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ON MAKING CAUSAL CLAIMS: A REVIEW AND RECOMMENDATIONS

Abstract
Social scientists often estimate models from catr@hal data, where the independent variable
has not been exogenously manipulated; they als@ mailicit or explicit causal claims based on
these models. When can these claims be made? \WWerathss question by first discussing
design and estimation conditions under which medémates can be interpreted, using the
randomized experiment as the gold standard. We $lmowendogeneity--which includes omitted
variables, omitted selection, simultaneity, commmathods bias, and measurement error--
renders estimates causally uninterpretable. Secomgresent methods that allow researchers to
test causal claims in situations where randomindatanot possible or when causal interpretation
is confounded, including fixed-effects panel, sarg®@lection, instrumental variable, regression
discontinuity, and difference-in-differences moddisird, we take stock of the methodological
rigor with which causal claims are being made soeial sciences discipline by reviewing a
representative sample of 110 articles on leadegahijtished in the previous 10 years in top-tier
journals. Our key finding is that researchersti@ihddress at least 66 % and up to 90 % of design
and estimation conditions that make causal claimalid. We conclude by offering 10

suggestions on how to improve non-experimentalarese

Author supplied-keywords: Causality, Quasi-Expentagon, Instrumental Variables, Common-
Methods Bias, Difference-in-Differences, SimultareeBquations, Monte Carlo simulations,

Regression Discontinuity, Mediation.



Social scientists make causal claims. Some comaralsay it straight, using statements like “
causes, predicts, affects, influences, explaings an antecedent gf or that ‘y depends om.”
Others shy away from using such explicit languabepsing instead to couch their claims in
suggestive language stating instead tlgas ‘associated or relatedxd Researcher must not shy
away from making causal claims (cf. Pearl, 2000pi8l, 2000). Causal claims are important for
society and it is crucial to know when scientisia cmake them.

The failsafe way to generate causal evidenceuséaandomized experiments.
Unfortunately, randomization is often infeasiblesotial science settings, and depending on the
phenomenon under investigation, results might raegalize from the laboratory to the real
world. However, many recent methodological advare/e been made allowing social
scientists to have their causal cake and eat thérfield!). These methods, though, have been
slow to reach social science disciplines. Unfortalya methods are still being used to estimate
explicit (or implicit) causal models in design sitions where the assumptions of the methods are
violated, thus rendering uninformative results.

Given the importance of understanding causalitydn-experimental settings, the purpose of
our paper was threefold, to (a) demonstrate thiggdesd estimation conditions under which
estimates can and cannot be causally interpretaddeed interpreted at all, even as
associations), (b) review methods that will all@searchers to test causal claims in the field,
particularly in situations where randomization ¢ possible, and (c) take stock of the
methodological rigor with which causal claims aegg made in leadership, which straddles the
disciplines of management and applied psychology.

What we care to show in this review are the nesgsdesign and estimation conditions for
causal interpretation. Our central focus will betloaconsistencyf parameter estimates; by

consistent we mean that the estimate regardingrésimed causal relationship converges to the



correct population parameter as the sample sizeases. We are concerned about the regression
coefficient,f, of a particular independent variaBland whetheg accurately reflects the true
treatment effect in predicting After model estimation, the result might seenotik good,
particularly if an advanced statistical modelinggnam was used, thevalue of the parameter
estimate is below .0001 and the model fits welldose of highi-squares and in the case of
simultaneous equation models because tests of rfibdehnot reject the model. However, if
certain essential design and methodological camttare not present the coefficieannot be
interpreted not even in terms of an association or relat®ren in the correlational sense. That

is, the coefficient may have an allure of authetytiout it is specious

As we will demonstrategorrelation can mean causation nonexperimental settingssome
essentials design conditions are present and {h@apate statistical methods are used. Knowing
the conditions under which causal claims can beemadd their resulting practical and policy
recommendations--is one of the most important tasksisted to scientists. Apart from the
obvious importance and implications of understagdiausality in the hard sciences, correctly
modeling the causal relations that explain phen@mealso crucial in the social sciences.

Calls have been made before to pay attentionet@arect estimation of non-experimental
causal models; the major culpritdedogeneitywhere the effect of ony cannot be interpreted
because it includes omitted causes. This probleemdbgeneityras been noted both in
psychology (Foster & McLanahan, 1996) and manage(sraver, 1998), and these calls are
being repeated (Bascle, 2008; Gennetian, Magnu&sdyrris, 2008; Larcker & Rusticus, 2010).
Unfortunately, these calls have mostly fallen oafagrs. The results of our review are similar to
a recent review that found that more than 90% pepapublished in the premier strategy journal
(and one of the top journals in managemeiategic Management Journ@MJ), were not

correctly estimated (Hamilton & Nickerson, 2003@rHilton & Nickerson (2003, pp. 53-54)



went on to say, “We believe that the low numbepapers in SMJ that account for endogeneity
may indicate a failure of empirical research imtggic management. . . . Yet, ignoring
endogeneity is perilous; . .. the resulting patanestimates are likely to be biased and may
therefore yield erroneous results and incorrectlemions about the veracity of theory.”
Economics went though the same difficult periodapte of decades ago and economists have
improved many of their practices regarding causi@rence. Nowadays in economics it is
virtually impossible to publish a non-experimergaldy in a top general or field journal (e.g.,
American Economic Review, Quarterly Journal of Exuits, Review of Economic Studies,
Econometrica, Journal of Econometrics, Journal abar Economicswithout providing
convincing evidence and arguments that endogeiseityt present.

Our paper is structured in three major sectiongpows: We first explain what causality is;
we then introduce the counterfactual argument,expdiin why it is important to have a control
group so that causal conclusions to be made. Wedbtherandomized experiment as a point of
departure showing precisely why it allows for cdusams. Although the randomized
experiment is a very useful tool sometimes expatisare impossible to do (see Cook, Shadish,
& Wong, 2008; Rubin, 2008). At other times, resbars may come across a “natural
experiment” of sorts, whose data they can explé.review these designs and methods and
show that when correctly implemented they allowdaunsal inference in real-world settings.
Unfortunately, many of these methods are rarelizat in management and applied psychology
research (cf. Grant & Wall, 2009). In our reviewe orrow mostly from econometrics, which
has made great strides in teasing-out causalaetain non-experimental settings (try randomly
assigning an economy or a company to a treatmemntittan!), though, the “natural experiment
revolution” has debts to pay to psychology givea ¢bntributions of Donald T. Campbell to

quasi-experimentation (see Campbell & Stanley, 19686; Cook & Campbell, 1979). Also,



some of the approaches we discuss (e.g., regredisicontinuity) that are popular in
econometrics nowadays were originally developegddychologists (Thistlethwaite & Campbell,
1960).

Next, we discuss the intuition and provide stepstgp explanation behind the non-
experimental causal methods; we maintain statistictation to a minimum to make our review
accessible to a large audience. Although the cowoteour review is management and applied
psychology research, the issues we present anédbenmendations and conclusions we make
are very general and have application for any $sciance, even the hard sciences.

Finally, similar to the recent Leadership Quaxtedview of Yammarino, Dionne, Uk Chun
and Dansereau (2005) who examined the state acdnesevith respect to levels-of-analysis
issues (i.e., failure to correctly theorize and eladultilevel phenomena), we examined a subset
of the literature published in top management gplied psychology journals, making explicit
or implicit causal claims about a “hot” social-swes topic, leadership. The journals we included
in the review were top-tier (in terms of 5-year supfactor), includingAcademy of Management
Journal Journal of Applied Psychologyournal of Managemendournal of Organizational
Behaviotr The Leadership Quarterl¥Drganizational Behavior & Human Decision Processes
andPersonnel Psychologye coded studies from these journals to determimether the
method used allowed the researchers to draw celasas from their data. Our results indicate
that the statistical procedures used are far fremgosatisfactory. Most studies had several
problems that rendered estimates suspect. We ctenqle review with best-practice
recommendations.

1. What is Causality?
We take a simple, pragmatic, and widely-shared a&causality; we are not concerned

about the nature of causes or philosophical fouodsiof causality (cf. Pearl, 2000), but more



specificallyhow to measure the effect of a caube measure causal effects, we need an ef§gct (
and a presumed caus@. (Three classic conditions must exist so as tosenesthis effect (Kenny,
1979):

1.x must precedg temporally

2.xmust be reliably correlated with(beyond chance)

3. the relation betweenandy must not explained by other causes

The first condition is rather straightforward; reer, in the cause of simultaneity--which we
discuss later--a cause and an effect could hawbéi loops. Also, simply modeling varialxle
as a “cause” merely because it is temporal antetedg does not mean that it caused.e.,x
must be exogenous too, as we discuss in detai);ltéhes temporal ordering is a necessary but
not a sufficient condition. The second conditioguiees a statistically reliable relationship (and
thus quantitative data). The third condition is tme that poses the most difficulties and has to
do with theexogeneityf x (i.e., thatx varies randomly and is not correlated with omittadses).
Our review is essentially concerned with the fanstl third conditions; these conditions,
particularly the third one, have less to do witbdfetical arguments and more to do with design
and analysis issues (see also James, Mulaik, & Br@82; Mulaik & James, 1995).

If the relation betweer andy is due, in part, to other reasons, thiésendogenousand the
coefficient ofx cannot be interpreted, not even as a simple ctioslé.e., the magnitude of the
effect could be wrong as could be the sign). Thrtditions often invoked in non-experimental
research that “the relation betweeandy might be due tg causing (i.e., reverse causality may
be at play),” “common-methods variance may explaenstrong relationship,” or “this
relationship is an association given the non-expental data” are moot points.Xfs
endogenous the coefficientsimply has no meaning. The true coefficient cowddlgher,

lower, of even of a different sign.



1.1 The counterfactual argument

Suppose that we have conducted an experimenteviindividuals were assigned by some
method to an experimental and a control conditignThe manipulation came before the
outcome ¥) and it correlates reliably with the outcome. Hdawe rule out other causes? There
could be an infinite amount of potential explanasi@s to why the cause correlates with the
effect. To test whether a causal relation is i@ model’s predictions must be examined from
the counterfactual model (Morgan & Winship, 200dpi, 1974; Winship & Morgan, 1999).
The counterfactual asks the following questionkif(dne individuals who received the treatment
had in fact not received it, what would we obsewag for those individuals? Or, (b) if the
individuals who did not receive the treatment haébct received it, what would we have
observed ony?

As will become evident below, if the experimeniees random assignment, the individuals
in the control and treatment groups are roughlyvedent at the start of the experiment; the two
groups are theoretically interchangeable. So, tlaterfactual for those receiving the treatment
are those who did not receive it (and vice-vershg treatment effect is simply the difference in
y for the treatment and control group. In a randothizeperiment the treatment effect is
correctly estimated when using a regression (or XWPmodel.

However, when the two groups of individuals arethe same on observable (or
unobservable characteristics), and one group ltasviexl a treatment, we cannot observe the
counterfactuals: The groups are not interchange#titat would the treated group/drad been
had they not received the treatment and what witnddintreated groupisbe had they received
the treatment? The counterfactual cannot be obddreeause the two groups are systematically
different in some way, which obscures the effedheftreatment. To obtain consistent estimates,

therefore, this selection (to treatment and corgrolp) must be modeled. Modeling this



selection correctly is what causal analysis, in-agperimental settings, is all about.

Also, in this review, we are exclusively focusimg quantitative research because when done
correctly it is only through this mode of inquittyatt counterfactuals, and hence causality can be
reliably established. Proponents of qualitativehnds have suggested that causality can also be
studied using rigorous case-studies and the lik&.(Maxwell, 1996; Yin, 1994). Yin (1994), for
example, compares case study research to a sixyggeiment--although what Yin states might be
intuitively appealing, a case study of a sociaésce phenomenon is nothing like a chemistry
experiment. In the latter the experimenters havepdete control of the system of variables that
are studied and can add or remove molecules oonpethterventions at will (experimenters
have complete experimental control). If the expentrworks and can be reliably repeated (and
ideally, this reliability is analyzed statisticgllyhen causal inference can be made.

However in the post-hoc case study or even oneendigservation is real-time, there are a
myriad of variables both observed or unobservetidlanot be controlled for and thus confound
results. These latter problems are the same oaeplgue quantitative research; however,
quantitative researchers can control for theselpnabif the model is correctly specified and
accounts for the bias. Qualitative research camskeéul when quantified (cf. Diamond &
Robinson, 2010); however, matching “patterns” iseations (i.e., finding qualitative
“correlations”) cannot lead to reliable inferentsaurces of bias in the apparent pattern are not
controlled for and the reliably of the relatiomist tested statistically (and we will not get into
another limitation of observer, particularly paigignt-observer, confirmation bias, Nickerson,
1998).

We begin our methodological voyage with the mainstf psychology: The randomized field
experiment. A thorough understanding of the measaoi the randomized field experiment is

essential because it will be a stepping stone pioexg quasi-experimental methods that allow



for causal deductions.
2.0 The Gold Standard: The Randomized Field experiment

This design ensures that the correlation betwaarugcome and a treatment is causal; more
specifically, the origin of the change in the degimt variable stems from no other cause other
than that of the manipulated variable (Rubin, 2@&&dish, Cook, & Campbell, 2002). What
does random assignment actually do and why da@ew one to make causal conclusions?

We first draw attention to how the Ordinary LeGquares (OLS) estimator (i.e., the estimator
used in regression or ANOVA-type models that miaiesithe sum of squared residuals between
observation and the regression line) derives estisrfar a model. For simplicity, we will only
discuss a treatment and control; however, the ndstia@ discuss can be expanded to more than
two conditions (e.g., we could add an alternatigglls treatment group).

Assume a model where we have a dummy (binary)pegent variablg reflecting a
randomly-assigned treatment (a manipulation, lesdrtraining, which is 1 if the subject
received the treatment else it is 0) and a contisundependent variab# which is a covariate
(e.g., IQ of leaders). This model is the typical @8VA model for psychologists; in an
ANCOVA model, including a covariate that is strongtlated toy (e.g., leadership
effectiveness) reduces unexplained variance. Tihissgesirable to include such a covariate
because power to detect a significant effect initb@&ment increases (Keppel & Wickens, 2004;
S. E. Maxwell, Cole, Arvey, & Salas, 1991). The aoate is also useful to adjust for any
observed initial--albeit it small, that are duect@mnce--differences in the intervention and control
groups that may have occurred due to chance (Shaatial., 2002). Let:

Vi =PBo+ Pixi + Bazi + e Eg. 1
Wherey is the dependent variablds from 1 to n observationgy is a constant (the intercept,

wherex = 0 and z = 0, and the line--a two dimensionahelen this case given that the equation



10

has two independent variables--cutsylais),f; andg, are unstandardized regression
coefficients of the independent variablesndz and refer how much a change in one unit of
andz respectively affecy (i.e.,p1 = Ay/Ax andB, = Ay/Azrespectively)gis a disturbance term
(also known as the error term), reflecting unobsdmwauses of as well as other sources of error
(e.g., measurement error). The error term, whi@nisinobserved latent variable must not be
confused with the residual term, which is the défece between the predicted and the observed
value ofy. This residual term is orthogonal to the regressegardless of whether the error term
IS or not.

Let us focus om for the time being, which is the manipulated Valea When estimating the
slopes (coefficients) of the independent variabldsS makes an important assumption: Tdnist
uncorrelatedwith x. This assumption is usually referred to as thaheforthogonality of the
error term with the regressor. In other words assumed to bexogenousExogenous means
thatx does not correlate with the error term (i.e., iksloot correlate with variables in the system
of equations or omitted causes). Wixaa not exogenous, that is, when it is endogenbesde
the problem oendogeneitythen it will correlate with the error term andstlfior a variety of
reasons. We discuss some of these reasons inxtheantion.

To better understand the problem of endogenaifypase that extraversion is an important
factor for leadership effectiveness. Now, if weigisshe treatment randomly there will be an
equal amount of extraverts in the treatment androbconditions. If we find that the treatment
group is higher than the control group on effectass, this difference cannot be accounted for
by an unmodeled potential cause (e.g., extraversidius, random assignment assures that the
groups are equal on all observed or unobservedriabecause the probability that a particular
individual has to be assigned to the treatmentcamdrol group is equal. In this condition, the

effect ofx ony can be cleanly interpreted.
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Whenx correlates withe (i.e.,x is endogenous) then the modeler has a seriouteprand
what happens next is something very undesirabl#hdrmprocess of satisfying the orthogonality
assumption, the estimator (whether OLS or maximislihood) adjusts the slopg, of x,
accordingly. The estimate thus becomes inaccubaiea(ise it has been changed to the extent that
x correlates withe). In this case suppose that selection to treatmastnot random and that the
treatment group had more extraverts; thusill “correlate” with extraversion in these senkatt
the level of extraversion is higher in the treatbhgmoup and that this level is correlated with
too because extraverts are usually more effeciveaders. Now because extraversion has not
been measured,will correlate withe (i.e., all omitted causes gfthat are not expressly
modeled). The higher the correlationxafith e the more inaccurate (inconsistent) the estimate
will be. In such conditions, finding a significareiation betweex andy is completely useless
the estimate is not accurate because it includesftbcts of unmeasured causes, and having a
sample size approaching infinity will not help wri@ct this bias. The estimate not only includes
the effect ofk ony but also all other unobserved effects that comeehath x and predicy (and
thus the coefficient could be biased upwards orrdeavds)!

We cannot stress how important it is to satis/dithogonality assumption because not only
will the coefficient of the problematic variable imeonsistent; any variables correlating with the
problematic variable will also be affected (becatisir estimate will also be adjusted by the
regression procedure to the extent that they aigelith the problematic variable). Refer to
Figure 1, which demonstrates these points gragiiaalpath models (we explain this problem in
more detail below using some basic algebra).

