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ON MAKING CAUSAL CLAIMS: A REVIEW AND RECOMMENDATIONS 
 

Abstract 

Social scientists often estimate models from correlational data, where the independent variable 

has not been exogenously manipulated; they also make implicit or explicit causal claims based on 

these models. When can these claims be made? We answer this question by first discussing 

design and estimation conditions under which model estimates can be interpreted, using the 

randomized experiment as the gold standard. We show how endogeneity--which includes omitted 

variables, omitted selection, simultaneity, common methods bias, and measurement error--

renders estimates causally uninterpretable. Second, we present methods that allow researchers to 

test causal claims in situations where randomization is not possible or when causal interpretation 

is confounded, including fixed-effects panel, sample selection, instrumental variable, regression 

discontinuity, and difference-in-differences models. Third, we take stock of the methodological 

rigor with which causal claims are being made in a social sciences discipline by reviewing a 

representative sample of 110 articles on leadership published in the previous 10 years in top-tier 

journals. Our key finding is that researchers fail to address at least 66 % and up to 90 % of design 

and estimation conditions that make causal claims invalid. We conclude by offering 10 

suggestions on how to improve non-experimental research. 

 

 

 

Author supplied-keywords: Causality, Quasi-Experimentation, Instrumental Variables, Common-

Methods Bias, Difference-in-Differences, Simultaneous Equations, Monte Carlo simulations, 

Regression Discontinuity, Mediation.



2 
 

Social scientists make causal claims. Some come out and say it straight, using statements like “x 

causes, predicts, affects, influences, explains, or is an antecedent of y” or that “y depends on x.” 

Others shy away from using such explicit language, choosing instead to couch their claims in 

suggestive language stating instead that “y is associated or related to x.” Researcher must not shy 

away from making causal claims (cf. Pearl, 2000; Shipley, 2000). Causal claims are important for 

society and it is crucial to know when scientists can make them.  

 The failsafe way to generate causal evidence is to use randomized experiments. 

Unfortunately, randomization is often infeasible in social science settings, and depending on the 

phenomenon under investigation, results might not generalize from the laboratory to the real 

world.  However, many recent methodological advances have been made allowing social 

scientists to have their causal cake and eat it (in the field!). These methods, though, have been 

slow to reach social science disciplines. Unfortunately, methods are still being used to estimate 

explicit (or implicit) causal models in design situations where the assumptions of the methods are 

violated, thus rendering uninformative results.  

 Given the importance of understanding causality in non-experimental settings, the purpose of 

our paper was threefold, to (a) demonstrate the design and estimation conditions under which 

estimates can and cannot be causally interpreted (or indeed interpreted at all, even as 

associations), (b) review methods that will allow researchers to test causal claims in the field, 

particularly in situations where randomization is not possible, and (c) take stock of the 

methodological rigor with which causal claims are being made in leadership, which straddles the 

disciplines of management and applied psychology.  

 What we care to show in this review are the necessary design and estimation conditions for 

causal interpretation. Our central focus will be on the consistency of parameter estimates; by 

consistent we mean that the estimate regarding the presumed causal relationship converges to the 
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correct population parameter as the sample size increases. We are concerned about the regression 

coefficient, β, of a particular independent variable x and whether β accurately reflects the true 

treatment effect in predicting y. After model estimation, the result might seem to look good, 

particularly if an advanced statistical modeling program was used, the p-value of the parameter 

estimate is below .0001 and the model fits well because of high r-squares and in the case of 

simultaneous equation models because tests of model fit cannot reject the model. However, if 

certain essential design and methodological conditions are not present the coefficient cannot be 

interpreted, not even in terms of an association or relation--even in the correlational sense. That 

is, the coefficient may have an allure of authenticity but it is specious.  

 As we will demonstrate, correlation can mean causation in nonexperimental settings if some 

essentials design conditions are present and the appropriate statistical methods are used. Knowing 

the conditions under which causal claims can be made--and their resulting practical and policy 

recommendations--is one of the most important tasks entrusted to scientists. Apart from the 

obvious importance and implications of understanding causality in the hard sciences, correctly 

modeling the causal relations that explain phenomena is also crucial in the social sciences.  

 Calls have been made before to pay attention to the correct estimation of non-experimental 

causal models; the major culprit is endogeneity, where the effect of x on y cannot be interpreted 

because it includes omitted causes. This problem of endogeneity has been noted both in 

psychology (Foster & McLanahan, 1996) and management (Shaver, 1998), and these calls are 

being repeated (Bascle, 2008; Gennetian, Magnuson, & Morris, 2008; Larcker & Rusticus, 2010). 

Unfortunately, these calls have mostly fallen on deaf ears. The results of our review are similar to 

a recent review that found that more than 90% of papers published in the premier strategy journal 

(and one of the top journals in management), Strategic Management Journal (SMJ), were not 

correctly estimated (Hamilton & Nickerson, 2003)! Hamilton & Nickerson (2003, pp. 53-54) 
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went on to say, “We believe that the low number of papers in SMJ that account for endogeneity 

may indicate a failure of empirical research in strategic management. . . . Yet, ignoring 

endogeneity is perilous;  . . . the resulting parameter estimates are likely to be biased and may 

therefore yield erroneous results and incorrect conclusions about the veracity of theory.” 

Economics went though the same difficult period a couple of decades ago and economists have 

improved many of their practices regarding causal inference. Nowadays in economics it is 

virtually impossible to publish a non-experimental study in a top general or field journal (e.g., 

American Economic Review, Quarterly Journal of Economics, Review of Economic Studies, 

Econometrica, Journal of Econometrics, Journal of Labor Economics) without providing 

convincing evidence and arguments that endogeneity is not present. 

