.078 

8 1st order asymmetric edgewise yaw mode of the blade 1.088 1.089 

9 2nd order Fore-Aft mode of the support structure 1.534 1.867 

10 2nd order Side-Side mode of the support structure 1.383 1.589 

11 2nd order asymmetric flapwise yaw mode of the blade 1.938 1.833 

12 2nd order asymmetric flapwise pitch mode of the blade 2.016 1.932 

13 2nd order collective flap mode of the blade 2.106 2.020 

 

In Fig. 5 the normalized modal shapes of the support structure above the mudline are presented. 

A significant difference between the flexible and fixed foundation models was observed in each mode, 

especially the 2nd order mode. This implies that the flexibility of foundation plays an unneglectable 

role in the vibration behaviour of the support structure. 

 

Fig. 5: Normalized modal shapes of the support structure above the mudline 

 

3 Development of Seismic Analysis Framework (SAF) 

In order to accurately model the combined effects of earthquake, irregular wave and turbulent 
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wind on the OWT, a newly developed QuakeDyn module is integrated into an open source code 

numerical tool, FAST. This tool makes it possible for accurate simulations of OWT subjected to 

earthquake loadings, SSI and environment conditions (wind, wave and current) to be made using 

FAST for the first time. 

 

3.1 Description of FAST 

FAST is an aero-hydro-servo-elastic simulation tool developed by NREL for both land-based and 

offshore wind turbines [54]. The original version of FAST consists of different modules (AeroDyn, 

HydroDyn, ServoDyn and ElastDyn) for performing structural dynamic simulation in time domain. 

The blades aerodynamic loads are calculated using the Blade Element Momentum Theory (BEMT) 

approach in the AeroDyn module based on the axial and tangential induction factors which are 

evaluated by the general Dynamic Wake Model (DWM) and corrected with the Prandtl tip-loss and 

hub-loss models. The Beddoes-Leishman stall model is applied to estimate the dynamic response of 

airfoils. 

Hydrodynamic loads on the support structures are calculated in the HydroDyn module. The 

hydrostatic stiffness contributions are included in the hydrodynamic calculation. The drag effect is 

evaluated using Morison’s equation. The added mass and damping contributions from wave scattering 

in regular or irregular sea are considered in the module.  

In the ElastDyn module, the structural dynamics are calculated based on a multi-body dynamics 

method and a linear modal approach with prescribed mode shapes of the flexible bodies. The first 

two flapwise eigenmodes and the first edgewise eigenmode of the blades are included. The first two 

fore-aft and side-side eigenmodes of tower are also considered.  

The blade pitch and rotational speeds of the rotor and generator can be controlled in ServoDyn 
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through dynamic link libraries and an interface with Simulink or Labview. The Fourth-order iterative 

methods (Adams-Beshforth, Adams-Mounton and Runge-Kutta) are used for the execution of the 

time marching simulation.  

 

3.2 Seismic analysis framework  

The SAF is developed as a user-developed tool following the integration of the newly developed 

QuakeDyn module into FAST in order to provide the coupled nonlinear SSI - seismic analysis 

capability. The earthquake force acting on the wind turbine is calculated based on the support 

structure’s normalized mode shapes and the input accelerograms. A schematic diagram of SAF 

showing the integration of the QuakeDyn module in FAST is presented in Fig.6. The SAF makes it 

possible for the soil effects on OWT foundation during an earthquake to be accurately modelled using 

nonlinear lateral springs. 
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Fig. 6: Schematic diagram of SAF  

 

In the QuakeDyn module, the calculation of the earthquake loads acting on the support structure 

is based on the generic method that is widely used in the seismic analysis of buildings. The earthquake 

force associated with each mode of the support structure, eq,iF , is derived as: 

eq, eq,hor
0

[ ( ) ( )]d 1,2,3,4
H

i iF a m h h h i             (3) 
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where eq,hora  is the horizontal acceleration of input ground motion. ( )m h  and ( )i h  are the mass 

density and the ith normalized mode shape of the support structure, respectively. H is the length of 

the support structure. 

The nacelle and rotor are treated as a given mass atop the support structure. The earthquake force 

acting on the tower-top components, eq,topF , is derived as: 

eq,top eq,hor topF a m                 (4) 

where topm  is the sum of the rotor and nacelle masses. 