[Insert Figure 1 here]
In a randomized field experiment, causal inferes@ssured (Shadish et al., 2002); that is, it

is very unlikely that there could be any confountise correlation of the treatment to the
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outcome variable must be due to the treatment attdny else. Because subjects were randomly
assigned to conditions, the characteristics ofestibj(on the average) are approximately equal
across conditions, whether they are measured oeasuned characteristics; any differences that
might be observed will be due to chance (and heacgunlikely). Having, subjects that are
approximately the same in the treatment and cogtaps occur allows for solid conclusions
and counterfactuals. If there is a changg &md this change is reliably (statistically) asateil

with the manipulated variablethennothing elsecould possibly have provoked the changg in
but the treatment. Thus, in a randomized field erpent, theselection procest® treatment
groups is correctly modeled (it is random) andrtizalel is estimated in accordance with the
assumptions of the OLS estimator (i.e., given #mlom assignment, thus the correlatior of
with eis truly zero). In other words, the assumption thA6 makes about selection is met by
random assignment to treatment.

As we discuss later, if there has been systersat@ction to treatment or any other reason
that may affect consistency then estimates couldstconsistenif the appropriate
methodological safeguards are taken. Note, tha¢ lseone situation in experimental work where
causality can be confounded, which would be incde where the modeler attempts to link the
manipulation X) to a mediatorr() in predictingy as follows:x->m->y. In this case, the mediator
is endogenous (the mediator is not randomly asdigne it depends on the manipulation; thus
cannot be modeled as exogenous). This modebolrbe correctly estimated using the two-
stage least squares procedure we describe latenittely-used procedure recommended by
Baron and Kenny (1986), which models the causahien@sm by OLS will actually givbiased
estimates because it models the mediator as exogewee discuss this problem in depth later.
3.0 Why Could Estimates Become I nconsistent?

There are many reasons whgnight be endogenous (i.e., correlate vatthus rendering
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estimates inconsistent. We present five threatghtat Shadish, et al. (2002) referred to as
“internal validity” (i.e., threats to estimate catency). We introduce these five threats below
(for a more exhaustive list of examples see Mel@95); we then discuss the basic remedial
action that can be taken. In the next section, ieuds techniques to obtain consistent estimates
for more complicated models. We also address thteanference (validity of standard errors)
and model misspecification in simultaneous equatiodels. For a summary of these threats
refer to Table 1.
[Insert Table 1 here]

3.1 Omitted Variables

Omitted variable bias comes in various forms, idolg omitted regressors or omitted
interaction terms or polynomial terms. We discinesgimplest case first and then more advanced
cases below.
3.1.1 Omitting a regressor

Suppose that the correctly-specified regressionaingdhe following, and includes two
exogenous variables (traitg)is leader effectiveness measured on some objesitale:

Vi =PBo+ Pixi + Bazi + e Eqg. 2

Assume that a researcher wants to examine wheth&wvaonstruck (e.g., “emotional
intelligence” measured as an abilipredicts leadership effectiveness. However, thistact
might not be unique and suppose it shares commuanea with 1Q. Thus, the researcher should
control forz (i.e., 1Q) too, becauseandz are correlated and, of course, becaysedictsy as
implied in the above model. Although one shoula &sntrol for personality in the above
equation, to keep things simple for the time beisgume that bothandz are orthogonal to

personality. Now, assume that instead of the alboy@el one estimated the following:

Yi = Qo+ @1x; +v; q.B
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This model now omitg;, because andz correlate and also predicty, x will correlate
with v;. In this case, instead of obtaining the unbiastidnate; one obtaing;; these two
estimates may differ significantly, as could beablished by a what is referred to a Hausman
(1978) test (see formula in Section 3.1.3). Towy these two estimates might not be the same,
we use some basic algebra and expressa function ox and its unique cause Nnote, the next
equation does not necessarily have to be caudalr@spect to the relation betweeandz; also,
we omit the intercept for simplicity:

Zi =YX tu; Eq. 4

Omittingz from Eq. 2 means that we have introduced endogeimeihe sense that
correlates with a new “combined” error teum The endogeneity is evident when substituting
Eq. 4 into Eq. 2:

Vi = Bo+ Pixi + Ba(yixi + wy) + ey, Eqg. 5a

Multiplying out gives

Vi = Po+ Bixi + (ﬁéhxi + Bou; + ej) Eqg. 5b
g
Vi
Or, rearranging as a functionxgives
Yi = Bo+ (Br+ Bav)xi + (Bau; + ;) B
Whichever way we look at it, whereas the sl@pe&as correctly estimated in Eq. 2, it
cannot be correctly estimated in Eq. 3 becausb@srsin Eq. 5¢, thelope will include the
correlation ofx with z (i.e.,y,). Thusx correlates with the error term (as per Eq. 5b)iand
inconsistent. In the presence of omitted varialds,ione does not estimgtgas per Eq. 3, but
something elsey;). Whetherp,would go up or down when includirmgvill depend on the signs

of B,[2] andy;. Itis also clear that i3, = 0 or if y; = 0 thenv; reduces te; and there is no
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omitted variable bias #is excluded from the model.

Also, bear in mind that all other regressors twatelate withz andx will be inconsistent
too when estimating the wrong model. What effeetrggression coefficients capture is thus not
clear when there are omitted variables, and tlais ban increase or decrease remaining
coefficients or change their signs!

Thus, it is important that all possible sourcesariance iry that correlate with the
regressor are included in the regression modelinstance, the construct of “emotional
intelligence” has not been adequately tested iddeship or general work situations; one of the
reasons is that researchers fail to include impoantrol variables like 1Q, personality, sex,
age, and the like (Antonakis, 2009; Antonakis, Astdsy, & Dasborough, 2009; Antonakis &
Dietz, 2010a, 2010b).

What if irrelevant regressors are included? Itvweags safer to err on the side of caution
by including more than fewer control variables (@aom & Trivedi, 2005). The regressors that
should be included are ones that are theoretigalbprtant; the cost of including them is reduced
efficiency (i.e., higher standard errors), but tised cheap price to pay when consistency is at
stake. Note, there are tests akin to Ramsey’s (lIr@@@ession-error-specification (RESET) test,
which can be useful for testing whether there amaadeled linearities present in the residuals by
regressing on the predicted value of polynomialsydthe 2% 39 and 4' powers) and the
independent variables. This test is often incolyaced as a test of omitted variables or
functional form misspecification (Wooldridge, 200Bbwever, the test actually looks at whether
the predicted value ofis linear given the predictors.

3.1.2 Omitting fixed effects
Oftentimes, researchers have panel data (repebssiiv@ations nested under an “entity”).

Panel data can be hierarchical (e.g., leadersdahastems; followers nested in leaders) or



16

longitudinal (e.g., observations of leaders ovaed. Our discussion below is relevant to both
types of panels, though we will discuss the fiestf, hierarchical panels (or otherwise known as
pseudo-panels). If there are “fixed-effects” aghi@ case of having repeated observations of
leaders (Level 1) nested in firms (Level 2), thenegtes of the other regressors included in the
model would be inconsistent if these fixed effents not explicitly modeled (Cameron &

Trivedi, 2005; Wooldridge, 2002). By fixed-effectge mean the unobserved firm-invariant
(Level 2) constant effects (or in the case of gitudinal panel, the time-invariant panel effects)
common to those leaders nested under a firm (vee tefthese effects asbelow, see Eq. 7).

We discuss an example regarding the modeling wof fiixed-effects. By explicitly
modeling the fixed effects (i.e., intercepts) usiigS, any possible unobserved heterogeneity in
the level (intercept) of common to leaders in a particular firm--which wabotherwise have
been pooled ie thus creating omitted variable bias--is explicithptured. As such, the estimator
is consistent assuming that the regressors areearog. If the fixed effects correlating with
Level 1 variables are not modeled, Level 1 estisnatd be inconsistent to the extent that they
correlate with the fixed effects (which is likely¥\hat is useful is to conceptualize the error term
g; in a fixed effects model as having two componeuighe Level 2 invariant component (that is
explicitly modeled with fixed-effects), argj, the idiosyncratic error component. To maintain a
distinction between the fixed-effects model andrdr@lom-effects model, we will simply refer to
the error term asg; in the fixed-effect model (given that the ermis considered fixed and not
random and is explicitly modeled using dummy vdeapas we show below).

Obtaining consistent estimates by including fixéfeéeas comes at the expense of not
allowing any Level 2 (firm-level) predictors becaubey will be perfectly collinear with the
fixed effects (Wooldridge, 2002). If one wants tidd_evel 2 variables to the model (and remove

the fixed effects) then one must ensure that ttima®r is consistent by comparing estimates
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from the consistent estimator to with the morecg#fit one, as we discuss in the next section.
Assume we estimate a model where we have dataSfofinms and we have 10 leaders

from each firm (thus we have 500 observations@atdhder level). Assume that leaders

completed an 1Q tesk and were rated on their objective performancadaehce to budgety,

Thus, we estimate the following model for leader firm j:

50
Yij = Bo + Bixij + Z BrDyj + eij Eq. 6
k=2

The fixed effects are captured by 43-(1) dummy or indicator variableB,identifying
the firms. Not including these dummy variables vaoioé a big risk to take because it is possible,
indeed likely, that the fixed effects are corretwath x (e.g., some firms may select leaders on
their 1Q) and they will most certainly predict vance iny (e.g., fixed effects would capture
things like firm size, which may predigl. Thus, even thougkis exogenous with respectdp
the coefficient ok will be consistent only if the dummies are inclddé the dummies are not
included then the; term will includey; and thus biases estimatesolf the dummies are not
included then the modeler faces the same problamtae previous example: Omitted-variable
bias. Note, i correlates witte;, the remedy comes using another procedure, whictiscuss
later when introducing two-stage least squaresasion.

Fixed-effects could be present for a number ofareasncluding group, microeconomic,
macroeconomic, country-level, or time effects asskarchers should pay more attention to these
contextual effects because they can effect estiomtsistency (Liden & Antonakis, 2009).
Finally, when observations are nested (clustestdhdard errors should not be estimated the
conventional way (refer to the section below regaycConsistency of Inference).

3.1.3 Using random effects without meeting assumgtof the estimator

If the modeler wants to determine whether Levehables predicy, the model could be
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estimated using the random-effects estimator. @hdam effects estimator allows for a
randomly-varying intercept between firms--this miadeeferred to as the “intercepts as
outcomes” in multilevel modeling vernacular (Hofmaa997). Instead of explicitly estimating
this heterogeneity via fixed effects, this estimateats the leader level differenceyifi.e., the
intercepts) as random effects between firms treatleawn from a population of firms and
assumed to be uncorrelatedth the regressors and the disturbances; theorareffects are also
assumed to be constant over firms and independeistiyouted. Failure to meet these
assumptions will lead to inconsistent estimatesiam@ntamount to having omitted variable bias.

Also, prior to using this estimator, the modelendd test for the presence of random
effects using a Breusch and Pagan Lagrangian rheitipst for random effects if the model has
been estimated by GLS (Breusch & Pagan, 1980)Jikekthood-ratio test for random effects if
the model has been estimated with maximum likelkihestimation (see Rabe-Hesketh &
Skrondal, 2008); this is a chi-square with 1 degriefeeedom and if significant, rules in favor of
the random-effects model. We do not discuss theamncoefficients model, which is direct
extension of the of the random-effects model atahal varying slopes across groups. Important
to note is that before one uses such a model, arsé test whether it is justified by testing the
random-coefficients models versus the random-effexidel (using a likelihood-ratio test); only
if the test is significant (i.e., the assumptioattthe slopes are fixed is rejected) should the
random-coefficients estimator by used (Rabe-Hes&eBkrondal, 2008).

Now, the advantage of the random-effects estin{atbich could simultaneously be its
Achilles heel) is that then Level 2 variables ceniricluded as predictors (e.g., firm size, public
vs. private organization, etc), in the followingespication for leader in firm j:

q
Yij = Bo + B1xij + ZVkaj te;t+ Eq. 7
=1
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In the above, we include regressors { {e.qg., firm size, type, etc) and omit the fixefkefs,
but include a firm-specific error componeut,The random effects estimator is more efficient
than the fixed-effects estimator because it isgtesd to minimize the variance of the estimated
parameters (loosely speaking it has fewer indepgendeiables because it does not include all
the dummies). But you guessed it; it comes witleféytprice in that it may not beonsistenvis-
a-vis the fixed-effects estimator (Wooldridge, 2p0khat is,u; might correlate with the Level 1
regressors. To test whether the estimator is damsjone can use what is commonly called a
“Hausman Test” (see Hausman, 1978)--this test, lwisicrucial to ensuring that the random-
effects model is tenable--does not seem to benelytused by researchers outside of
econometrics, and not even in sociology, a dontahis close to economics (Halaby, 2004).

Basically, what the Hausman test does is to conjparéevel 1 estimates from the
consistent (fixed-effects) estimator to those ef éffficient (random-effects estimator). If the
estimates differ significantly, then the efficieggtimator is inconsistent and tlired-effects
estimator must be retaingthe inconsistency must have come frgroorrelating with the
regressor. In this case estimates from the randéeute estimator cannot be trusted; our
leitmotif in this case is consistency always trureficiency. The most basic Hausman test is that
for one parameter, whedas the element gf being tested (Wooldrige, 2002). Thus, the test
examines whether the estimatesaif the efficient (RE) estimator differ significaptirom that of
the consistent (FE) estimator, using the followtbgst (which has an asymptotic standard normal
distribution):

(SFE - 8RE)

JSE(SFE>2 — SE (8gs)*

Z =
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This test can be extended for an array of parasdiecomparing the fixed-effects to the
random-effects estimator, an alternative to thedr@n test is the Sargan-Hansen test (Schaffer
& Stillman, 2006), which can be used with robustloister-robust standard errors. Both these
tests are easily implemented in Stata (see Stgta@009), our software of choice. Again,
because observations are nested (clustered), stb@dars should not be estimated the
conventional way (refer to the section below regayd€onsistency of Inference).

One way to get around the problem of omitted figédcts and to still include Level 2
variables is to include the cluster means of alldld covariates in the estimated model
(Mundlak, 1978). The cluster means can be incladeckgressors or subtracted (i.e., cluster-
mean centering) from the Level 1 covariate. Thstelumeans are invariant within cluster (and
vary between clusters) and allow for consistentregton of Level 1 parameters just as if fixed-
effects had been included (see Rabe-Hesketh & 8kfpR008). Thus, if the Hausman test is
significant, we could still obtain consistent esdtes of the Level 1 parameters with either one of

the following specifications (given that the clusteean will be correlated with the covariate but

not with uj):
q
Yij = Bo + Bixij+ BoX; + ) Vizij +eij + Eq. 8
k=1
q
Yij = Bo + B1(xij — %) + Z YrZkj t+ €ij + u; Eqg. 9
k=1

In the above two equations, the interpretatiothefcoefficient of the cluster mean differs;
that is, in Eq. 8 it refers to the difference ie thetween and within effects whereas in Eq. 9 it
refers to the between effect (Rabe-Hesketh & Skahr&D08). In both cases, however, the
estimate of5; remains the same (and equals that of the fixegttffestimator). Note that if Level

2 variables are endogenous, the cluster-meandackot help; however, there are ways to obtain
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consistent estimates by exploiting the exogenouatian in Level 2 covariates (see Hausman &
Taylor, 1981).
3.1.4 Omitting selection

Selection refers to the general problem of treatmenbeing assigned randomly to
individuals. That is, the treatment is endogendssume:

Vi =PBo+ Bixi + Bz + e Eg. 10

Here,x takes the value of 1 if the individual receivaseatment (e.g., attends a
leadership-training program), elsés O (the individual has not received the treatthekssume
thaty is how charismatic the individual is rated. Howewassume that individuals have been
selectedeither self-selected or otherwise) to receivetthming. That isx, the binary variable
has not been randomly assigned, which means thartdups might not be the same on the outset
on observed or unobserved factors and these famatd be correlated withand of course.
Thus, the problem arises becawuse explained by other factors (i.e., the selectian be
predicted) that are not observed in Eq. 10, whielrefer to ag*, which is subsumed ia. That
is, assume&* is modeled in the following probit (or logisticjjeation (Cong & Drukker, 2001)

q
x;i =Yo+ Zykzkj + Eq. 11
k=1

Wherej refers to regressors 1 ¢oandu to a disturbance term. We obsere 1 whenx*
> 0 (i.e., treatment has been received), els®. The problem arises becawseill be correlated
with e (this correlation is callegd, ,,) and thus will be correlated witfe.

As an example, suppose that individuals who hawvglzer IQ (as well as some other
individual differences that correlate with leadép3lare more likely to attend the training; it is

also likely, however, that these individuals areencharismatic. Thus, there are unmodeled
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sources of variance (omitted variables) subsumedhat correlate witkx. As it is evident, this
problem is similar to omitted variable bias in #ense that there are excluded variables, pooled
into the error term, that correlate with endogenchuice variable and the outcome (Kennedy,
2003). If the selection is not explicitly (and caetly modeled), then using untreated individuals
to estimate the counterfactual is misleading: Tdhéer from treated individuals with respect to
things we do not know; that is, the counterfactaaéssmissing (and the effect of the treatment
will be overestimated).

Although this problem might seem unsolvable, ias; this model can be estimated
correctly if this selection process is explicitlpdeled (Cong & Drukker, 2001; Maddala, 1983).
In fact, for a related type of model wheres only observed for those who received treatnseg
Heckman, 1979), James Heckman won the Nobel RriEeonomics! We discuss how this
model is estimated later.