The vertical earthquake force of the whole wind turbine, eq,verF , is applied at the base of the 

support structure and calculated as follows: 

eq,ver eq,ver turbineF a m                 (5) 

where eq,vera  is the vertical acceleration of the input ground motion and turbinem  is the mass of the 

whole wind turbine. 

The earthquake loads are added into the active force component of the equation of motion 

established in FAST [54]. Therefore, the earthquake loads are combined with other environmental 

loads, including aerodynamic loads, hydrodynamic loads and gravitational force, in order to perform 

nonlinear SSI-coupled dynamic simulations. 

 

3.3 Validation of SAF 

In order to validate the reliability of the SAF, a benchmark study using a commercial software 

package, GH Bladed and a seismic analysis tool developed by NREL (called “NREL Seismic”) [28] 

is conducted. Although NREL Seismic is not specifically designed to examine the flexible foundation 

and nonlinear soil effects for wind turbines subjected to earthquakes, the tool is capable of performing 

the seismic analysis of fixed foundation wind turbines. This validation is therefore carried on a fixed 
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foundation of an OWT only. In order to avoid any discrepancy in the calculations of aerodynamic 

load for validation using both FAST and GH Bladed, the wind turbine is assumed to be parked. The 

structural damping ratio of the support structure for the wind turbine modelled in the three tools is 

kept the same with a value of 1%. The El Centro earthquake record with two horizontal components 

is selected as the input ground motion. The earthquake is assumed to occur at the 800th s. Dynamic 

responses of the NREL 5 MW OWT with a fixed foundation calculated using SAF and the two 

numerical tools are presented in Fig. 7. It is observed that the predictions from SAF are in line with 

the ones obtained using GH Bladed and NREL Seismic. Slight difference between SAF and GH 

Bladed is observed for the tower-top displacement. Regarding the fore-aft tower-top acceleration, the 

results of SAF agree with that of GH Bladed due to the similarity in their methodology for earthquake 

load calculation. However, the discrepancy between the results of NREL Seismic and GH Bladed is 

large. Similar observations were made for the out-of-plane mudline bending moment. As mentioned 

in the introduction, a major shortcoming of NREL Seismic is the reliance on the experience of 

engineers in the selection of the values of stiffness and damping for earthquake load calculation. The 

agreements between the compared results indicate that SAF has a higher fidelity and can be used for 

the assessment of the seismic behaviour of fixed foundation wind turbines. This confirms that SAF 

can be extended to the flexible foundation model since the algorithm has been appropriately enhanced. 
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Fig. 7: Comparisons of the results calculated with SAF and reference numerical analysis tools 

4 Results and Discussions 

4.1 Soil effect under different operating states 

This study aims to examine the soil effect on the dynamic behaviour of an OWT subjected to an 

earthquake coupled with wind loading. The Chi-Chi earthquake with a magnitude of 7.3 is selected 

as the input ground motion. The accelerograms of the earthquake event recorded by the TCU071 

station are used. The earthquake record consists of 2 horizontal and 1 vertical components and the 

PGA is 0.546 g. Fig. 8 presents the 0.5% damped spectral acceleration of the earthquake record. From 

this figure, it is noted that the 2nd eigenmode of the support structure may have a noticeable 

contribution to the structural response due to its short fundamental period which falls within the range 

of significant spectral accelerations. 
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Fig. 8 Spectral acceleration of the Chi-Chi TCU071 earthquake record 

 

The record of the earthquake accelerations is presented in Fig. 9. More details of the earthquake 

event can be found in the Pacific Earthquake Engineering Research (PEER) database [55]. The 

ground motion is referred as the motion of the sea bed surface. Based on the input ground motion, the 

earthquake loads applied to the support structure are calculated and then coupled with aerodynamic 

and hydrodynamic loads acting on the wind turbine system. 

 

Fig. 9: Acceleration history of the Chi-Chi TCU071 earthquake record 

In order to obtain a preliminary insight into the soil effect on the dynamic responses of wind 

turbine subjected to multiple loadings associated with wind, wave and earthquake, the time domain 

responses of the wind turbine with fixed and flexible foundations are discussed for the following 

operating states: (a) operational, (b) parked and (c) emergency shutdown (induced by earthquake). 