Another problem related that is somewhat relatesktection (but has nothing to do with
selection to treatment) is having non-represergagalection to participation or censored samples
(a kind of missing-data problem). We briefly disstise problem here and suggested remedies,
given that the focus of our paper is geared mosartds selection problems. The problem of
nonrepresentativeness has to do with affectingliserved variability, which thus attenuates
estimates. Range restriction would be an examplei®fproblem; for example, estimating the
effect of IQ on leadership in a sample that is legHQ will bias the estimate of IQ downwards
(thus, the researcher must either obtain a repradensample or correct for range restriction).
Another example would be using self-selected pa#itds for leadership training (where
participants are then randomly assigned to treafmiarthis case, it is possible that the
participants are not representative of the poputaand only those that are interested in

leadership, for example, volunteered to participatbus, the researcher should check whether
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the sample is representative of the populationo Adensider the case where managers participate
in a survey and they select the subordinates thiatate them (the managers will probably select
subordinates that like them). Thus, ideally, saspheist be representative and random (and for
all types of studies, whether correlation or tegfor group differences); if they are not the
selection must be modeled. Other examples of tlokslem include censored observations above
or below a certain threshold (which creates a mgssliata problem on the dependent variable).
Various remedies are available in such casesxmmple, censored regression models (Tobin,
1958) or other kinds of truncated regression mo@aiag & Freese, 2006) depending on the
nature of the problem at hand.

3.2 Simultaneity

This problem is one that is tricky and which hagegimany economists and other social
scientists a headache. Supposetltausey and this relation should be negative; you regyess
on x but to your surprise, you find a non-significariaten (or even a positive effect). How can
this be? Ify also causes it is quite possible that their covariation is negative. Simultaneity
has to do with a two variables simultaneously aagsiach other. Note, this problem is not
necessarily the supposed simplistic “backward daysproblem often evoked by researchers
(i.e., that the positive regression coefficienkainy could be due tg causingx); it has to do
with simultaneous causation.

Here is a simple example to demonstrate the simeiltgproblem: Hiring more police-
officers ) should reduce crimgy), right? However, it is also possible too that wiseme goes
up, cities hire more police officers. Thuds not exogenous and will necessarily correlaté wi
in they equation (see Levitt, 1997; Levitt, 2002). To mé#kis problem more explicit, assume
thatx is a particular leadership style (use of sancjiansly is follower performance (and we

expect the relation, as estimategsin to be negative):
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Yi=PBot+Pixite Eqg. 12

Because leader style is not randomly assignedlitairelate withe; makingf;
inconsistent. Why? For one, leaders could alsoghémeir style as a function of followers’
performance, leading to Eq. 13.

Xi = V1Yi + Y Eq. 13

We expecty,, to be positive. Now, because we do not expjgerfectly,y varies as a
function ofe too;y could randomly increase (e.g., higher satisfaabibfollowers because of a
company pay raise) or decrease (e.g., an unusailsummer). Supposencreases due & as
a consequencewill vary; thus,e affectsx though Eq. 13. In simple ternacorrelates witlx,
renderingB; inconsistent. Instrumental-variable estimation salve this problem, as we discuss
later.
3.3 Measurement error (errors-in-variables)

Suppose we intend to estimate our basic specificatiowever, this time what we intent
to observe is a latent variablé;

Yi=PBo+bix; +e Eq. 14

However, instead of observinxg, which is exogenous and a theoretically “purelabent
construct, we observe instead a not-so-perfectatoli or proxy ok*, which we callx (assume
thatx* is the IQ of leader). This indicator consists of the true componej {n addition to an
error term () as follows (see Cameron & Trivedi, 2005; MaddaRy/7):

x; = x; +u, or Eq. 15a

X; = X; — Y Eq. 15b
Now substituting Eqg. 15b into Eq. 14 gives:

Vi =Po+ Bi(xi —u) +e Eq. 16
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Expanding and rearranging the terms gives:

Yi = Bo+ Prx; + (&; — 1) Eqg. 17

As is evident, the coefficient afwill be inconsistent given that the full error terwhich
now includes measurement error too, is correlatiéld xvNote that measurement error in the
variable does not bias coefficients and is notsane because it is absorbed in the error term of
the regression model.

The above is a special kind of omitted variableslliacause by estimating the model only
with x, we omitu from the model; given thatis a cause of which is related ty (viax) creates
endogeneity of the sort thatorrelates withe because of the omitted causeThis bias
attenuates the coefficient xfparticularly in the presence of further covaisai@ngrist &

Krueger, 1999); the bias will also taint the cagéfints of other independent variables that are
correlated withx (Bollen 1989; Kennedy 2003)--refer to Antonakis@2pfor a example in
leadership research, where he showed that “emdiitediigence” was more strongly related to
IQ and the big five than some have suggested (whigans that failure to include these controls
and failure to model measurement error will sewebés model estimates). In fact, using error-
in-variables (with maximum likelihood estimationyen that he reanalyzed summary data),
Antonakis (2009) showed that “emotional intelligehmeasures were linearly dependent on the
big five and intelligence, with multiplés ranging between .48 to .76 depending on the ureas
used. However, this relation weastly underestimateahen ignoring multivariate effects and
measurement error, leading to incorrect inference.

Fortunately, the effect of measurement error caelip@nated with a very simple fix: By
constraining the residual variancexdb (1- reliability) * Variance (Bollen, 1989); if reliability
is unknown, the degree of “validity” of the indioattan be assumed from theory and hence the

residual is constrained accordingly (Hayduk, 1996yskiw & Hayduk, 2001). What the
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modeler needs is a reasonably good estimate foetiadility (or validity) of the measure. ¥
were a test of 1Q, for example, and we have goadae to think that 1Q is exogenous as we
discuss later (see Antonakis, in press), a reasereatimate could be the test-retest reliability or
the Cronbach alpha internal consistency of estiroitiee scale. Otherwise, theory is the best
guide to how reliable the measure is. Using thehiteue is very simple in the context of a
regression model with a program like Stata andiits2g (errors-in-variables) routine or most
structural equation modeling programs using maxintikelihood estimation (e.g., Mplus). The
advantage of using a program like Stata is thaeitneg estimator does not have the
computational difficulties, restrictive assumptipaad sample size requirements inherent to
maximum likelihood estimation so it is useful wiimgle indicator (or index) measures (e. g., see
Bollen, 1996; Draper & Smith, 1998; Kmenta, 1986); multi-item measures of a latent variable
a structural equation modeling program must be.used

Later, we also discuss a second way to fix thelprolof measurement error--particularly
if the independent variable correlates wattor other reasons beyond measurement error--using
two-stage least squares regression.
3.4 Common source, common methods variance

Related to the above problem of measurement eyxnwhat has been termed common
methods variance. Thattausey could be because they both dependdfor example, suppose
raters rate their leaders on their leader styl@iid raters are simultaneously asked to provide
ratings on the leaders’ effectivenegp @iven that a common source is being used itiiteq
likely that the source (i.e., rater) will strivenmaintain consistency between the two types of
ratings (Podsakoff, MacKenzie, Lee, & Podsakoff)20Podsakoff & Organ, 1986)—suppose
due toq, which could reflect causes including halo effdotsn the common source (note, a

source could also be a method of data gatheringjoitant to note is that the common
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source/method problem does not only inflate estias most researchers believe; it could bias
them upwards as well as downwards as we will shelavia As will be evident from our
demonstrations, common methods bias is a veryusepmblem and we disagree in the strongest
possible terms with Spector (2006) that common odghs simply an “urban legend.”

Although Podsakoff, et al. (2003) suggested thaicttmmon-methods variance problem
biases coefficients, they did not specifically emplwhy the coefficient of predictingy can be
biased upwards or downwards. To our knowledge, akenthis demonstration explicit for the
first time (at least as far as the management pptieal psychology literature is concerned). We
also provide an alternative solution to deal witimenon methods variance (i.e., two-stage least
squares, as discussed later), particularly in stngs where the common cause cannot be
identified. An often-used remedy for common-methealsance problem is to obtain
independent and dependent variables from diffesentces or different times, a remedial action
which we find satisfactory as long as the indepehgariables are exogenous. In the case of
split-sample designs where half the raters ratdeihder’s style and the other half the leader’s
effectiveness (e.g., Koh, Steers, & Terborg, 1998%ision of inference (i.e., standard errors)
will be reduced particularly if the full samplerist large. Also, splitting measurement occasions
across different time periods still does not fdtydress the problem because the common-
methods variance problem could still affect theejpehdent variables that have been measured
from the common source (refer to the end of thisige).

One proposed way to deal with this problem is tdude a latent common factor in the
model to account for the common (omitted) variafhaeehlin, 1992; Podsakoff, et al., 2003, see
Figure 3A in Table 5; Widaman, 1985). Although Padsf, et al. suggested this method as a
possible remedy and cited research that has usscitidence of its utility, they noted that this

method is limited in its applicability. We will g step further and suggest that this procedure
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should never be used. As we will show, one canembrve the common bias with a latent
method factor because the modeler does not knowthewnmeasured cause affects the
variables (Richardson, Simmering, & Sturman, 20@9%. impossible to estimate the exact effect
of the common source/method variance without diyeueasuring the common source variable
and including it in the model in the correct causgadcification.

[Insert Figure 2 here]

Suppose that an unmeasured common cause, degreganizational safety and risk,
affects two latent variables, as depicted in Figyrehnis context of leadership is one where team
members are exposed to danger (e.g., oil rig). Gegxpl and=2 measure subordinate ratings of
a leader’s style (task and person-oriented leagersbpectively). The effect of the causezih
is positive (.57), that is, in a high-risk situatithe leader is very task-oriented because in these
situations, violation of standards could cost liMeswvever, for=2 the effect of the common
cause is negative (-.57), that is, in high-riskaiions, leaders pay less attention to being wice t
subordinates. Thus, leadership style is endogerbissexplanation should make it clear why
leader style can never be modeled as an indepewudeable. When controlling for the common
cause the residual correlation betweenzheand=2 is zero. The data are such that the indicators
of each respective factor are tau equivalent (hey have the same loadings on their respective
factors) and with strong loadings (i.e., B are .96 and are equal on their respective fagtor
We made the models tau equivalent to increasekiéhibood that the model is identified when
introducing a latent common method/source factbe 3Jample size is 10,000, and the model fits
the data perfectly, according to the overidentifaratest; y*(31) = 32.51p > .05 (as well as to
adjunctive measures of fit—CFI = 1.00, RMSEA = 00hiat we do not care much for as we

discuss later). Estimating the model without thengmn cause gives a biased structural estimate
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(a correlation of -.32 between the two latent \zga), although the model fits perfectyf(25) =
.28.06,p > .05 (CFI = 1.00, RMSEA = 00); hence, it is imiamit of theoretically establishing if
modeled variables are exogenous or not becaussspaaified model (with endogeneity) could
still pass a test of fit. Finally, when includindegtent common factor to accounted for the
supposed common-cause effects, the model stilvids x*(17) = .20.32p > .05 (CFI = 1.00,
RMSEA = 00). However, the loadings and the strdtparameter are severely biased. This
method, which is very popular with modelers, isiobgly not useful; also, as is evident, this
misspecification is not picked up with the testraddel fit. The correct model estimates could
have been recovered when using instrumental vasglle present this solution later for the
simple case of a path model and then extend tbiseplure to a full structural-equation model).
We first broaden Podsakoff, et al's (2003) worlsiow the exact workings of common-
method bias, and then present a solution to theremwymethods problem. We start with our
basic specification, where a rateas rated leadgn=50 leaders) on leader stWdand leader
effectivenesy, where we control for the fixed effects of firmofa, the estimator should be a
robust one for clustering, as discussed later; alssume in the below that we do not have

random effects):

50
Yij = Bo + Buxij + Z BiDji + eij q.B8
k=2

Similar to the case of measurement error we catinettly observe* or x*; however
what we do observe isandx in the following respective equations (wherés the common
bias):

Yij = Yij + Vyij Eg. 19

Xij = Xij + Vxqij Eg. 20
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Rearranging the equations gives:
Yij = Yij — Yy4ij Eq. 21
Xij = Xij — Ya4ij Eq. 22

Substituting Equations 21 and 22 into 18 showddhewing:

50

Wij — 1)) = Bo+ Br1(xij —vxqij) + ) BiDji + e Eqg. 23
k=2

Rearranging the equation gives:

50
Yij = Bo + B1xij + Z BiDjx + (eij — B1¥xqij + Vy4ij) Eq. 24
k=2

As with measurement error, common-methods variartoeduces a correlation between
and the error term, which now consiststoeecomponents (and cannot be eliminated by
estimating the fixed effects). Unlike before witeasurement error, however, the bias can
attenuate or accentuate the coefficient.dfurthermore, it is now clear that this bias carb®
eliminated unlesg is directly measured (or “instruments” are useduaye the bias).

Thus, as we alluded to previously, the problenisame of inflation of variance of
coefficients; it is one ofonsistencyf coefficients. The coefficierft; is uninterpretable because
it includes the effect af onx andy. Assuming that the researcher has no other optibto
gather data in a common-source way, and apart fne@asuring and includingdirectly in the
model, which may be difficult to do becaugeould reflect a number of causes, there is agtuall
a rather straightforward solution to this problemd @ne that, to our knowledge, will be presented
for the first time to leadership, management, golied-psychology researchers. This solution
has been available to econometricians for quiteestomme, and we will discuss this solution in the

section on two-stage least squares estimation.
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Note, assume the case where only the independeablss (e.g., assume andx,) suffer

from common-method variance; in this case, themegés of the two independent variables will

be biased to zero and be inconsistent (though télkative contributionl/%1 is consistent), which
2

can be shown as follows. Suppose:

Y= Pot Bixi"+Px" e E® 2
Instead of observing the latent variabtgsandx,”, we observe; andx,, which are
assumed to have approximately the same variancararabth equally dependent on a common
variableq. Thus, by substitution it can be shown that bothreges will be biased downwards

but equally so, suggesting their relative contiifmuivill remain consistent:

y = Bo+ Bix1 + Baxy + (e — B1Vg — B2Vq) Eq. 26
3.5 Consistency of inference

We finish this section by bringing up another thrteavalidity, which has to do with
inference. From a statistical point-of-view we medarether the standard errors are consistent.
There has been quite a bit of research on thisgaeeularly after the papers by Huber (1967)
and White (1980); this work is extremely technisalwe will just provide a short overview of its
importance and remedial action that can be takems$are correct standard errors.

In a simple experimental setting, regression regglwill usually be i.i.d. (identically and
independently distributed). By identically distribd we mean that residuals are homoscedastic,
that is, they have been drawn from the same pdpualand have a uniform variance. By
independently distributed we mean that they arechustered or serially correlated (as when
observations are nested under a Level 2 entitig.diways a good idea, however, to check
whether residuals are homoscedastic. Whether tteeglastered is certainly evident from the

data-gathering design. Programs like Stata havermouatines for checking for heteroscedasticity,
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including White’s test, and for the presence ottdung.

If residuals are heteroscedastic, coefficient estis will be consistent; however,
standard errors will not beln this context, the variance has to be estimdifferently as the
usual assumptions do not hold. The variance estimsbased on the work of Huber-White, and
the standard errors are usually referred to as HAlete standard errors, sandwiched standard
errors, or just robust standard errors. We canmessthe importance of having the standard
errors correctly estimated (either with a robustarece estimator or using bootstrapping) and this
concern is really not on the radar screen of rebeas in our field. Consistent standard errors are
just as important as consistent estimates. If sta@hdrrors are not correctly estimatpdjalues
will be over or understated, which means that testduld change from significant to non-
significant (and vice-versa); refer to Antonakislddetz (2010b) for an example.

Similar to the above problem of heteroscedastigtyhe problem of standard errors from
clustered observations. A recent paper publishedtap economics journal blasted economists
for failing to correctly estimate the variance augjgested that many of the results published
with clustered data that had not corrected forcthstering were dubious (see Bertrand, Duflo, &
Mullainathan, 2004), and this in a domain thatriswn for its methodological rigor! The
variance estimator for clustered data is similaomnm to the robust one but relaxes the
assumptions about the independence of residuats.tNat at times, researchers have to correct
standard errors for multiple dimensions of clusigrithat is, we are not discussing the case of
hierarchically clustered but truly independentlystered dimensions (see Cameron, Gelbach, &
Miller, in press). Again, these corrections arelgaschieved with Stata or equivalent programs.
4.0 Methodsfor Inferring Causality

To extend our discussion regarding how estimateseaome inconsistent, we now

review methods that are useful for recovering cape@meters in field settings where
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randomization is not possible. We introduce twoaldranethods of ensuring consistent estimates.
The first is what we refer to as statistical adjustt, which is only possible when all sources of
variation iny are known and are observable. The second way weteeés quasi-
experimentation: Here, we include simultaneous geguianodels (with extensive discussion on
two-stage least squares), regression discontimuiyels, difference-in-differences models,
selection models (with unobserved endogeneity),samgle-group designs. These methods have
many interesting and broad applications in reallgvsituations, where external validity (i.e.,
generalizability) is assured, but where interndilvty (i.e., experimental control) is not easily
assured. Given space constraints, our presentattithese methods is cursory; our goal is to
introduce readers to the intuition and the asswnptbehind the methods and to explain how
they can recover the causal parameter of intééstinclude a summary of these methods in
Table 2.
[Insert Table 2 here]

4.1 Statistical adjustment

The most simple way to ensure that estimates argistent is to measure and include all
possible sources of varianceyah the regression model (cf. Angrist & Krueger999 of
course, we must control for measurement error aftetton effects if relevant. Controlling for
all sources of variance in the context of soci&@mswe, though, is not feasible because the
researcher has to identify everything that causeston iny (so as to remove this variance from
€). At times, there is unobserved selection at lkmmather causes unbeknown to the researcher;
from a practical point-of-view, this method is metry usefulper se We are not suggesting that
researchers must not use controls; on the conaéifgnown theoretical controls must be
included. However, it is likely that researchergimiunknowingly (or even knowingly) omit

important causes, so they must also use other nietbaensure consistency because of possible
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endogeneity.
4.1.1 Propensity score analysis (PSA)

Readers should refer back to Equations 10 and &% so understand why PSA could
recover the causal parameter of interest and thpiaimate a randomized field experiment
(Rubin, 2008; Rubin & Thomas, 1996). PSA can ombyvjle consistent estimates to the extent
that (a) the researcher has knowledge of variahlredict whether an individuatould have
received treatment or not, and éandu in Equations 10 and 11 do not correlate dhdu
correlate, which may often be the case, a Heckmeamtnhent effects model must be used to
derive consistent estimates (discussed below).