For the operational state, the wind turbine is in operation. TurbSim is used to generate a full-field 
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turbulent wind with an average velocity of 11.4 m/s based on Kaimal wind spectrum [56]. The wave 

period and significant wave height are 10.5 s and 6.3 m, respectively [57]. The Airy wave theory is 

used to generate the wave histories based on JONSWAP wave spectrum [58]. For the emergency 

shutdown scenario, the wind and wave conditions are the same as that of the operational state. The 

generator will be disconnected and the blades will be pitched to feather with a pitching rate of 8 deg/s 

once the square root of the sum of the squares (SRSS) of nacelle acceleration exceeds the threshold 

value. For the determination of the threshold value, the peaks of the SRSS of nacelle accelerations 

for the wind turbine under different wind conditions without earthquake excitation are obtained and 

presented in Fig. 10. The values of SRSS of nacelle accelerations are smaller than 1 m/s2 for the wind 

speeds within the design operation range. With a safety factor of 2, the threshold acceleration value 

is selected as 2 m/s2 in this study. For the parked state, the mean wind velocity at hub is 30 m/s. This 

is higher than the wind turbine’s cut-out wind speed. The wave period and height used herein are 

respectively 16.5 s and 12.0 m, respectively [58]. The manner of operation in this condition is such 

that the generator is disconnected and the blades are fully feathered. For all the considered conditions, 

the simulation duration is 1000 s and the time step is 0.002 s. The earthquake is assumed to occur at 

800th s to ensure that the wind turbine has already been operating in a steady state [28]. Table 2 

presents the conditions of each load case for both the fixed and flexible foundation models. 
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Fig.10: The peaks of the SRSS nacelle acceleration under different wind conditions  

 

Table 2: Simulation cases for the examination of soil effect under different operating states 

 Operating State Wind Speed Wave period Wave height Earthquake 

Case 1 Operational 11.4 m/s 10.5 s 6.3 m Chi-Chi 

Case 2 Emergency shutdown 11.4 m/s 10.5 s 6.3 m Chi-Chi 

Case 3 Parked 30.0 m/s 16.5 s 12.0 m Chi-Chi 

 

In Fig. 11, the tower-top displacements and mudline bending moments of the wind turbine with 

fixed and flexible foundations in the three aforementioned operating states are presented. Obvious 
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observed, indicating that the soil flexibility has a notable influence on the dynamic characteristics of 
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more rapidly than those of the flexible foundation with regards to the out-of-plane mudline bending 

moment and the tower-top’s Side-Side displacement. The resultant mudline moment and tower-top 

displacement of fixed foundation are significantly smaller than those of the flexible case after the 

earthquake stroke (>800 s). The difference in the results between the two cases is insignificant before 

the occurrence of the earthquake. It can be argued that a larger modal shape magnitude of the flexible 

model results in a relatively larger earthquake force, implying that the dynamic responses are 

underestimated if the soil effect is ignored. 

It is reasonable to assume that the tower displacement consists of vibration amplitude and elastic 

deformation. Due to the absence of aerodynamic loads in the side-side direction, the amplitude of 

vibration induced by the earthquake dominates the side-side displacement. If the earthquake occurs, 

a more severe side-side vibration of the support structure would be caused in the flexible base 

condition. As shown in Fig 11-(a), in both fore-aft and the side-side directions, the flexible foundation 

model has larger displacements than those of the fixed foundation. The fore-aft displacement of the 

two models are approximate 0.5 m before the earthquake, while the maximum fore-aft displacements 

of the flexible and fixed cases are over 1.5 m. It implies that the severe vibration induced by the 

earthquake dominates the tower-top displacements. 

In the parked state, since the blades are fully feathered, the aerodynamic load acting on the rotor 

is insignificant compared with the wave and earthquake loads. It means that the elastic deformation 

induced by the aerodynamic load is much smaller than the vibrational amplitude caused by the 

earthquake loads. As can be seen from Fig. 11 (b), the average values of tower-top fore-aft 

displacement in the fixed and flexible cases are very close. In the parked state, the peaks of the tower-

top fore-aft displacement in the fixed and flexible conditions are 1.77 m and 2.25 m, respectively 

while the values in the operational state are 1.63 m and 2.10 m. This indicates that the aerodynamic 
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damping has a positive effect in mitigating the vibration amplitude because of energy dissipation 

resulting from aerodynamic damping during earthquake event. This finding is consistent with the 

conclusion for a land based wind turbine under earthquake events [59]. 