The idea behind PSA is quite simple and has toitlto @mparing treated individuals to
similar control individuals (i.e., to “recreate’altounterfactual). Going back to the randomized
experiment: What is the probability, or propensityprovide an introduction to the term, that a
particular individual is in the treatment versus tontrol group? If the treatment is assigned
randomly, it is .50 (i.e., 1 out of 2). Howeveristprobability is not .50 is the treatment was not
assigned randomly. Thus, the essence of PSA istesrdine the probability (propensity) that an
individual would have received treatment (as a fiemcof measured covariates). Then, the
researcher attempts to compare (match) individuais the treatment and control groups who
have the same probability of receiving treatmamthls way, the design mimics the true
experiment (and the counterfactual), given thatrésearcher attempts to determine the treatment
effect ony by comparing individuals who received the treatmergimilar individuals who did
not.

Suppose in our example that we want to compareishgils who undertook leadership
training (and were self-selected) versus a cogfralip. In the first instance, we estimate a probit

(or logistic) model to predict the probability thet individual receives the treatment:
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q
x;i =Yo+ Zykzkj + Eq. 27
k=1

And x = 1 whenx* > 0 (i.e., treatment has been received), els®. The predicted
probability of receiving the treatmend) @s a function ofj covariates (e.g., IQ, demographics,
and so forth) for each individual) (s saved. This score, which ranges from 0 ts 1he
propensity score. The point is to match individualthe treatment and control with the same
propensity scores. That is, suppose two indivitha&ing the same (or almost the same)
propensity score but one is in the treatment gamgthe other in the control group. What they
differ on is what is captured by the error terntha propensity equation;. That is, what
explains, beyond the covariates, whether a paaticatlividual should have received the
treatment but did not is the error term. In otherds, if two subjects have the same propensity
score and they are in different groups (assumiatpilis just “noise”), then it is almost like these
two subject were randomly assigned to the treatifig'Atgostino, 1998). As mentioned, the
assumption of this method is thais unrelated to the residual tegx(in Equation 10 ); the
unobserved factors which explain whether someoteved the treatment must not correlate
with unobserved factors in tlyeequation (Cameron & Trivedi, 2005). If this asstiopis
tenable, then in the simplest case we can matdhidhugls to obtain the counterfactual. That is, a
simplet-test for the individuals matched across the twougs using some matching algorithm
(rule) will indicate the average treatment efféar more information on this method, readers
should consult more detailed exposés and exampkeséron & Trivedi, 2005; Cook, et al.,
2008; D'Agostino, 1998; Rosenbaum & Rubin, 1988419985).

4.2 Quasi-Experimentation
Below, we introduce quasi-experimental methods,$oty extensively on two methods

that are able to recover causal parameters inrratteghtforward ways: Simultaneous equation
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models, and regression discontinuity models. Weudis two other methods, which have more
restrictive assumptions (e.g., difference-in-défeces models, selection models) but which are
also able to establish causality if these assumgptwe met. We complete our methodological
journey with a brief discussion on single groupasjtexperimental designs.

4.2.1 Simultaneous-equation models

We begin the explanations in this section with stage least squares (2SLS) regression.
This method, also referred to also as instrumeragahble estimation, is used to estimate
simultaneous equations where one or more prediaterendogenous. 2SLS is standard practice
in economics--a workhorse--and probably the mostuleind most-used method to ensure
consistency of estimates because of endogeneifgriunately, beyond economics, this method
has not had a big impact on other social sciermaplines including psychology and
management research (see Cameron & Trivedi, 2088gF& McLanahan, 1996; Gennetian, et
al., 2008). We hope that our review will help caetrhis state of affairs particularly because this
approach can be useful for solving the common-ntitivariance problem.

The 2SLS estimator (or its cousin, the Limited-hnfiation Maximum Likelihood
estimator, LIML) is handy for a variety of problembere there is endogeneity because of
simultaneity, omitted variables, common-methodasee, or measurement error (Cameron &
Trivedi, 2005; Greene, 2008; Kennedy, 2003). Thismaator has some commonalities with the
selection models discussed below because it refiesmultaneous equations and instrumental
variables. Instrumental variables, or simply instemts, are exogenous variables and do not
depend on other variables or disturbances in teesyof equations. Recall, the problem of
endogeneity makes estimates inconsistent becaeg®dblematic (endogenous) variable--which
is supposed to predict a dependent variable--@a®with the error term of the dependent

variable. Refer to Figure 3, for a simplified defmn of the problem and the solution, which we
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explain in detail below.
[Insert Figure 3 here]

In our basic specification we will assume thad continuous. The endogenous variable
could be dichotomous too, in which case the 2Sltihation procedure must employ a probit
model in the first stage equation, that is, in Egbelow (Greene, 2008). Other estimators are
available too for this class of model (e.g., whbey variable is a probit but the endogenous is a
continuous variable). The Statmpcommand (Roodman, 2008) can estimate a broadaflass
such mixed models by maximum likelihood similatiie Mplus structural-equation modeling
program (L. K. Muthén & Muthén, 2007).

Turning back to the issue at hand, let us assumeawe a common methods variance
problem, where (leader behavior) angl(perceptions of leader effectiveness) have been
gathered from a common source: hoasng leader(n = 50 leaders; with representing
unobserved common-source variance, @odntrol variables). Here, following Eq. 24 we

estimate:
c
Vi = Bo + Bix; + Z Yrfik + (& — B1¥xq: + ¥y Qi) Eqg. 28
k=1

The coefficient ok could be interpreted causalfyan exogenous source of variance, say
z, were found that strongly predioctand is related tg via x only, and unrelated te(the
combined term). For identification of the paramgtsvo conditions must be satisfied: We must
have at least as many instruments as endogendablearand one instrument must be excluded
from the second-stage equation; also, the instrtsygould be significantly and strongly related
to the endogenous variabl€Wooldridge, 2002). If we have more instrumentmtiendogenous
variables, then we can test the overidentifyingriesons in this system (see below). If

appropriate instruments are found, then the caaftadt ofx ony can be recovered by first
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estimating Eq. 29 (i.e., the first-stage equatam] then using the predicted valuexod predict

y. Note,all exogenous variables (in this caséhe control variables) should usually be used as
instruments of the endogenous variables, otherggimates may be inconsistent in certain
conditions (for further information refer to Baltag002).

To illustrate the workings of 2SLS with a theoratiexample (later, we also demonstrate
2SLS with a simulated data set as well to shouid salve the problem of common-methods
variance). Assume thais IQ; given that 1Q is genetically determined .(ileas high genetic
heritability, thus it is exogenous) it makes forexellent instrument as would personality, and
other stable individual differences (Antonakispiess), as long as they do not correlate with
omitted causes with respectytdQ affects how effectively a leader behaves (Aatas, in press)
and leader behavior affects leader outcomes (Bpiiveber, & Kelloway, 1996; Dvir, Eden,
Avolio, & Shamir, 2002; Howell & Frost, 1986); nothese studies are not correlational but
manipulated leadership. Also, the instruments rhagelated ty but less strongly than is the
endogenous predictor. Assume ttas the distance of the rater from the leader (Wvlsc
assigned by the company randomly), and which mgaonhhow effective a leader can be with
respect to that follower because it limits intei@efrequency with followers (Antonakis &
Atwater, 2002). We also includecontrol variables (e.g., leader age, leader sek, €hus, we

model:
c
X; =Yoo+ 712 +v2d; + Z Yiefie + U Eqg. 29
k=1

Because andd (andf, which directly effecty) are exogenous, they will, of course not
correlate withu, and more importantly with the error term in E§.(&hich consists of three
components). Thus, the predicted valtiewill not correlate with the combined error terither.

In the second stage we udéo predicty as follows:
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c
Yi = Bo + B1X; + Z Yifie T+ € Eqg. 30
k=1

How does 2SLS ensure consistency? What the 2SiiSatst does is very simple. Only
the portion of variance thatandd (and the controls) predict ithat overlaps witly is
estimated; given thatandd are exogenous, this portion of variance is isdl&tem the error
term in they equation (for an excellent intuitive explanatioe $&nnedy, 2003 hus, the 2SLS
estimate ofs; is consistent, but less efficient than the OL$wbr given that less information is
used to produce the estimate (Kennedy, 2003). imeisance of each indirect (nonlinear)
effect, that i/, * §; andy, * B;can also be tested using the traditional Sobetgisiethod
(Sobel, 1982) or bootstrapping (Shrout & BolgeQ20 Note that sums of indirect effects can be
tested too in programs like Stata (iyg,* 1 + V2 * 1)

What is very important to understand here abouestienation procedure is that, as we
depict in Figure 3, consistency can only occuhd tross-equation disturbancesfdu) are
estimated. This procedure is standard practiceam@metrics and the reason that it is done is
quite straightforward. If the errors are not catetl then estimates will equivalent to OLS, which
will be inconsistent ik is endogenous (Maddala, 1977). Estimating thisetation
acknowledges the unmodeled common causeaofly; it is a common unmeasured “shock”
which affects bottkx andy, which must be included in the model. Failing stiraate it suggests
thatx is exogenous and does not require instrumenting.

How can we test if the errors are correlated? Taesrhan endogeneity test (see
Hausman, 1978) or the Durbin-Wu-Hausman endogetesty(or an augmented regression,
wherein the residuals of the first-stage equatienirecluded as a control in the second-stage
eqguation) (see Baum, Schaffer, & Stillman, 2007 tedl us if the mediator is endogenous.

Given that we have one endogenous regressorsthisme degree of freedom chi-square test of
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the difference between the constrained model @neslation of the disturbance is not estimated)
and the unconstrained model (where the correlatidhe disturbance is estimated); this
procedure can be done in SEM programs. Thus, ifibeéel wherec is instrumented (the
consistent estimator), generates a significanffeidint estimate from that whexas not
instrumented (the OLS estimator, which is effic)etite OLS model must be rejected and
requires instrumenting.

A common mistake we see in management and appigchplogy is the estimation of
simultaneous equations without correlating the s®guation disturbances as per the method
suggested by Baron and Kenny (1986) or derivatfekis method. If the correlation is not
estimated and i is endogenous, then the estimatg ofill change accordingly (and will not be
consistent). Thus, most of the papers testing rtiedianodels that have not correlated the
disturbances of the two endogenous variables hstuaates that are potentially biased. If,
however x is exogenous, then the system of equations coudstimated by OLS (or Maximum
Likelihood) without correlating disturbances (refersection 4.2.1.4 for a specific example with
data). This procedure we propose should not beusedfwith correlating disturbances of
observed indicators in factor models, which addressiother issue to the one we discuss in
mediation (or two-stage models). In principle, dibances of indicators of factor models should
not be correlated unless the modelerdasiori reason to do so (see Cole, Ciesla, & Steiger,
2007).

Systems of equations can be estimated using 2Shi8hws a limited information
estimator (i.e., it uses information only from arpStream” equation to estimate a “downstream”
variable). This estimator is usually a “safe bedfimator because if there is a misspecification in
one part of the model and if the model is quite picated with many equations, this

misspecification will not bias estimates in othartp of the model as would full-information
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estimators like three-stage least squares (e.tinex& Theil, 1962) or maximum likelihood, the
usual estimator in most structural-equation modgtirograms (Baltagi, 2002; Bollen, 1996;
Bollen, Kirby, Curran, Paxton, & Chen, 2007). Thusing a Hausman test, one could check
whether the full-information estimator yields diéat model estimates (of the coefficients) from
the limited-information estimator; if the estimatee significantly different, then the limited-
information estimator must be retained (as lonthasnodel fits, see below).

4.2.1.1 Examining Fit in Simultaneous-Equation Med®veridentification Tests)

In the above example, we can test whether the Wgi@icthe model and the
appropriateness of the instruments. For instanee can examine whether the instruments are
“strong” (Stock, Wright, & Yogo, 2002); these rauwgs are implemented in the ivreg2 module of
Stata (Baum, et al., 2007). Also important, if maire important, is to test whether the
overidentifying restrictions of the system of egomas if viable (when having more instruments
than mediators); this is a test of fit to determivteether there is a discrepancy between the
implied and actual model. Essentially, what thes¢stexamine is whether the instruments
correlate with the residuals of thequation. It should be now clear to readers that th
undesirable situation is due to a model that isp@sified, which means that estimates are biased
and cannot be interpreted. Thus, the model mubefiire estimates can be interpreted.

In the example above, Eq. 29 is overidentified,(ixe have one more instrument that we
do endogenous regressors); thus, the chi-squdreftitshas 1 degree of freedom; if we had only
one instrument, the model would be just-identifed a test of fit cannot be conducted (though
the Hausman endogeneity test can still be dondéhdmrontext of regression models, these test of
fit are chi-square tests and are usually calleg&uatests, Hansen-Sargan tests, or simply J-tests
(see Basmann, 1960; Hansen, 1982; Sargan, 195&yeTasts are direct analogs to the chi-

square test of fit in the context of maximum likelod estimation, as is usually the case with
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structural equation modeling software. A significpivalue for this test means that the model
fails to fit (i.e., that the data rejected the mpddis test are well-known in psychology and
management but is often (and incorrectly so) igtoheterestingly, economists pay attention to
the test of fit. If it is significant, the modelm® good, end of story (and one must refine the
model or find better instruments); they do not agproximate indexes of fit, for instance the
RMSEA (Browne & Cudeck, 1993), CFI (Bentler, 199, TLI (Tucker & Lewis, 1973), which
are not statistical tests with known distributigfan & Sivo, 2005; Marsh, Hau, & Wen, 2004)
or have arbitrary cut-offs, as in the case of RM3JEARen, Curran, Bollen, Kirby, & Paxton,
2008).

There are researchers (outside of economics) wetarting to seriously question the
common practice in some social-sciences field oépting models that fail the chi-square test of
fit apparently because with a large sample evenutaidiscrepancies will be detected and thus
thep-value of the test will always be significant (Fe®onakis, House, Rowold, & Borgmann,
2010; Hayduk, Cummings, Boadu, Pazderka-RobinsoBpdlianne, 2007; Marsh, et al., 2004;
Mclintosh, 2007; Shipley, 2000) [add Kline]; if theodel is correct specified, it will not be
rejected by the chi-square test even at very lsageples sizes (Bollen, 1990). Also, the chi-
squared test is the most powerful test to deteaitsapecified model, as Marsh et al. (2004)
demonstrated in comparing the chi-square teswvariaty of approximate fit indices. Thus, we
urge researchers to pay attention to the chi-sgeatef fit and not to report failed models as
acceptable.

Finally, it is essential to study samples thataesally homogenous (Mulaik & James,
1995); causally homogenous samples are not infittites, there is a limit to how large the
sample can be). Thus, finding sources of populdigterogeneity and controlling for it will

improve model fit whether using multiple groups @lecator models) or multiple indicator,
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multiple causes (MIMIC) models (Antonakis, et 20,10; Bollen, 1989; B. O. Muthén, 1989).
4.2.1.2 The PLS problem

Researchers in some fields (particularly informmasgstems and less so in some
management subdisciplines) use what has beenadferas Partial-Least Squares (PLS)
techniques to test path models or latent varigtaetiCularly composite) models. We discuss this
modeling method briefly, because it is quite populaother fields yet PLS has no important
advantages of regression or OLS. Because it seebesglowly creeping into management
research we feel it is important to warn reseach@not use PLS to test their models. PLS
estimates are identical to OLS in saturated mod#tsobserved variables. Whether modeling
composites in PLS or indexes/parcels in saturagression models will not change estimates by
much (Temme, Kreis, & Hildebrandt, 2006).

The problem with PLS, however, is that it cannet s&/stems of equations causally (i.e.,
overidentifying restrictions cannot be tested) cam it directly estimate standard errors of
estimates. Because the model’s fit cannot be tetednodeller cannot know if model estimates
are biased. Also, its apparent advantages oveessigin-based (OLS, 2SLS) or covariance-based
modeling (e.g., SEM) is rather exaggerated (see B&ck, Babin, Anderson, & Tatham, 2006;
Hwang, Malhotra, Kim, Tomiuk, & Hong, in press; Maulides & Saunders, 2006; McDonald,
1996); recently it has been also shown that PLSegaerience convergence problems too
(Henseler, 2010). PLS users commonly repeat therméhat “PLS is good for prediction,
particularly in early phases of theory developmehéreas SEM models are good for theory
testing;” this comment suggests that one cannatigirasing SEM or 2SLS, which is obviously a
baseless assertion. We really find it odd thatehgsng PLS would knowingly not want to test
their model when they could use more robust tests.