In the case of emergency shutdown condition induced by the earthquake, the generator is turned 

off at 808.468 s and 807.336 s for the fixed and flexible cases, respectively. The variations of the 

results in the emergency shutdown state are significantly different from those in the operational state, 

especially for the fore-aft responses. As a result of emergency shutdown, for both the fixed and 

flexible cases, the tower-top fore-aft displacement deviates rapidly from a positive value to a negative 

one. When the blades are fully feathered (time history above 818 s), the variation of the tower-top’s 

fore-aft displacement is similar to the results of the parked state. Nevertheless, the peak amplitudes 

of flexible cases are significantly greater than those in the parked and operational states. It can be 

concluded that the emergency shutdown has no expected beneficial effects in mitigating the adverse 

dynamic responses of the wind turbine subjected to earthquake events. 

 

(a) Operational 

-120

-40

40

120

M
u

d
li

n
e

m
o
m

e
n

t

(i
n

-p
la

n
e)

/M
N

·m Fixed base

Flexible base

-200

-100

0

100

200

M
u

d
li

n
e

m
o
m

en
t

(o
u

t-
o

f-

p
la

n
e)

/M
N

·m

-1.5

-0.5

0.5

1.5

T
o

w
er

-t
o

p

d
is

p
la

ce
m

en
t

(f
o

re
-a

ft
) 

/m

-0.3

-0.1

0.1

790 810 830 850 870 890 910 930 950 970 990

T
o

w
er

-t
o

p

d
is

p
la

ce
m

en
t

(s
id

e-
si

d
e)

 /
m

Time /s



 22 / 41 

 

 

(b) Parked 

 

(c) Emergency shutdown induced by earthquake 

Fig. 11: Responses of the monopile wind turbine with different foundation conditions for the 

examined operating states 
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In order to reveal the vibration characteristic of the support structure under the earthquake 

excitation, the frequency domain results are obtained by applying Fast Fourier Transformation (FFT) 

on the tower-top displacements histories, as presented in Fig. 12. In the operational state, the 

activations of the 1st fore-aft mode of the support structure for the fixed and flexible foundation 

models are confirmed by the fact that the obvious peaks are observed. As expected, the peak values 

are found at around 0.25 Hz and 0.28 Hz for the flexible and fixed cases, respectively. Furthermore, 

the peak amplitude of the flexible case is slightly larger than that of the fixed case. Similar 

observations were made in the parked and emergency shutdown states. It is noted that the amplitude 

at 0 Hz is one order lower than that at the 1st natural frequency for the parked and emergency shutdown 

scenarios due to the absence of aerodynamic effect. Once again, this implies that the aerodynamic 

loads have a beneficial effect of eliminating the vibration induced by the earthquake. 
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(a) Fore-aft displacement of the operational 

state 

 

(b) Side-side displacement of the operational 

state 

 

(c) Fore-aft displacement of the parked state 

 

(d) Side-side displacement of the parked state 

 

(e) Fore-aft displacement of the emergency 

shutdown state 

 

(f) Side-side displacement of the emergency 

shutdown state 

Fig.12: The frequency domain results of the tower-top displacements 

Regarding the results in the side-side direction, the 2nd mode is activated for the flexible case in 

parked and emergency shutdown operation conditions. This observation is invisible in the fixed base 

model. In addition, the amplitude at the 1st eigen-frequency of the flexible case is much larger than 

that of the fixed case, indicating the flexible foundation is more sensitive to the earthquake loads. 
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In Fig. 13, the maximum displacements and bending moments along the support structure above 

the mudline are presented. In the operational states, the difference between the moment demands of 

the fixed and flexible cases are insignificant, implying that the fixed foundation model can be properly 

used for seismic loading demands analysis of OWT. Nonetheless, it is noted that large discrepancies 

of displacement between the fixed and flexible cases are observed for all examined operating states. 