In a recent simulation PLS was found to performsgadhan SEM (both in conditions of
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correct and misspecification); also, although a approach, referred to as generalized structured
component analysis, has been proposed as a bi&tteasive to PLS (because it is similar to

SEM in the sense that it can test model fit), gglaot provide for better estimation when the
model is correctly specified (Hwang, et al., ing®ke Interesting in this simulation is that the new
method performed better under conditions of modsspecification (which makes sense given
that it is a limited-information estimator); howey# is unclear as to whether this estimation
approach is better than other limited-informatierg(, 2SLS) estimators (e.g., Bollen, et al.,
2007).

Other apparent advantages of PLS are that it makesstributional assumptions
regarding variables and does not require large Easiges; however, regression or two-stage
least squares analysis do not make any assumjgiithes about independent variables and can
estimate models with small sample sizes. More itapdlly, there are estimators build into
programs like MPlus, LISREL, EQS, and Stata thataecommodate a large class of models,
using robust estimation and various types of véghwhich might not be normally distributed
or continuous (e.g., dichotomous, polytomous, agdecounts, composite variables, etc.). Thus,
given the advances that have been made todaytistisesoftware, there is no use for PLS
whatsoever (see in particular McDonald, 1996). Weststrongly encourage researchers to
abandon it.
4.2.1.3 Finding instruments

Finally, one of the biggest challenges that reseascface when attempting to estimating
instrumental variable models has to do with wherknd instruments. In the case of an
experiment, where the modeler wishes to establistliation, the modeler will have the perfect
instrument/s: The manipulated variables. As lonthasmodel is estimated correctly (with the

cross-equation disturbances of the endogenoudlesiaorrelated), then the causal mediation
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influence can be correctly identified. In the caseross-sectional or longitudinal research, stable
individual difference that are genetically deteredrcould do (personality, cognitive ability), as
would age, height, hormones (e.g., testosteromglhysical appearance (Antonakis, in press);
geographic factors (distance from the leader agioreed above) could work. Time effects could
be used as an exogenous source of variance asexagenous “shocks” of from a particular
event; there are contextual effects that couldcateadership, including laws or cultural-level
factors (Liden & Antonakis, 2009). With panel ddtaed-effects of leaders or more simply
cluster-means should also do the trick becausewloeyd capture all unobserved sources of
variance in the leader that predict behavior (&gtpnakis, et al., 2010); this procedure will
essentially purge rat€s score from idiosyncratic bias, common-methods por other errors,
given that the fixed-effect (i.e., the cluster-masanre) should mostly capture true variance
(Mount & Scullen, 2001; Scullen, Mount, & Goff, 200 Others have had ingenious ideas,
estimating the effect of a change of leadershipdipgents) on country-level outcomes using death
in office as an exogenous source of variance (J&r@kken, 2005); thus, the change of the
handover of power is random (exogenous sourceargnces such as this could be used to
identify causal effects in two-stage models). Rigdinstruments is, at times, not easy; however,
the time spent to find instruments is an investntieat will serve science and society in good
stead because the estimated parameters of the mididst consistent.

Important to note, once again, is that the instmienust not correlate widy omitted
causes. For instance, if an omitted common caukmadér style and effectiveness is affect for
the leader and if leader 1Q is used as an instrtyntie® modeler must be sure that affect for the
leader and 1Q do not correlate. If they do coreglétte model will be misspecified; however,
misspecification could be caught by the overidedtfon test (as long as true exogenous

variables, in addition to the “bad” instrument areluded). Thus, it is crucial to try and obtain
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more instruments than endogenous variables sth@atveridentification test can be performed.
Also, the instruments must first pass a “theorétwaridentification” test before an empirical
one (if all the model instruments are not truly g@aoous the overidentification test will not
necessarily catch the misspecification, as we have shown).
4.2.1.4 Solving the common-methods variance probl#gm2SLS

We provide two examples below; one where we show tioarecover causal estimates
with instrumental variable and 2SLS. The secondampta is a full SEM causal model, where we
recover the causal estimates with instrumentabbées using maximum likelihood estimation.

Example 1 using 2SL3he previous discussion has been a theoreticahndeeaders
might be skeptical about how the 2SLS estimatorreanver causal estimates. We thus
generated data with a known structure where tiseaestrong common-methods variance effect.
Assume that we have an endogenous independenblieatjia dependent variabje two
exogenous and perfectly-measured variabl@ndn, and a common source effegt, The true
model that generated the data is (note ¢tsatdu are normally distributed and independent of
each other):

xX=ay+q+.8m+.8n+e Eq. 31

y=Bo+q—2x+u Eq. 32
We generated this data for a sample size=fL0,000. Refer to Table 3 for the
correlation matrix and sample statistics of thisaqaote, these summary data can be inputted
into a structural-equation modeling program tovkethe same estimates with maximum
likelihood).
[Insert Table 3 here]

Estimating the OLS model (or using Maximum Likeldd), wherey is simply regressed

onx, clearly gives avrongestimate with therongsign (.11); the true estimate (-.20) is 281.82%
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lower! Here is an example of the sinister effecthef common method variable, which when
omitted from the equation makegndogenous; as we mentioned, the biased OLS cieeffi
could be higher, lower, of a different sign or smnificant. We trust it is now clear that
Spector’s (2006) suggestion that common methodsibian urban legend an urgent legend in
itself.

The estimates of this model are depicted in Pan&fl Pable 4. The known-model
estimates, based on two OLS equations (i.e., abhdameelating cross-equation disturbances)
reproduce the correct estimate precisely (-.20ndisated Panel B in Table 4. However, in the
real-world this model would not be estimated beeatis highly probably that the common
causef, cannot be measured directly.

[Insert Table 4 here]

Thus, the only correct solution that is availal@ddress this problem is one that is
straightforward to use, provided the modeler haguments. Using the 2SLS estimator, which
exploits the exogenous sources of variance fmandn, recovers the true estimate (see Panel C
in Table 4); the exogenous variables do not caeeldth g (and thus not witle whenq is not
included in the equation) nor withbecause they vary randomly. They are stronglyedlgox
and only affecy via x. Next, even though is not included in the model, the 2SLS estimator
recovers the estimate of interest exactly (-.2@ugh with a slightly larger confidence interval;
as we said before, the price that is paid is redletfciency. In the case of two-equation models,
and with strong instruments, the 2SLS estimatoegsimilar estimates to three stage least
squares (3SLS), iterated 3SLS, maximum likelihddd)( and limited information ML (LIML).

To demonstrate the stability of the 2SLS estimatéonte Carlo simulation of this data
structure based on 1,000 simulations provided amate of -.20, with a 95% confidence interval

of between -.2007859 and -.1992456!). Finally, eg&a chi-square test of overidentification
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(Sargan, 1958) suggests that the instruments &k pa .30 (the simulation results confirmed
this finding toop = .32).

Now, had we estimated this above model using tedsird approach (irrespective of the
estimator) that is usually used in management aptieal psychology where the cross-equation
disturbance are not correlated would have givemeworrect estimate (i.e., .11, which is, in fact,
that of the OLS model); not estimating the crossagign disturbance suggests that there is no
“common shock” that might predigtandy, which is unmeasured and not accounted for in the
model. That assumption is too strong to make, ansdeademonstrate, incorrect in the context of
such mediation models.

Example 2 using MLThe above demonstration should now explain furthat if the
effect of a common source/method is not explicitiydeled, true parameter estimates cannot be
recovered (e.g., by attempting to model a methotbfabecaushowthe method factor affects
the variable is unknown to the researcher). Thaos,defensible statistical way to control for this
problem is the way we have demonstrated abovesiogunstrumental variables. The same
procedures can be extended to full SEM models. W'eigle a brief example below, following a
similar specification in Figure 2 where we inclumldependent variabig presidential leader
effectiveness, and two independent variables. Alhsures were obtained from voters, who only
have some knowledge of the leaders behaviors. Wede a common cause--suppose it is affect
for the leader or any other common-cause mecharasmell as two instrumental variables
andz2 that do not correlate with the common cause @some not selection effects due to the
instruments). The first instrumemd, is the leader’s IQ anz? is the leader’s neuroticism, which
are orthogonal to each otherl and=2 are transformational and transactional-oriented

leadership respectively (for simplicity these dre only styles of leadership that matter). Thus,
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the more subordinates like the leader the more $keyher as charismatic and the less they see
her as transactional; however, these styles varpécause of the leaders’ personality. Given that
personality is largely exogenous (i.e., due to ggrnewill vary independently of other factors in
the model.

The correct model is depicted in Figure 4, Panekhich fits the data perfectly?(51) =
47.48,p > .05,n = 10,000; all estimates are standardized. In PBnelke estimate the model only
using the instruments. The parameters estimatesoarect as long as the residuals are correlated;
the model fits perfectly, despite omitting the coomtausey?(45) = 48.50p > .05. In Panel C
the model is still correct. Given that the instruntseare exogenous, they do not correlate with the
common cause. Thus, omitting the instruments @ccttimmon cause, as we showed in Panel B)
will not bias the estimates; also, the model fisfectly: ¥*(37) = 37.96p > .05. Finally, the
model depicted in Panel D is incorrect becausdstieait variables are endogenous and are not
purged from endogeneity bias. The structural esémare incorrect although the model fits:
¥°(31) = 34.46p > .05. Again, this example not only demonstraltes instruments can purge the
bias from endogenous variables but that it is irafpee that the model be correctly specified.
Note, we tried to recover the correct causal esémby modeling a latent common factor; the
model included a “Heywood” case giwhose variance we had to constrain so that itccbal
estimated); doing so resulted in good model fitnideer, the model estimates were wrong.

[Insert Figure 4 here]

Thus, we hope that our demonstrations will provide directions in solving the
common-methods problem and in estimating mediatiodels correctly. Also, as is evident, the
modeler must rely on theory as well as statistiestis when specifying models and ensure that

they model exogenous sources of variance to obtaieistent estimates.
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4.3 Regression discontinuity models

The regression discontinuity design (RDD) is a géeely simple and useful model. It
was first proposed by Thistlethwaite and Campl&b0) and brought to the fore by Cook and
Campbell (1979). Interestingly, this design hashheeliscovered independently in several fields
(Cook, 2008). After the randomized experiment tiEDRs the design that most closely
approximates a randomized experiment (Cook, e2@08); however, it is underutilized in
social-sciences research and not well understoloadiSh, et al., 2002). It is currently
experiencing a renaissance in economics (Cook,)2008 discuss this design extensively,
because it is very useful in field settings.

The reason why the design is so useful is thatthkerandomized experiment, it
specificallymodels the selection procedure. Whereas in theorarzd experiment selection to
treatment is random, in the RDD selection is dua $pecific cut-off (or threshold) that is
observed explicitly and modeled as such; this ¢utan be a pretest or any other continuous
variable that does not necessarily have to be ledeewithy (Shadish, et al., 2002). From an
ethical point of view, and when the cutoff is atpset ofy, this design is very useful in that the
individuals who are most likely to benefit from ttieatment obtain it; however, this non-
randomization to condition is precisely why the R3@lifficult to grasp in terms of whether its
estimates are consistent. The reason why the RBID gonsistent estimates is that selection to
experiment and control group is based on an exiglisieasured criterion that is included in the
regression equation (thus, the disturbance terrtagmno information that might correlate with
the grouping variable). The advantages of thisgiteare many, given that it is relatively easy to
implement in field settings to test the effectivemef a policy (particularly when using a pretest
threshold).

To explain the basic workings of this design assthmea company decides to give
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leadership training to its managers; however, tmagany CEO is not sure if leadership training
works. A professor, eager to test the workingshefRDD, suggests that they could emulate a
randomized experimeiaind simultaneously help those that need leadershipitigathe most (i.e.,
provide the training only to the leaders who arewea certain threshold). Letbe the selection
threshold for training, based on a pretest of alatkd diagnostic test of the leaders’ charisma
(%). Leaders who score below a threshold--which belthe group mean (this choice maximizes
power in the RDD Shadish, et al., 2002)--are plandte treatment condition. Thus, for leader
selection is based on the following explicit rule:

s;=1lifx;<x

s;=0if x; >x

Then, the following regression model is estimateing the mean centered pretest score
to set the intercept to the cut-off value (noteytoals could be included in this equation to
increase power) [Right?]:

Vi = Bo+ Pis1+ B2 (x; — %) + ¢ Eqg. 33

Thus, the treatment effectfs. The counterfactual i8, (what the treatment group would
have had had it not been treated). Too good touee tight? As mentioned by Shadish, et al.
(2002) many “will think it implausible that the neggsion discontinuity design would yield
useful, much less unbiased, estimates of treateféadt” (p. 220). Below, we thus show
explicitly why RDD approximates the randomized expent almost perfectly (we base our
examples on the arguments and figures present&thagish, et al., 2002). We use our own,
simulated data, with a known structure, coupledhwitrors-in-variables regression as well as a
Monte Carlo experiment to show how the RDD can l®consistent estimates (so we “kill

three birds” with one stone given that we pleatheaconclusions too for more use of the Monte
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Carlo simulation method).

We first begin with a simple example to show theapal between the RDD and the
randomized experiment. Five hundred participantewandomly assigned to a control and
treatment conditionx(= 1 if in treatment, else= 0). We include a perfectly measured pretBst (
correlating .60 with the posttesfy(both variables are standardized, thus struchasmeters
are standardized too. We generated the data satththtreatment increasgby 2 points on the
scale. The regression model we estimated (thedlypidCOVA model in psychology) was:

Vi = Bo + Bix1 + B2z + ¢ Eq. 34

Results indicate a significant regression mod&, 497) =544.80. The coefficient 8f =
2.00, standard error = .07 27.87,p < .001. The coefficient of3, = .60, standard error = .04,
=16.71,p<.001. The constant is 2.60. The regression bmegparallel given that theéz
interaction was insignificant (see Figure 5a).

[Insert Figure 5 here]

Now, to understand how regression discontinuityks@nd to see its visual relation to
the experiment (Shadish, et al., 2002), supposembdad given the treatment only to that part
of the treatment group that scored below 9, whiels the group mean, on the pretest. Also,
suppose that those who score above the threshaldtdeceive the treatment. Using the same
data as before, we obtain the two regression (sexs Figure 5b).

The discontinuity can be seen at the meax(tie threshold for assigning a participant to
the treatment or control condition); this sharppdimthe line suggests that those just left of the
treatment cut-off benefitted greatly as compareithdse just to the right of the cut-off in the
control group who did not receive the treatmentinkating Equation 33 shows that the

regression model was significafi(2, 243) = 82.21. The coefficient @, = 1.99, standard error
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=.17,t = 6.78,p <.001. The coefficient o3, = .58, standard error = .09 6.78,p < .001. The
constant is 8.03. The regression lines are pamgilleh that thec*z interaction was insignificant,
note, it is always good policy to include tkfz interaction in case the experiment produces not
only a change in the constant but also in the s{bladan, Todd, & Van der Klaauw, 2001; Lalive,
2008).

Note, that the treatment effect is almost precifetysame as before (1.99 now, versus
2.00). As we mentioned before, the counterfacwi#tié constant; thus, if the experimental group
had not received the treatment, its mean would baea 8.03. Now, going back to the

randomized experiment, the fitted model indicateaty = 260+ 2x + 60z . Thus, at the mean

value ofz we predicty to be the following for the control group, whichtlee true counterfactual--
or the estimated marginal mean: 2.60 + 2*0+.60°8G0!

This exercise never ceases to amaze us, butdtabwous once one understands how the
RDD works. As is evident from the graphs, the ranided experiment replaces the discontinuity
with random assignment. Rather than allocatingysrer using a cutoff to the treated condition,
the randomized experiment assigns a random subdgoceither the treated or the control
condition (which undoes the discontinuity). Furthere, readers should not fall into the trap of
thinking that RDD is simply explained by regressiorthe mean, in the sense that when
remeasuring participants with extreme values thest-scores regress to the mean. As mentioned
by Shadish, et al. (2002), any regression effeetsieady captured in the regression line. Of
course, those initially scoring in the extremed vagress; however, this causes the slope of the
regression line to become flatter, but it doesaantse discontinuities.

To test RDD a step further we then conducted a BlQarlo experiment. To provide for a

strong test, we made the correlation betweandx more realistic by adding error xpand thus
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also show the workings of the errors-in-variabletsneator: We add a normally distributed error
term @) tox (i.e., .5%). The reliability ofx is (Bollen, 1989): 1 — (error variance)/(total iaaice).
Given that the originat (without error) had a variance of 1, and we obséhe variance of-
with-error to be 1.28, the theoretical reliability ofs 1 — (1.28 — 1) /1.28 = .78. We then ran a
Monte Carlo experiment, estimating the same regmesaodel as in the RDD above using the
mean ofx as the cut-off. We simulated this process 1,00@sito see how stable this estimator is
(i.e., specifically to see how the causal paramseatémterested were distributed).

The results showed that the RDD coupled with thergfin-variables estimator recovered
the true causal parameters almost precisely! Trenrméthe constant was 8.01 (95% confidence:
8.00 to 8.01). The mean of coefficient®f=2.02 (95% confidence: 2.01 to 2.03). Finally th
coefficient for off3, = .60 (95% confidence: .59 to 60)!

We re-ran the Monte Carlo using OLS to demonstiaesffect of measurement error on
the estimates. The mean of the constant was 8524 (®nfidence: 8.20 to 8.21). The mean of
coefficient of; = 1.62 (95% confidence: 1.61 to 1.63). Finally, tbhefficient for offg, = .34
(95% confidence: .34 to .34). These estimates axeoff the correct estimates; the treatment
effect was underestimated by a large margin (-29)80 he effect of the covariate was
underestimated by a much larger margin (-43.33%plly, the counterfactual was
overestimated (+2.50%); however, the intercept seeme less affected. Results with more than
one ill-measured covariate would certainly createlmmore bias than what we have showed
here with a very simple model.

To conclude, we trust that our demonstrations evéate some interest in using RDD in
leadership research as well as in related areasageanent, applied psychology, strategy, etc.).
This design is clean and simple to run. Becauspate restrictions we have only covered the

basics of RDD; readers should refer to more speeliterature for further details (e.g., Angrist
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& Krueger, 1999; Angrist & Pischke, 2008; Hahnakt 2001; Lee & Lemieux, 2009). Finally,
modelers can find creative ways to use the RDD.ifsiance, regression discontinuities could
also be used where the modeled cut-off is an exageshock (e.g., war).

4.4 Difference-in-differences models

In the case where a treatment and a very similairglogroup are compared before and
after a treatment, causal inference could be memleded certain assumptions are met (the most
important being that in the absence of the treatntiea difference between the two groups is
relatively stable over time). This type of modetaled a difference-in-differences model in
economics (see Angrist & Krueger, 1999; Angristi&dpke, 2008; Meyer, 1995); in
psychology, it is usually referred to as an un&datontrol group design with pre- and post-test
(Shadish, et al., 2002). We will discuss these risolem the point of view of economics, given
that the literature on estimation methods is meeetbped in this field.

The basic idea of the difference-in-differences elaslto observe the effect of an
exogenous “shock” on a “treatment” group; the treait effect is the difference between the
treated group and a comparable control group atimss Using a comparable group thus
“differences-out” confounding contemporaneous fectéor a graphic depiction of this model
see Figure 6.

[Insert Figure 6 here]

The following model, in panel form, is thus estiedat

Yie = Bo + Brxi + Bati + Bax.t; + e Eqg. 35

Where personis either in a treatment group= 1, else it is 0) in time peridglfor
simplicity, suppose that data are on two periodfpie and after the intervention, wherel is
post-treatment, else it is 0; the model shouldudelcontrol variables, which we have omitted for

simplicity. The treatment effect is captured by toefficient of the interaction ternf;. Another
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way of looking at the treatment effect is to diffecey across time and groups, which gives:

{Ely |x=1t=1-E[y |x=0t=1}-{E]Y |x=1t=0]- Ely [x=0t=0}=8, Eq.36

That there may be differences between the groupstprthe intervention is captured by
the fixed effect of group membership, that is, ¢befficient ofx (thus, random assignment is not
of issue here, as long as the assumptions of thieochare satisfied). Fixed effects of time are
captured by the coefficient gfthat is, because changeyimight be due to time. Note, fixed
effects of individual could be modeled as well ihigh case the between group differences will
be captured by the individual fixed effects ratthem by the parametgy. What is important for
this model is that.t is not endogenous, that is, that the differendc@den the groups is stable
over time and that the timing of the treatmentdiggenous (i.e., that differencesyiare not due
to unmeasured factors); this assumption can be ieeanby comparing data historically to see if
differences are stable across the groups befockdfer) the treatment (Angrist & Krueger,
1999). Also, given that the data are panel data,iihportant to correct standard errors for
clustering on the panel variables (Bertrand, e2804). Note, thak, + B; + B, provides for the
counterfactual (i.ey of the treatment group had it not been treatedddfse, the basic
difference-in-differences model can be expandadare sophisticated ways (Angrist & Krueger,
1999, 2001; Angrist & Pischke, 2008; Meyer, 1995).

Applied to leadership research, suppose that a @Czompany that has two similar
factory sites suddenly decides to hire a profegsoonduct an experiment to see whether
leadership training works. She decided this orbtdms of yearly data the company has been
gathering using a 360 leadership instrument, whitdwed that the mean level of charisma has
been declining across the two sites (at a simétg)rand that it is now below a critical threshold

in both sites. Trained as a medical researchersispgests to the professor that all the company’s
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500 supervisors should be randomized into a traatorea control group. Instead of doing a
randomized experiment within each factory, whichlddave spillover effects from the
treatment to the control groups, the professor tmes the CEO to allow her to train the
managers on one site only. Given the fact that #neyseparated by a distance of 2,000km and
because they produce pharmaceutical products ffereit markets (which both have strong
demand for their products), it is very unlikely tinsanagers in the control site will get to know
about the training that will be conducted in theexmental site. Furthermore, because
demographic indicators regarding the managerstandiorkers are similar in the two sites (as
are charisma trends in the managers), and sociogtos about the same (as historical data
indicates) the difference-in-differences would beagpropriate tool to use in this particular case.
4.5 Selection models (Heckman models)

As discussed previously, when there is unmodelkstisen to treatment (i.e., participants
attend leadership training, but training is noigresd randomly), estimates will be inconsistent
because unobserved variance which affects seldctithre selection equation (see Eq. 11) could
be correlated with unobserved variance that affixeglependent variable (see Eq. 10)—this
endogeneity can inflate or deflate the treatmefigicefOne way around this problem is to
estimate a Heckman type two-step selection modetKkhan, 1979) or more specifically, what is
referred to as aeatment effects mod@ee Cong & Drukker, 2001; Maddala, 1983).

The idea behind this model is to use instrumenfsedict participation in the treatment
or control group (the probit first-step equatiofiflereafter, a control variable, which captures all
unobserved differences between the treatment amdot@roups due to selection, is added in the
second step (the substantive equation). This clovdr@ble will remove the variance from the
error term due to selection, so as the coeffiaxenthe treatment term can be correctly estimated.

This model is easily estimated in advanced stesigitograms like Stata.
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Note, there are other types of models that carstmated having sample selection bias,
for example, models where the dependent outcomie taubinary instead of continuous.
Another type of selection model is the claddeckman two-step modfr situations where one
observes the dependent variable only for the slegitoup (i.e., there is missing data on the
dependent variable). The example Heckman usedeastimate the effect of education on wages
for women, with the selection problem being the that women choose to work depending on
the offer wage and the minimum wage a woman woxetet to have (i.e., her reservation
wage); thus, simply regressing the wages on edurcatill not provide a consistent estimate.

Applied to leadership, suppose we wish to estimdiether there are sex differences in
leadership effectiveness. The selection probletnasindividuals are appointed to positions of
leadership based in part on their sex and not @nlgheir competence (Eagly & Carli, 2004).
That is, because of social prejudice mechanisragatype threat, and self-limiting behavior,
females may be less likely to be appointed to leeales as a function of the gender typing of the
context. Thus, in male-oriented environments, tdrae of observed male leaders is biased
upward in male-stereotypical settings and onlygédormance of very competent women would
be observed (because women are held to a highmetasthof performance and thus only the more
competent women are observed); indeed, when congptre effectiveness of women versus
men in business settings that would reflect thiscsi®n, women are significantly more effective
(Antonakis, Avolio, & Sivasubramaniam, 2003; Eaglghannesen-Schmidt, & van Engen,
2003). The effect of being a woman could thus berstated.

The Heckman model could be useful in this contiexthe first step, we would predict the
probability of being a leader using exogenous umstnts (e.g., sex, competence, sex-typing of
the job, cultural factors, etc). Then in the secstagph, we would include sex as a predictor and

control for unobserved heterogeneity in the sedactn predicting effectiveness of leaders who
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we observe to derive a consistent estimate offfieeteof sex on effectiveness.
4.6 Other types of quasi-experimental designs

There are other ways to obtain causal estimateg wgry simple methods. Researchers
should refer to Cook and Campbell (1979) and Shadisal. (2002) for ideas. For instance,
extending the idea behind the non-equivalent degr@n¢hriable design (see Shadish, et al.,
2002), suppose that a researcher wants to investiga efficacy of a leadership training
program; however, for whatever reason (e.g., @gins imposed by an organization, ethical
reasons, etc.) the researcher cannot have a cgniigd. One way to obtain estimates that could
be consistent is to pretest the participants omteéasure of interest (e.g., charisma) as well as on
a closely-related measure that the researcheradiohtend to change (e.g., communication skills,
see Frese, Beimel, & Schoenborn, 2003 for an ex@miphe point of this design is to show a
significant difference between the Time 1 and Thmaeasure of interest and no difference in the
other measure that the researchers did not intenhipulate. In the Frese et al., (2003) study,
however, they did find differences too in commuti@askills, which can be interpreted as
learning effects; however, they could have useslitiformation to “unbias” their parameters of
interest (though they did not). That is, a simpleywo remove the variance due to learning
effects is to include the non-equivalent measur& @sntrol variable, particularly if one has pre
and post measures as well as control variablesqamdhus estimate a panel model). Of course,
such methods will are not substitutes for the expanmts, but if the right controls are included
they may provide good enough estimates of treateitadt.

Next, we discuss the state-of-the-art of causdlyaisain leadership research. We first
explain the sample we used in this review and oding method. Thereafter we present the
findings and discuss their implications.

5.0 Review of Robustness of Causal Inferencein Management and Applied Psychology
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5.1 Sample

To gauge whether leadership research is currdetlying with central threats to causal
inference (i.e., reporting estimates that are cpest), we reviewed and coded a random sample
of articles appearing in top management and appkgdhology journals. The initial sample
from which the final set of articles was drawn wage large f = 120) and current--covering the
last 10 years (i.e., between 1999-2008). We diccode any laboratory experiments given that
their estimates would be consistent by design (exaf randomization). We only coded
empirical non-experimental papers and field expents, because it is in these categories of
research where potential problems would be evidérg.population of journals we surveyed,
includingThe Leadership Quarterlgre all top-tier journals according to objectivieesia (i.e.,
5-year ISI impact factor reported in 2009) in tloedin of management or applied psychology.
These journals publish research on leadership and & strong micro or psychology focus.
Below, we include the list of journals as well bsit 5-year impact factor (IF) and rank in either
management (MGT) where there are 89 journals ligtetlor in applied psychology (AP) where
there are 61 listed journals:

1. Academy of Management Joumilanagement (IF=7.67; MGT<}

2. Journal of Applied PsychologyF=6.01; AP=1)

3. Journal of ManagemerftF=4.53; MGT=9)

4. Journal of Organizational BehavidtF=3.93; MGT=14"; AP=4")

5. The Leadership QuarterifF=3.50; MGT=1§"; AP=5")

6. Organizational Behavior & Human Decision Procesgés3.19; MGT=21, AP=1d")

7. Personnel PsychologyF= 5.06; AP=2%

We first identified the population of articles thaét our selection criteria. We used ISl

Web of Science to initially identify potential aties which included either “leader” or
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“leadership” in the “topics” field, which searchiesthe title, keywords, and abstract. We only
examined studies that focused on leadership p&Wsdimited studies using the definition of
leadership provided by Antonakis, Cianciolo, aner@berg (Antonakis, Cianciolo, & Sternberg,
2004, p. 5), that is, “leadership can be definethashature of the influencing process—and its
resultant outcomes—that occurs between a leadefodlodiers and how this influencing
processes is explained by the leader’s dispositreracteristics and behaviors, follower
perceptions and attributions of the leader, ancttmeext in which the influencing process
occurs.” Thus, we coded only studies that exantiedrifluencing process of leaders from a
dispositional or behavioral perspective, where éesloip could be either an independent or
dependent variable.

We then determined how many papers were quangtatwm-experimental studies or field
experiments. The population of studies that metcoiteria was 287 (i.e., 281 non-experiment
and 6 field experiments). This population was thstied as follows across the journals:
Academy of Management Jourr§@l06%),Journal of Applied Psycholod24.04%),Journal of
Managemen(3.14%),Journal of Organizational Behaviqi3.24%),The Leadership Quarterly
(42.16%),0rganizational Behavior & Human Decision Procesg®44%), andPersonnel
Psychology5.22%).

We then randomly selected 120 studies using saat{proportionate) sampling by
journal and type of study (i.e., non-experimentdield experiment). From this sample of 120
studies, we dropped 10 which, although quantitativeature, did not make any implicit or
explicit causal claims as in the case of scaleda#ibn studies; we did though retain those that
made, for example, comparison of factors acrossgngs like gender (e.g., Antonakis, et al.,
2003). Thus, the final sample was 110 studiestidiged as followsAcademy of Management

Journal (8.18%),Journal of Applied Psycholod6.36%)Journal of Managemer{8.64%),
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Journal of Organizational BehavidfL4.55%),Leadership Quarterly38.18%),0Organizational
Behavior & Human Decision Proces9@s64%), andPersonnel Psychologi.45%). The final
distribution of papers was the same as the origlisatibution,y2(6) = 0.67,p = 1.00.

5.2 Coding

We evaluated studies on each of the sub-critertheofeven categories listed below (i.e.,
in total there were 14 criteria). We coded eacteddn, using a categorical scale: 0 = irrelevant
criterion; 1 = relevant criterion for which the hats did not correct; 2 = relevant criterion for
which we were unable to determine whether it wisranto account by the authors; 3 = relevant
criterion which the authors addressed. Note, wecade for correct use of statistical tests, for
example, use of the chi-square overidentificatest.tThe criteria we coded included those listed
in Table 1.

When papers reporting several studies, we onlyatiuese which were non-experimental
studies or field experiments even if they represesinall portion of the paper; for example, the
coding of de Cremer and van Knippenberg (2004agel solely on the one non-experimental
study reported by the authors and does not takeaitdtount the experimental studies presented in
the paper.

The coding was undertaken by the second and thittbes of this study. The coders were
first familiarized with the coding criteria. To ens that the coders of the study were well
calibrated with each other, they independently dddes randomly-selected studies from the
eligible population of leadership studies we hashidied (but which had not been selected in our
random sample). Thereafter, differences were remhc he coders then independently coded
20 studies and we calculated agreement statisticgli indicated very high agreement, i.e.,
80.51% agreement across the 280 coding event®x difterences were reconciled, the coders

then coded the rest of the studies independently.
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Each study was then discussed between the codgdiffarences were reconciled.
Finally, the first author crossed-checked a randample of 10 studies from the total population
of studies coded (and reconciled situations whighereone or the other coder was unsure as to
what to code; see below). The final coding represtre agreed ratings of both coders.

6.0 Results

We first report results for the coding to examireetier it was undertaken reliably by the
two coders. The total coding events were 1,54(c(itdria times 110 papers); however, we
computed agreement statistics for 1,519 codingtevamly given that for 21 of the coding events
either one or the other coder was unsure aboutthewoding procedure should be applied. In
this case, the first author reconciled the coding.

Initial agreement based on the first independedingpof the 110 studies was 74.39%
(1,230 agreements out a possible 1,519 coding gvant the initial agreementcoefficient was
.60,SE=.02,z=33.51,p <.001 (see Cohen, 1960). This result suggestshbatoders did
significantly better than chance (which would hgeaerated an agreement of 36.41% given the
coding events and coding categories). This levalgpeement has been qualified as being close
to “substantial’ (Landis & Koch, 1977).

We present the results of the coding in Appendismnmarized for the full sample and
by journal. As a descriptive indicator of our fings, the data across the four coding categories
for all journals indicated that: 43.83% (675/1,54&)eived a code of O (irrelevant criterion),
37.21% (573/1,540) received a code of 1 (relevetdrmon for which the authors did not
correct), 13.57% (209/540) received a code of Byemnt criterion for which we were unable to
determine whether the authors undertook the negessaection), and 5.39% (83) received a

code of 3 (relevant criterion, which the authordradsed). The frequency distribution of coding
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categories across the journals (see Appendix) wamesimilar as indicated by a chi-square test:
x%(18) = 14.88,p = 0.67. Because the distribution of this chi-square t¢est be affected by
small sample sizes in cells and given that we caoldcompute the Fisher exact test (Fisher,
1922) with so many permutations, we repeated tiadyais only for the journals that had many
observations (i.e., which regularly publish leatigggesearch:Academy of Management
Journal, Journal of Applied Psychology, JournalQyhanizational Behavior, and The
Leadership Quarterly The result remained unchanggd(9) = 7.20,p = 0.62.

Considering only the codings that were applicabée, (excluding the 675 codings
receiving 0), indicates that 66.24% received a adde 24.16% a code of 2, and 9.60% a code of
3. Assuming that those codings given a 2 were ciiadly corrected by the authors indicates that
90.40% (66.24% + 24.16%) of coded validity thremtse not adequately handled. We can
consider this 90.40% as an upperbound percentagedaigs that did not deal with the validity
threat appropriately; thus, 66.24% is the lowerlib(assuming that those codings receiving a 2
were actually corrected for by the authors but thatcorrection was not reported). These results
are depicted in Figure 7. Again, the distributidraggregate coding categories across the
journals were very similar for the full sample,-slojuare testy?(12) = 8.37,p = 0.76, as well
as for the four journals that had sufficient obaéions: chi-square test?(6) = 1.18,p = 0.98.
Note that all articles, save one, had at leastloreat to validity and most (90.91%) had three or
more threats.

We compared the distribution of codings acrosssewen journals for the 14 coding
criteria using the Fisher (1922) exact test antingethe overall Type | error to be less .05 across
the 14 tests (Bonferroni correction). The distibns across the 14 criteria were the same across

the journals, suggesting that practices and stasdar these top-tier journals regarding
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leadership research were essentially the same.