As can be seen in Fig. 13 (a) and Fig. 13 (b), the moments at the base and the displacements at the 

top in the operational state are smaller than those in the parked state for both foundation types. As 

stated previously, due to energy dissipation from aerodynamic damping during earthquake, the 

turbulent wind offers a positive effect in mitigating the fore-aft vibration amplitude effect. Similarly, 

as shown in Fig. 13 (a) and Fig. 13 (c), the mudline moment has been decreased by 34.4% due to the 

shutdown for the fixed foundation, but increased by 8.6% for the flexible foundation. The reason for 

the observations is that the transient instability of vibration attributed to the abrupt change of 

aerodynamic loads induced by the emergency stop cannot be eliminated efficiently from a flexible 

foundation. It indicates that ignoring the soil effect may cause a misjudgement regarding the results 

of the emergency shutdown state. 
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(b) Parked 

 

(c) Emergency shutdown induced by the earthquake 

Fig. 13: The peaks of displacement and bending moments along the support structure for the 

examined operating states 

The dynamic responses of the wind turbines with fixed and flexible foundations under different 

wind conditions are obtained in order to confirm the effect of emergency shutdown. In total, 22 wind 

conditions with different wind speeds are examined. The wave period and height corresponding to 

each of the wind condition are presented in Table 3. For the both flexible and fixed foundations, 

operational and emergency shutdown states are examined under each of the load cases presented in 

Table 3. The criterion for inducing an emergency shutdown is that the nacelle acceleration exceeds a 

threshold value of 2m/s2. Table 4 presents the specific configurations of the examined cases. The Chi-

Chi earthquake record presented in Fig. 8 is used as the input ground motion. 
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Table 3: The wave period and height corresponding to each of the wind speeds 

Wind speed 

(m/s) 

Wave height 

(m) 

Wave period 

(s) 

4 1.15 6.47 

5 1.80 7.00 

6 2.50 7.50 

7 2.80 7.70 

8 3.11 7.97 

9 4.30 8.60 

10 5.70 9.30 

11 6.05 10.39 

12 6.60 10.89 

13 7.00 11.00 

14 7.34 11.64 

15 7.70 12.00 

16 8.00 12.23 

17 8.30 12.54 

18 8.70 13.00 

19 9.00 13.37 

20 9.40 13.69 

21 10.06 14.13 

22 10.31 14.46 

23 10.70 14.90 

24 10.80 15.00 

25 11.00 15.20 

 

Table 4: Simulation cases for illustrating the emergency shutdown effect 

 Foundation Wind Speed Wave period Wave height Operating state 

Case 1 Flexible 4 ~ 25 (m/s) 6.47 ~ 15.20 (s) 1.15 ~ 11.00 (m) Operational 

Case 2 Flexible 4 ~ 25 (m/s) 6.47 ~ 15.20 (s) 1.15 ~ 11.00 (m) Emergency shutdown 

Case 3 Fixed 4 ~ 25 (m/s) 6.47 ~ 15.20 (s) 1.15 ~ 11.00 (m) Operational 

Case 4 Fixed 4 ~ 25 (m/s) 6.47 ~ 15.20 (s) 1.15 ~ 11.00 (m) Emergency shutdown 

 

The maximum tower top displacements of the wind turbine with flexible and fixed foundations 
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are presented in Fig. 14. As can be seen from Fig. 14-(a), the displacements of the flexible foundation 

case under emergency shutdown states are larger than those from the operational states for most wind 

conditions. For the most common operating wind conditions (7m/s ~ 15m/s), the shutdown induced 

by the earthquake increases the displacement by over 10%. This indicates that emergency shutdown 

has no expected positive effects on mitigating the tower-top response for the flexible foundation wind 

turbine under most operating wind conditions. On the contrary, emergency shutdown could reduce 

tower-top displacement efficiently for the fixed foundation wind turbine. In addition, the maximum 

mudline bending moments of the two wind turbines under operational and emergency shutdown states 

are presented in Fig. 15. Similar to the observations from Fig. 14, the emergency shutdown cannot 

efficiently mitigate the mudline bending moment for fixed and flexible foundations under most wind 

conditions. However, notable decreases are observed for the fixed foundation when the wind speed 

falls within 8 m/s ~14 m/s.  