What are the most frequent and important threavslidity (see bottom part of Panel A
in the Appendix)? Criterion 4 (measurement errog @a (heteroskedastic errors) applies to
more than 94 % of all the studies we survey. Mesment error is not addressed by 70 % of all
studies to which the problem applies, and only 26.4f the studies adequately deal with the
problem. Heteroskedasticity is a potential pervagiroblem but 92.3 % of the studies possibly
facing the problem do not report whether or noyttiealt with it; only 6.7 % reported using
robust inference. Common methods variance (Critesiois a threat to validity that is also very
pervasive in leadership research (it applies t6 838 .0of the studies). Yet 77 % of the studies
affected by the threat do not deal with it adedyasend only 20.7 % of the studies adequately
address it.

Are there threats to validity that are dealt widtter than others? Threat 2c (sample is not
representative) applies to 58.2 % of all the swigie survey. Of the studies that face this
problem, 32.8% address it adequately whereas 48a1fot; leaving 18.8% for which we cannot
assess whether sample selection has been addoesssd
7.0 Discussion

Our review indicated that methodological practiesgarding causal modeling in the
domain of leadership are unsatisfactory. Our ressgsentially point to the same conclusions as
do the recent reviews of the literature regardimgogeneity by Hamilton and Nickerson (2003)
in the strategy domain, that of Halaby (2004) inislogy regarding panel models, and that of
Bertrand et al. (2004) regarding the use of clugibust standard errors in econometrics.
Although we looked at similar issues to those efttiree reviews, the contribution of our review
was unique in that we examined multiple validityethts (beyond those three reviews).

Except forThe Leadership Quarterlyhe articles we coded were published in general
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management and organizational behavior journalgs;Tlwe could assume that the practices of
others disciplines publishing in those journals\aey similar to the practices we identified; our
findings may thus have implications for other araag also for the meta-analytic reviews which
may have used estimates that were inconsistentaWenly echo what Halaby (2004, p. 508)
noted about for research in sociology using paatd tKey principles that ought to routinely
inform analysis are at times glossed over or igth@anpletely.”

Why is current practice not where it should be gitleat the methodological tools have
been available for some time? We can only specakate why practice has been slow to follow
the methodological advances that have been maaeemblt important reason probably has to do
with doctoral training; in psychology at leastagipears that adequate training in field research
and quantitative methods in general is not proviéedn at elite universities (Aiken, West, &
Millsap, 2008). We can assume that the level ohimg provided in non-experimental causal
analysis in management is insufficient as welltipalarly in econometrics training. As Aiken et
al. (2008, p. 44) state “Psychologists must reiokage the teaching of research design to our next
generation of graduate students, to bring new dpweénts burgeoning in other fields into the
mainstream of psychology.”

We believe that coupled with the above problenhésfact that users of statistical
programs have been very slow to adopt softwarecdrato the job correctly when causal
analysis in non-experimental settings is concerasdnentioned by Steiger (2001) statistical
practice is, unfortunately, software driven and¢hare many “simplified” books that make it
easy to use software to estimate complicated m¢a#@erto Holly, one of our econometrics
colleagues, refers to this as the “push-buttortisttes syndrome). We find it very unfortunate
that easy-to-use programs (e.g., like SPSS nowd®ASW), which have very limited and at

times inexistent routines to handle many of thdlehging methodological situations we
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identified in our review, are firmly entrenchedpsychology and business schools. In our
experience, SPSS is sufficient for analyzing bagerimental data, but as soon as researchers
venture out into the non-experimental domain weld/ouge them to migrate to other software
(e.g., Stata, SAS, R) that will allow them to tesidels in robust ways and also to widen the
research horizons on which they can explore. Ofsmprofessors who teach methods and
statistics classes should also seriously consisiagunore appropriate software (and in also
providing more extensive training to their studgnts

We note the same concern regarding structural-eguatodeling (SEM) software, where
much of the market is using SPSS’s AMOS softwdmes; program makes it very easy to estimate
models. However, this program has very limited bdjiges as compared to MPlus (our SEM
software of choice), LISREL or EQS, though evers¢éhprograms have some catching-up to do
concerning the estimation of certain types of medelg., selection models).
7.1 Recommendations: The 10 Commandments of Causal Analysis

Our review and the coding criteria we identifiethde used as a summary framework
around which researchers should plan and evalbatework to ensure that estimates are
consistent and that inferences are valid. We lyrigfbresent these criteria below, grouped in the
form of 10 best practices, implicating researchgiesr analysis. Concerning these two aspects
of research, simply putlesign rulegShadish & Cook, 1999); only when the design iscate
can appropriate statistical procedures be usetitmroconsistent estimates.
7.22 Best Practice For Causal Inference

1. To avoid omitted variable bias include adequeatgrol variables. If adequate control
variables cannot be identified or measured obtaimepdata and use exogenous sources of
variance (i.e., instruments) to identify consisteffiects.

2. With panel (multilevel) data, always model thefl effects using dummy variables or
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cluster means of level 1 variables. Do not estimatelom-effects models without ensuring that
the estimator is consistent with respect to thedieffects estimator (using a Hausman test).

3. Ensure (and demonstrate) that independent Vesialbe exogenous. If they are
endogenous (and this for whatever reason) obtainuments to estimate effects consistently.

4. If treatment has not been randomly assigneddividuals in groups, if membership to
a group is endogenous, or samples are not repatisenbetween-group estimates must be
corrected using the appropriate selection modetloer procedures (difference-in-differences,
propensity scores).

5. Use overidentification tests (chi-square te$fg)an simultaneous equations models to
determine if the model is tenable. Models thatda#ridentification tests have untrustworthy
estimates that cannot be interpreted.

6. When independent variables are measured wibh, éstimate models using errors-in-
variables or use instruments (well-measured, ofsmun the context of 2SLS models) to correct
estimates for measurement bias.

7. Avoid common-methods bias; if it is unavoidabée instruments (in the context of
2SLS models) to obtain consistent estimates.

8. To ensure consistency of inference, check iflteds are i.i.d. (identically and
independently distributed). Use robust varianceredors as the default (unless residuals can be
demonstrated to be i.i.d). Use cluster-robust wagaestimators with panel data (or group-
specific regressors).

9. Correlate disturbances of potentially endogemegeessors in mediation models (and
use a Hausman test to determine if mediators ategemous or not).

10. Do not use a full-information estimator (i@aximum likelihood) unless estimates

are not different to that of limited information§RS) estimator (based on the Hausman test).
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Never use PLS.

Apart from addressing the guidelines above andrbhnods we reviewed, researchers
should also consider using Monte Carlo analysisentioan they do. Monte Carlo analysis is very
useful for understanding the working of estimai®isoney, 1997); for example, when an
estimator may be potentially unstable (e.qg., indage of high multicollinearity) a researcher
could identify the sample size requirement to emshiat the estimator is consistent.

8.0 Conclusion

Research in applied psychology and related ssciahces is at the cusp of a renaissance
regarding causal analysis and field experimentatimgre are many reasons for this push
including, in part, for the need for evidence-bageattice (Shadish & Cook, 2009). Researchers
cannot miss this call; understanding the causaldations of social phenomena is too important
a function for society. Important social phenomdaserve to be studied using the best possible
methods and in sample situations that can generalireal-world settings; ideally our goals
should be to improve policies and practices.

Although our review makes for telling conclusioms are hopeful and confident that
research practice will change in ways that produessarch that will be more useful to society.
We conclude by referring to the problem of aligntatheory, analysis, and measurement:
When not correctly aligned Schriesheim, Castro,lZlamd Yammarino (2001, p. 516) noted that
researchers “may wind up erecting theoretical slagsers on foundations of empirical jello.”

This warning is pertinent for a broader class obpems relating to causal modeling too; implicit

or explicit causal claims must be made on condmtedations.
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Tablel: The 14 Threatsto Validity

Validity Threat

Explanation

1. Omitted variable

2. Omitted selectior

3. Simultaneity

4. Measurement err(

5. Commormethods varianc

6. Inconsistent inferenc

7. Model misspecificatio

(a) Omitting a regressor, that is, failing to includepiortant
control variables when testing the predictive vialiof
dispositional or behavioral variables (e.g., tesfinedictive
validity of “emotional intelligence” without includg 1Q or
personality; not controlling for competing leadejpsstyles)

(b) Omitting fixed effects

(c) Using random-effects without justification

(d) In all other cases, independent variables not exage (if it is
not clear what the controls should be)

(a) Comparing a treatment group to other -equivalent groug
(i.e., where the treatment group is not the sambeasther
groups)

(b) Comparing entities that are grouped nominally wisedection
to group is endogenous (e.g., comparing men andenom
leaders on leadership effectiveness where theteslgmrocess
to leadership is not equivalent)

(c) Sample (participants or survey responses) suffen elf-
selection or is non-representative

(a) Reverse causality (i.e., an independent variabpetiential
caused by the dependent variable)

(a) Including imperfectl-measured variables as indepenc
variables and not modelling measurement error

(a) Independent and dependent variables are gathenactliie
same rating source

(a) Using normal standard errors without examining
heteroscedasticity
(b) Not using cluster-robust standard errors in paatd d

(a) Not correlating disturbances of potentially endanes
regressors in mediation models (and not testingridiogeneity
using a Hausman test or augmented regression),

(b) Using a full information estimator (e.g., maximuikelihood,
three-stage least squares) without comparing et&ggne a
limited information estimator (e.g., two stage-kespuares).

Note: The above 14 threats to validity are theedatwe used for coding the studies we reviewed.
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Table 2: Six Methodsfor Inferring Causality

Method

Explanation

1. Statistical adjustmer

2. Propensity score analy:
3. Simultaneou-equation
models:

4. Regression discontinu

5. Differencein-differences
models:

6. Heckmarselectior
models:

Measure and control for all causesy (impractica and noti
recommended)

Compare individualwho were selected to treatmdo statistically simila
controls using a matching algorithm

Using “instruments” (exogenous sources of varigheé do not correlat
with the error terms) to purge the endogenouariable from bias.

Select individuals to treatment in using a modetlet-off.

Compare a group who received an exogenous treatmargimilar
control group over time

Predict selection to treatmewhere treatment is endogenous) and t
control for unmodeled selection to treatment irdpréng y.
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Table 3: Corrdation matrix for 2SL S demonstr ation

Variable Mean SD q m n X y
q -.01 1.00 1.00

m -.01 1.01 -.01 1.00

n .02 1.00 .00 -.01 1.00

X -.01 1.82 .55 44 45 1.00

y .00 1.32 .62 -.13 -12 15 1.00

N=10,000.
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Table 4: Estimates for 2SL S demonstration

Independent
variables Coef. Std. Err. t p-value 95% Conf. Interval
Panel A: OLS (dependent variablegy)s
F(1, 9998) = 237.47 < .001,r?=.02
X A1 .01 15.41 .00 A0 A2
Constant .01 .01 .26 .79 -.02 .03

Panel B: Two-equation model estimated with OLS éaejent variable ig)
F(2, 9997) = 3927.65 < .001,r2=.44

X -.20 .01 30.34 .00 -21 -.18
q 1.02 .01 86.26 .00 1.00 1.04
Constant .01 .01 .83 41 .01 .03

Two-equation model estimated with OLS (dependeriailste isx)
F(3, 9996) = 7706.09 < .001,r2=.70

q 1.00 .01 10.20 .00 .98 1.02
m .80 .01 8141 .00 .78 .82
n .81 .01 81.33 .00 .79 .83
Constant -.01 .01 -1.07 .29 -.03 .01

Panel C: Simultaneous equation model estimated2@8tt5 (dependent variableyis

F(1, 9998) = 263.3% < .001,-%= .02, Sargan overidentificatiop?(1)=1.07,p=.30
X -.20 .01 -16.23 .00 -.23 -.18
Constant -.00 .01 -.02 .98 -.03 -.03

Simultaneous equation model estimated with 2SL$dddent variable is)
F( 2, 9997) = 3985.682=.44

m .80 .01  56.93 .00 a7 .82
n .82 .01 57.75 .00 .79 .84
Constant -.02 .01 -1.35 .18 -.04 .01

N=10,000;’note, it is possible that thesquare in thg equation in simultaneous equations models is
undefined; however, this is not a problem in sicn#ous equation models and structural estimatébavil
correct (Wooldridge, 2009). As a measure of redgped, the predicted value of y can be correlated to
the observeg and squared (which is one way thaguare is calculated)Ve used this calculation for
square in this model.
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Figure 1: How Endogeneity Affects Consistency

yl=0 y2#0
v Bl=consistent * B2 = inconsistent
Xq oy A Yy
Figure 1A Figure 1B

Figure 1C Figure 1D

Notes:
1. Figure 1A:8; is consistent becaugaloes not correlate with
2. Figure 1B:3; is inconsistent becaugeorrelates witle.
3. Figure 1C: Althouglx is exogenoug; is inconsistent becaugewhich correlates witle correlates
with x too and thus “passes-on” the biaxto
4. Figure 1D, is consistent even jf; is not consistent becausandz do not correlate (though this
is still not an ideal situation becaysss not interpretable; all independent variablesuth be

exogenous or corrected for endogeneity bias).



Fiqure 2: Correcting for Common Sour ce Variance: The Common M ethod Factor Fallacy

Measured
Common
Cause

Figure 2B: Incorrect Model
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Unmeasured
Common
Factor

Figure 2C: Incorrect Model

Notes:
1. Figure 2A: this model is correctly specified.

2. Figure 3B: failing to include the common causemaates the correlation betwegth and=2

incorrectly (-.32).

3. Figure 3C: including an unmeasured common factimeses the loadings (which are also not

significant for=1) and the correlation betwegd and=2 (.19, not significant) incorrectly.



Figure 3: Consistent Estimation with a Simultaneous Equation (M ediatory) M odel

B1 = inconsisten

Figure 3A

\|11 #0 (and estlmated)

\\4

a B1 = consistent C?

X "y

q Figure 3B

x i1s endogenous, bytl constrained to O (i.e,. not estimated)

z B1 = inconsisten
X Yy
q Figure 3C

Notes:
1. Figure 3A:8; is inconsistent becaugeorrelates witle.
2. Figure 3B:s, is consistent becaugendd, the instruments (which are truly exogenods)not
correlate withe (or u for that matter).
3. Figure 3C#; is inconsistent because the common causeaofly, which is reflected in the
correlation betweea andu, is not estimated (i.e., this is akin to estimgtine system of

equations using OLS, which ignores cross-equatioretations among disturbances).
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Figure 4: Recovering Causal Estimatesin a Structural Equation M odel with Instrumental Variables

.00

Measured
Common
Cause

Panel A: Correct Model Panel B: Correct Model



Measured
Common
Cause

@\‘ x.l @\‘ X2 é‘xB X4

x5

X8

Panel C: Correct Model

Notes:

Panel D: Incorrect Model
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1. Panel A: This is the correctly specified model iathg the common cause and two instrumental vagsatilandz2; note, the

instruments and the common cause do not correlateds, omitting the common causezbrandz2 will not bias estimates.

2. Panel B: Despite omitting the common cause, thidehis correctly specified given that the endoggnigias is purged with

instrumentsl andz2

3. Panel C: This model is also correct; because theman cause does not correlate with the instrunsnésndz2.

4. This model is incorrect, and estimates are biageduse the latent variablEg and=2 correlate with(3.



Figure5: Similarity Between Randomized Experiment and Regr ession Discontinuity
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Figure 5a: Estimating Causal Effect Using a RandethExperiment
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Figure 5b: Estimating the Causal Effect Using Resjign Discontinuity




Figure 6: Estimating Causal Effect Using Differ ences-in-Differ ences
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Figure 7: Summary of Coded Validity Threats by Jour nal
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Appendix A: Coded Studies and Results

Coding criterid

Study coded la 1b 1c 1d 2a 2b 2c 3 4 5 6a 6b 7a 7bTotal Total

Panel A: All journalgn = 110)

Summary statistics (by criterion)

% of 0 (irrelevant) 19.1 20.0 86.4 20.9 97.3 955 1.84 255 55 164 5.5 21.8 68.2 90.0 43.83

% of 1 (relevant not corrected) 80.9 64.5 12.7 764 1.8 4.5 28.2 73.6 66.4 64.5 0.9 45 31.8 10.0 17.266.24

% of 2 (relevant, unknown if corrected) 0.0 4.5 09 0.0 0.0 0.0 10.9 0.0 12.7 1.8 87.3 71.8 0.0 0.0 57113 24.16

% of 3 (relevant, corrected) 0.0 10.9 0.0 2.7 09 .00 191 0.9 15.5 17.3 6.4 1.8 0.0 0.0 5.39 9.60
Summary statistics excluding % of 0

Relevancy percentage (100%-% of 0) 80.9 80.0 136 9.1 7 2.7 45 582 745 945 836 945 78.2 31.8 10.0

% of 1 (relevant not corrected) 100.0 80.7 93.3 696. 66.7 100.0 484 98.8 70.2 77.2 1.0 5.8 100.0 QL00.

% of 2 (relevant, unknown if corrected) 0.0 5.7 6.7 0.0 0.0 0.0 18.8 0.0 135 2.2 92.3 91.9 0.0 0.0

% of 3 (relevant, corrected) 0.0 13.6 0.0 3.4 33.3 0.0 32.8 1.2 16.3 20.7 6.7 2.3 0.0 0.0

Panel B: Academy of Management JourfmaE 9)

Avolio, Howell, et al. (1999) 1 1 0 1 0 1 0 1 1 1 3 2 1 0
Waldman, Ramirez, et al. (2001) 1 1 0 3 0 0 1 3 1 1 2 2 0 0
Shin & Zhou (2003) 1 1 1 1 0 0 0 1 1 1 2 2 1 0
Wang, Law , et al. (2005) 1 1 1 1 0 0 1 1 3 1 2 2 1 1
Rubin, Munz , et al. (2005) 1 1 0 0 0 0 0 0 1 0 0 2 0 0
Agle, Nagarajan , et al. (2006) 0 1 0 3 0 0 1 0 1 0 2 2 0 0
Sparrowe, Soetjipto , et al. (2006) 0 1 1 1 0 0 0 11 1 2 2 0 0
Srivastava, Bartol , et al. (2006) 1 1 0 1 0 0 1 11 1 2 2 1 1
Ling, Simsek , et al (200 1 1 0 1 0 0 3 1 3 3 2 2 1 1
Summary statistics (by criterion)
% of 0 (irrelevant) 22.2 0.0 66.7 111 100.0 88.9 4.44 222 0.0 222 11.1 0.0 44.4 66.7 35.71
% of 1 (relevant not correcte 77.6  100.C 33.2 66.7 0.C 111 444 667 77.6  66.7 0.C 0.C 55.€ 33 452 70.31
% of 2 (relevant, unknown if corrected) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 77.8 100.0 0.0 0.0 7a2. 19.75
% of 3 (relevant, corrected) 0.0 0.0 0.0 22.2 00 .00 111 111 22.2 111 11.1 0.0 0.0 0.0 6.35 9.88
Panel C: Journal of Applied Psycholofly= 29)
Hofmann & Morgeson (1999) 1 0 0 1 0 0 0 1 3 1 2 0 1 1
Davidson & Eden (2000) 1 0 0 0 3 0 0 0 3 1 2 0 0 0
Liden, Wayneet al. (2000 1 3 0 1 0 0 0 1 3 1 2 2 1 0
Judge & Bono (2000) 1 0 0 1 0 0 1 1 3 1 2 0 0 0
Lam & Schaubroeck (2000) 1 0 0 0 1 0 0 0 1 0 2 0 0 0
Martell & DeSmet (200: 1 0 0 0 0 1 1 0 1 0 2 0 0 0
Turner, Barling, et al. (2002) 1 3 0 0 0 0 2 0 3 0o 2 2 0 0
Sherony & Green (200 1 3 0 1 0 0 3 1 1 1 2 2 0 0
Chen & Bliese (2002) 1 1 1 1 0 0 2 1 1 1 2 2 1 0
Eisenberger, Stinglhamber, et al. (2002) 1 1 0 0 0 O 1 0 1 1 2 2 0 0
de Cremer & van Knippenberg (2002) 1 0 0 1 0 0 1 11 1 2 0 0 0
Offermann & Malamut (2002) 1 1 0 1 0 0 2 1 1 1 2 0 1 0
Hofmann, Morgeson et al. (2003) 1 1 1 1 0 0 3 1 1 1 2 2 0 0



Baum & Locke (200¢ 1 3 0 1 0 0 3 1
Lim & Ployhart (2004) 1 0 0 1 0 0 0 1
Dineen, Lewicki et al. (2006) 1 1 1 1 0 0 0 1
Judge, LePir et al.(2006' 0 1 0 1 0 0 0 1
Aryee, Chen, et al. (2007) 1 1 0 1 0 0 0 1
Tangirala, Green, et al. (2007) 1 1 1 1 0 0 3 1
Liao & Chuang (2007) 0 1 1 1 0 0 0 1
den Hartog, de Hoogh, et al. (2007) 1 3 0 1 0 0 3
Mitchell & Ambrose (2007) 1 0 0 1 0 0 2 1
Kamdar & Van Dyne (2007) 1 1 0 1 0 0 0 1
Furst & Cable (2008) 1 1 0 1 0 0 0 1
Ng, Ang, et al. (2008) 1 1 0 1 0 0 0 1
Ozer (2008) 1 1 0 1 0 0 3 1
Henderson, Wayne, et al. (2008) 0 1 1 1 0 0 1 1
Hinkin & Schriesheim (2008) 1 1 0 1 0 0 0 1
Eisenbeiss, van Knippenberg, et al. (2008) 1 1 0 1 0 0 0 1
Summary statistics (by criterion)
% of O (irrelevant) 10.3 27.6 79.3 17.2 93.1 96.6 8.34 17.2
% of 1 (relevant not correcte 89.7 55.2 20.7 82.¢ 34 34 17.2 82.¢
% of 2 (relevant, unknown if corrected) 0.0 0.0 0.0 0.0 0.0 0.0 13.8 0.0
% of 3 (relevant, corrected) 0.0 17.2 0.0 0.0 34 .00 207 0.0
Panel D: Journal of Managemefit = 4)
Ahearn, Ferris, et al. (2004) 1 0 0 1 0 0 1 1
Elenkov & Manev (2005) 1 1 2 0 0 0 1 0
Tepper, Ur-Bien et al. (200¢ 0 1 0 0 1 1 1 0
Walumbwa, Avolio, et al. (2008) 1 1 0 1 0 0 0 1
Summary statistics
% of O (irrelevant 25.C 25.C 75.C 50.C 75.C 75.C 25.C 50.C
% of 1 (relevant not corrected) 75.0 75.0 0.0 50.0 25.0 25.0 75.0 50.0
% of 2 (relevant, unknown if corrected) 0.0 0.0 ®5. 0.0 0.0 0.0 0.0 0.0
% of 3 (relevant, correcte 0.C 0.C 0.C 0.C 0.C 0.C 0.C 0.C
Panel E: Journal of Organizational Behavifr = 16)

Yukl & Fu (1999) 0 1 0 1 0 0 3 1
McNees+Smith (1999 1 1 0 1 0 0 1 1
Wayne, Liden, et al. (1999) 0 1 0 1 0 0 1 1
Crant & Bateman (2000) 1 0 0 0 0 0 3 0
Cogliser & Schriesheim (20C 0 0 0 1 0 0 1 1
Conger, Kanungo, et al. (2000) 0 2 0 1 0 0 1 1
Andrews & Kacmar (2001) 1 1 0 1 0 0 2 1
Sparks & Schenk (200 1 0 0 1 0 0 3 1
Sagie, Zaidman, et al. (2002) 0 1 0 1 0 0 0 1
Cable & Judge (2003) 0 3 0 1 0 0 1 1
Adebayo & Udegbe (2004) 1 0 0 0 0 0 0 0
Spreitzer, Perttula, et al. (2005) 0 3 0 1 0 0 1 1
Harris, Kacmar, et al. (2005) 0 1 0 1 0 0 0 1
de Hoogh, den Hartog, et al. (2005) 1 0 0 0 0 0 1 0
Liden, Erdogan, et al. (2006) 1 1 1 1 0 0 1 1
Major, Fletcher, et al. (2008) 0 3 0 1 0 0 1 1

0.0
72.4
6.9
20.7

0.C
75.0
0.0

25.C

[y

=N

10.3
75.¢
0.0
13.8

25.C
25.0
0.0

50.C

[y

Lol V]

NoropoN N

N

0.0
0.C
100.0
0.0

2
2
25.C

0.C

N O

NN o N

0.0
75.0

NN

90

1 1
1 0
0 0
0 0
1 1
0 0
1 0
1 0
0 0
0 O
0 0
1 0
0 0
1 0
0 0
1 0
58.6 89.7 41.38
41.4 10.2  39.6¢ 67.65
0.0 0.0 .303 22.69
0.0 0.0 5.67 9.66
0 0
0 0
0 0
0 0
100.( 100.C  46.4¢
0.0 0.0 33.93%3.33
0.0 0.0 .294 26.67
0.C 0.C 5.3¢ 10.0¢
0 0
0 0
0 0
0 0
0 0
1 1
0 0
0 0
1 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
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Summary statistic

% of 0 (irrelevant) 56.3 31.3 93.8 18.8 100.0 100.018.8 18.8 125 6.3 6.3 25.0 87.5 93.8  47.77
% of 1 (relevant not corrected) 43.8 438 6.3 81.3 0.0 00 563 813 563 688 6.3 125 125 6.3  33.93%4.96
% of 2 (relevant, unknown if correctt 0.C 6.2 0.C 0.C 0.C 0.C 6.2 0.C 18k 6.2 87.t 62.t 0.C 0.C 13.3¢ 25.6¢
% of 3 (relevant, corrected) 0.0 18.8 0.0 0.0 0.0 .0 0 188 0.0 12.5 18.8 0.0 0.0 0.0 0.0 491 9.40
Panel F: The Leadership Quarter(y = 42)
Schneider, Paul, et al. (19! 1 1 0 1 0 0 1 1 1 1 2 2 0 0
Connelly, Gilbert, et al. (2000) 1 1 0 1 0 0 0 1 1 3 2 2 1 0
Mumford, Zaccaro, et al. (2000) 1 1 0 0 0 0 0 0 1 1 0 0 0 0
Zacharatos, Barlincet al.(2000 1 1 0 1 0 0 1 1 3 1 2 1 1 1
Hooijberg & Choi (2000) 1 1 0 1 0 0 1 1 3 1 2 1 0 0
Murry, Sivasubramaniam, et al. (2001) 1 1 0 1 0 0 11 2 1 2 2 1 0
Thomas, Dickson, et al. (2001) 1 1 1 1 0 0 3 0 1 1 2 2 1 0
Deluga (2001) 1 1 0 0 0 0 0 0 1 0 2 2 0 0
Shipper & Davy (2002) 1 2 0 1 0 0 2 1 2 1 2 2 1 1
de Vries, Roe, et al. (2002) 1 1 0 1 0 0 1 1 1 1 2 2 0 0
Sosik, Avolio, et al. (2002) 1 1 0 1 0 0 1 1 2 3 3 2 1 0
Wong & Law (2002) 1 1 0 1 0 0 0 1 1 1 2 2 0 0
Schneider, Ehrhart, et al. (2002) 1 1 0 1 0 0 1 1 11 2 2 0 0
Vecchio & Boatwright (2002) 1 3 0 0 0 0 3 0 0 0 2 2 0 0
McColl-Kennedy & Anderson (2002) 1 2 0 1 0 0 0 1 3 1 2 2 1 1
Xin & Pelled (2003) 0 1 0 1 0 0 2 1 1 3 2 2 0 0
Hedlund, Forsythe, et al. (2003) 0 1 0 1 0 0 0 1 10 2 2 0 0
Antonakis, J., Avolio, et al. (2003) 1 1 0 0 0 1 1 0 3 0 0 0 0 0
Dvir & Shamir, 2003 0 0 0 1 0 0 0 1 1 3 2 0 0 0
West, Borrill, et al. (2003) 1 1 0 1 0 0 0 1 1 1 2 2 1 0
Krause (2004) 1 1 0 1 0 0 3 1 1 1 2 2 0 0
Howell & Boies (2004 1 1 0 1 0 1 1 1 1 1 3 2 0 0
Bligh, Kohles, et al. (2004) 1 0 0 1 0 0 0 1 1 0 0o o 0 0
Hirst, Mann, et al. (2004) 1 1 0 1 0 0 3 1 1 3 2 2 1 0
Waldman, Javidaret al.(2004 1 0 0 0 0 0 0 0 1 1 2 2 1 0
Tosi, Misangyi, et al. (2004) 1 0 0 0 0 0 3 0 1 0 3 0 0 0
Whittington, Goodwin, et al. (2004) 1 1 0 1 0 0 3 1 2 1 2 1 0 0
de Hoogh, den Hartoet al.(2005, 1 0 0 3 0 0 3 0 1 3 2 2 1 0
Rowe, Cannella, et al. (2005) 1 3 0 0 0 0 0 0 0 0 3 2 0 0
Howell, Neufeld, et al. (2005) 1 1 0 1 0 0 0 1 1 3 3 2 0 0
Epitropaki & Martin (2005) 0 1 0 1 0 0 0 1 1 1 2 2 0 0
Arvey, Rotundo, et al. (2006) 0 0 0 0 0 0 2 0 0 3 0O 0 0 0
Ensley, Hmieleski, et al. (2006) 1 1 0 1 0 0 2 1 11 2 2 0 0
Hiller, Day, et al. (2006) 1 1 0 1 0 0 2 1 1 1 2 2 0 0
Paunonen, Lonngvist, et al. (2006) 1 1 0 0 0 0 0 01 1 2 2 0 0
Carmeli & Schaubroeck (2007) 1 1 0 1 0 0 3 1 1 1 2 2 1 0
Schaubroeck, Walumbwa, et al. (2007) 1 1 1 1 0 0 01 1 1 2 2 0 0
Harvey, Stoner, et al. (2007) 1 1 0 1 0 0 1 1 1 1 2 2 0 0
Cole & Bedeian (2007) 1 1 1 1 0 0 0 1 1 1 2 2 0 0
Luria (2008) 1 1 0 1 0 0 0 1 1 1 2 2 0 0
Ligon, Hunter, et al. (2008) 1 1 0 0 0 0 0 0 1 0 2 0 0 0
Campbell, Ward, et al. (2008) 1 1 0 1 0 0 0 1 1 1 2 2 0 0

Summary statistic



% of 0 (irrelevant

% of 1 (relevant not corrected)

% of 2 (relevant, unknown if corrected)
% of 3 (relevant, correcte

de Cremer & van Knippenberg (2004)

Brown, Trevinoet al (2005

Martinko, Moss, et al. (2007)

Giessner & van Knippenberg (2008)
Summary statistic

% of 0 (irrelevant)

% of 1 (relevant not corrected)

% of 2 (relevant, unknown if corrected)

% of 3 (relevant, corrected)

Tierney, Farmer, et al. (19¢

Ployhart, Lim, et al. (2001)

Ehrhart (2004)

Day, Sin, et al. (200

Walker, Smither, et al. (2008)

Walumbwa, Avolio, et al. (2008)
Summary statistics

% of 0 (irrelevant)

% of 1 (relevant not corrected)

% of 2 (relevant, unknown if corrected)

% of 3 (relevant, corrected)

92

11.¢ 14.¢ 92.¢ 23.¢ 100.( 95.z 45z 28.€ 7.1 19.C 9.t 16.7 714 92.¢  44.9(
88.1 76.2 7.1 73.8 0.0 4.8 23.8 71.4 73.8 61.9 0.0 7.1 28.6 7.1  37.4167.90
0.0 4.8 0.0 0.0 0.0 0.0 119 0.0 9.5 0.0 78.6 76.2 0.0 0.0 932. 23.46
0.C 4.8 0.C 2.4 0.C 0.C 19.C 0.C 9.t 19.C 11.¢ 0.C 0.C 0.C 4.7¢ 8.64
Panel G: Organizational Behavior and Human DecisRnocesse$n = 4)
1 2 0 1 0 0 0 0 2 1 2 2 0 0
1 2 0 1 0 0 0 1 3 3 2 2 0 0
1 3 0 1 0 0 0 1 1 1 2 0 1 0
1 0 0 1 0 0 2 1 21 2 0 1 0
0.0 25.0 100.0 0.0 100.0 100.075.0 25.0 0.0 0.0 0.0 50.0 50.0 100.0 44.64
100.0 0.0 0.0 100.0 0.0 0.0 0.0 75.0 25.0 75.0 0.0 0.0 50.0 0.0 30.3664.84
0.0 50.0 00. 0.0 0.0 0.0 25.0 0.0 50.0 0.0 100.0 50.0 0.0 0.09.64 35.48
0.0 25.0 0.0 0.0 00 .00 00 0.0 25.0 25.0 0.0 0.0 0.0 0.0 5.36 9.68
Panel H: Personnel Psycholo@y = 6)
1 3 0 1 0 0 3 1 2 2 3 3 0 0
1 1 0 0 0 0 0 0 2 0 2 2 0 0
1 1 0 1 0 0 3 1 3 1 2 2 1 1
0 1 1 0 0 0 0 0 0 0 2 2 0 0
1 0 0 1 0 0 2 0 2 0 2 0 0 0
1 1 0 1 0 0 3 1 1 1 2 2 1 0
16.7 16.7 83.3 33.3 100.0 100.033.3 50.0 16.7 50.0 0.0 16.7 66.7 83.3 47.62
83.3 66.7 16.7 66.7 0.0 0.0 0.0 50.0 16.7 33.3 0.0 0.0 33.3 16.7  27.38%2.27
0.0 0.0 0.0 0.0 0.0 0.0 16.7 0.0 50.0 16.7 83.3 66.7 0.0 0.06.67L  31.82
0.0 16.7 0.0 0.0 0.0 .0 0 50.0 0.0 16.7 0.0 16.7 16.7 0.0 0.0 8.33 15.91

Note: 'denote a field experimentptal percentage less coding category 0; to saaeeswe only include the names of the first two athars and add “et al.”
when there are more than two authors.

#We coded for the following criteria:

1. Omitted variables:

2. Omitted selection:

3. Simultaneity:

(a) omitting a regressor
(b) omitting fixed effects
(c) using random-effects without justification
(d) in all other cases, independent variabléserogenous

(a) comparing a treatmeatig to non-equivalent groups
(b) comparing entities that are grouped nominalihere selection to group is endogenous
(c) sample is self-selected or is non-represieetat

(a) reverse causality
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4. Measurement error: (a) not correcting for infpetty-measured independent variables
5. Common-methods variance: (a) independent anerdkgmt variables that are correlated are gatheoedthe same source

6. Inconsistent inference: (a) using normal stadcrrors in the potential presence of heterostiedasiduals
(b) not using cluster-robust standard errorsaingb data

7. Model misspecification: (a) not correlatingtdibances of potentially endogenous regressorseiiation models (and not testing for endogeneity
using a Hausman test or augmented regression),
(b) using a full information estimator withoutroparing estimates to a limited information estimato

The above criteria were coded as follows:
0 = Irrelevant criterion
1 = Relevant criterion for which the authors did correct
2 = Relevant criterion for which we were unabl@&é&bermine whether it was corrected by the authors
3 = Relevant criterion which the authors addressed.