Comparisons of the results under operational and emergency shutdown states between flexible 

and fixed foundations have indicated that misjudgements could occur when evaluating the seismic 

behaviour of the emergency shutdown state if the soil effect is ignored. 

 

Fig. 14: Maximum tower-top displacement under operational and emergency shutdown states of the 

wind turbine with (a): flexible foundation, and (b): fixed foundation 
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Fig. 15: Maximum mudline bending moments under operational and emergency shutdown states of 

the wind turbine with (a): flexible foundation, and (b): fixed foundation 

4.2 Effect of wind loading 

In order to confirm the dominant loading of the wind turbine, the wind only case and wind 

coupled with an earthquake are examined for both the flexible and fixed foundations. The 

examination is based on 22 environmental conditions with different wind speeds and wave heights 

(presented in Table 3). The Chi-Chi earthquake record presented in Fig. 8 is used as the input ground 

motion for the coupled loading case. Table 5 presents the specifications of the examined cases. In 

total, 88 simulations have been performed. 

Table 5: Simulation cases for the examination of wind loading effect 

 Foundation Wind Speed Wave period Wave height Earthquake 

Case 1 Flexible 4 ~ 25 (m/s) 6.47 ~ 15.20 (s) 1.15 ~ 11.00 (m) Chi-Chi 

Case 2 Flexible 4 ~ 25 (m/s) 6.47 ~ 15.20 (s) 1.15 ~ 11.00 (m) - 

Case 3 Fixed 4 ~ 25 (m/s) 6.47 ~ 15.20 (s) 1.15 ~ 11.00 (m) Chi-Chi 

Case 4 Fixed 4 ~ 25 (m/s) 6.47 ~ 15.20 (s) 1.15 ~ 11.00 (m) - 

The maximum tower-top displacements of the wind turbine under different environmental 

conditions are obtained and presented in Fig. 16. For the wind only cases, the maximum tower-top 
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displacement of both the flexible and fixed foundation models increases with wind speed reaching 

the peak at 10m/s condition. Afterwards, it decreases progressively when wind speed is lower than 

13m/s. For the conditions with wind speed over 13m/s, the maximum tower displacement slightly 

fluctuates around the value of the 13m/s case. For the coupled loading case, the maximum tower-top 

displacements are twice over those from the wind only case for both the flexible and fixed foundation 

models. Moreover, the trend of the displacement versus the wind speed of the wind only case is 

invisible for the coupled loading case.  

 

Fig. 16: Maximum tower-top displacement under wind only and coupled loading cases of the wind 

turbine with (a): flexible foundation, and (b): fixed foundation 
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foundation models have similar variation trends versus wind speed for the wind only condition. 

Similar to the observations of displacement, the mudline bending moment reaches the peak at 10m/s 

wind condition. The magnitudes of the mudline bending moments of the coupled loading case are 

approximately twice larger compared to those from the wind only condition. The flexible foundation 

model has larger discrepancies between the two loading cases compared to the fixed foundation model. 

The comparisons of tower-top displacement and mudline bending moment indicate the earthquake 
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excitation dominates the dynamic behaviour for all of the wind conditions. 

 

Fig. 17: Maximum mudline bending moment under wind only and coupled loading cases of the 

wind turbine with (a): flexible foundation, and (b): fixed foundation 

 

4.3 Effect of the ground motion direction 

As indicated by the results presented above, wind loading has an unneglectable influence on the 

dynamic responses of the wind turbine, although the earthquake is the most dominant loading. The 

direction of the ground motion with respect to the wind direction is considered through changing the 
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and the inflow wind. The intersection angle varies from 0 degree to 350 degrees by 10 degrees. In 

total, 72 simulations are performed for the flexible and fixed foundation models. Table 6 presents the 

specifications of the examined cases.  

Table 6: Simulation cases for the examination of interaction effect between wind and ground motion 

 Foundation Wind speed Wave period Wave height Intersection angle 

Case 1 Flexible 11.4 m/s 10.5 s 6.3 m 0 ~ 350 degree 

Case 2 Fixed 11.4 m/s 10.5 s 6.3 m 0 ~ 350 degree 

Fig. 18 presents the maximum and average tower-top displacements and mudline bending 
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moments under different intersection angles. It has been noted that the intersection effect between 

ground motion and inflow wind significantly affects the analysis results. For both the flexible and 

fixed foundation cases, a peak value is observed at the 180-degree scenario or the 0-degree scenario. 

Similarly, a trough value is observed at the 90-degree or 270-degree scenarios. The flexible 

foundation case has a peak value of 1.79 m and a trough value of 0.92 m for the tower-top 

displacement. The peak and trough values of tower-top displacement for the fixed foundation are 1.41 

m and 0.69 m, respectively. It is noted that the absolute difference between the peak and trough values 

for both the flexible and fixed foundations is approximate 50%. A large discrepancy of the mudline 

bending moment between different intersection angle conditions can be observed as well. The peak 

and trough values are 236 MN·m and 127 MN·m for the flexible foundation, and the corresponding 

values are 229 MN·m and 126 MN·m for the fixed foundation. The large discrepancies between 

different intersectional scenarios indicate that it is necessary to take into account the ground motion 

direction for seismic analysis of wind turbines. The results presented also indicate that the intersection 

effect between inflow wind and ground motion can be examined properly by considering only the 0-

degree and 90-degree scenarios. 

   

(a) Tower-top displacement     (b) Mudline bending moment 

Fig. 18: Tower-top displacement and mudline bending moments under different intersection 
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angle conditions 

 

5 Conclusions 

In this study, a multi-purpose SAF consisting of a newly compiled module (QuakeDyn) 

implemented into the FAST source code is developed and presented. SAF has been validated through 

comparisons with predictions made using GH Bladed and NREL’s numerical analysis tools. The 

dynamic response of the 5MW NREL monopile OWT with fixed and flexible foundations subjected 

to wind, wave and earthquake has been investigated using SAF. The flexible foundation is represented 

by using the nonlinear p-y curves obtained using LPILE. Three typical operating conditions, i.e. (a) 

operational, (b) parked and (c) emergency shutdown triggered by earthquake have been considered 

together with the soil effect. In addition, 22 different wind conditions have been examined to reveal 

the dominant loading of the wind turbine throughout the design wind speed range. The ground motion 

direction with respect to the inflow wind direction has been taken into account. Based on the results 

and discussions presented in the previous section, some key conclusions are presented as follows: 

(1) A newly developed module (QuakeDyn) is integrated in FAST in order to establish a generic 

SAF tool for the investigations of nonlinear SSI and seismic behaviours of OWTs under 

multiple loading and for different operating conditions. Through comparisons with the results 

of referenced numerical analysis tools, a good agreement between SAF and the current 

techniques for fixed foundations has been confirmed. This supports the enhancement of the 

numerical tool for assessment of the nonlinear SSI effect on flexible foundation, thereby 

making SAF a valid tool for the assessment of seismic behaviours for wind turbines.  

(2) Some discrepancies in magnitudes and variations with time between the results of fixed and 

flexible foundations in all the examined operating states were observed, indicating that the 
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soil effect cannot be neglected when analysing the seismic behaviour of wind turbines. By 

taking into account the nonlinear SSI and foundation flexibility, earthquake excitation 

induces more severe vibration on the tower resulting in more interactions between the rotor 

and turbulent wind. The tower-top fore-aft displacement is larger in comparison to that of the 

fixed foundations due to the effect of aerodynamic damping. Triggering an emergency 

shutdown does not mitigate the dynamic responses as expected for the flexible foundation 

under most examined wind conditions. Further consideration in the selection of appropriate 

operating state and dynamic control for a wind turbine subjected to a strong earthquake is 

required. 

(3) The main contribution to the tower displacement comes from the 1st eigenmode of the support 

structure, indicating that the 2nd eigenmodes are less important. The shutdown decreases the 

response of the fixed case at the 1st fore-aft eigen-frequency during the strong shaking of the 

earthquake, while the relevant response of the flexible case is enhanced due to the shutdown. 

The observations imply that ignoring the soil effect may lead to misjudgements regarding the 

consequence of an emergency shutdown. 

(4) The intersection between ground motion and inflow wind has significant influence on the 

seismic behaviour of the wind turbines. Therefore, it is required to examine both cases that 

interchange the horizontal components of an earthquake applied at the longitudinal and lateral 

directions for reducing the biases due to relative orientation with the wind direction. 
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