 Our paper is structured in three major sections, as follows: We first explain what causality is; 

we then introduce the counterfactual argument, and explain why it is important to have a control 

group so that causal conclusions to be made. We look at the randomized experiment as a point of 

departure showing precisely why it allows for causal claims. Although the randomized 

experiment is a very useful tool sometimes experiments are impossible to do (see Cook, Shadish, 

& Wong, 2008; Rubin, 2008). At other times, researchers may come across a “natural 

experiment” of sorts, whose data they can exploit. We review these designs and methods and 

show that when correctly implemented they allow for causal inference in real-world settings. 

Unfortunately, many of these methods are rarely utilized in management and applied psychology 

research (cf. Grant & Wall, 2009). In our review, we borrow mostly from econometrics, which 

has made great strides in teasing-out causal relations in non-experimental settings (try randomly 

assigning an economy or a company to a treatment condition!), though, the “natural experiment 

revolution” has debts to pay to psychology given the contributions of Donald T. Campbell to 

quasi-experimentation (see Campbell & Stanley, 1963, 1966; Cook & Campbell, 1979).  Also, 
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some of the approaches we discuss (e.g., regression discontinuity) that are popular in 

econometrics nowadays were originally developed by psychologists (Thistlethwaite & Campbell, 

1960).  

 Next, we discuss the intuition and provide step-by-step explanation behind the non-

experimental causal methods; we maintain statistical notation to a minimum to make our review 

accessible to a large audience. Although the context of our review is management and applied 

psychology research, the issues we present and the recommendations and conclusions we make 

are very general and have application for any social science, even the hard sciences.  

 Finally, similar to the recent Leadership Quarterly review of Yammarino, Dionne, Uk Chun 

and Dansereau (2005) who examined the state of research with respect to levels-of-analysis 

issues (i.e., failure to correctly theorize and model multilevel phenomena), we examined a subset 

of the literature published in top management and applied psychology journals, making explicit 

or implicit causal claims about a “hot” social-sciences topic, leadership. The journals we included 

in the review were top-tier (in terms of 5-year impact factor), including: Academy of Management 

Journal, Journal of Applied Psychology, Journal of Management, Journal of Organizational 

Behavior, The Leadership Quarterly, Organizational Behavior & Human Decision Processes, 

and Personnel Psychology. We coded studies from these journals to determine whether the 

method used allowed the researchers to draw causal claims from their data. Our results indicate 

that the statistical procedures used are far from being satisfactory. Most studies had several 

problems that rendered estimates suspect. We complete our review with best-practice 

recommendations.  

1. What is Causality? 

 We take a simple, pragmatic, and widely-shared view of causality; we are not concerned 

about the nature of causes or philosophical foundations of causality (cf. Pearl, 2000), but more 
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specifically how to measure the effect of a cause. To measure causal effects, we need an effect (y) 

and a presumed cause (x). Three classic conditions must exist so as to measure this effect (Kenny, 

1979):  

 1. x must precede y temporally 

 2. x must be reliably correlated with y (beyond chance) 

 3. the relation between x and y must not explained by other causes 

 The first condition is rather straightforward; however, in the cause of simultaneity--which we 

discuss later--a cause and an effect could have feedback loops. Also, simply modeling variable x 

as a “cause” merely because it is temporal antecedent of y does not mean that it caused y (i.e., x 

must be exogenous too, as we discuss in detail later); thus temporal ordering is a necessary but 

not a sufficient condition. The second condition requires a statistically reliable relationship (and 

thus quantitative data). The third condition is the one that poses the most difficulties and has to 

do with the exogeneity of x (i.e., that x varies randomly and is not correlated with omitted causes). 

Our review is essentially concerned with the first and third conditions; these conditions, 

particularly the third one, have less to do with theoretical arguments and more to do with design 

and analysis issues (see also James, Mulaik, & Brett, 1982; Mulaik & James, 1995).  

 If the relation between x and y is due, in part, to other reasons, then x is endogenous, and the 

coefficient of x cannot be interpreted, not even as a simple correlation (i.e., the magnitude of the 

effect could be wrong as could be the sign). The limitations often invoked in non-experimental 

research that “the relation between x and y might be due to y causing x (i.e., reverse causality may 

be at play),” “common-methods variance may explain the strong relationship,” or “this 

relationship is an association given the non-experimental data” are moot points. If x is 

endogenous the coefficient of x simply has no meaning. The true coefficient could be higher, 

lower, of even of a different sign.   
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1.1 The counterfactual argument  

 Suppose that we have conducted an experiment, where individuals were assigned by some 

method to an experimental and a control condition (x). The manipulation came before the 

outcome (y) and it correlates reliably with the outcome. How do we rule out other causes? There 

could be an infinite amount of potential explanations as to why the cause correlates with the 

effect. To test whether a causal relation is real, the model’s predictions must be examined from 

the counterfactual model (Morgan & Winship, 2007; Rubin, 1974; Winship & Morgan, 1999). 

The counterfactual asks the following questions: (a) if the individuals who received the treatment 

had in fact not received it, what would we observe on y for those individuals? Or, (b) if the 

individuals who did not receive the treatment had in fact received it, what would we have 

observed on y?  

 As will become evident below, if the experimenter uses random assignment, the individuals 

in the control and treatment groups are roughly equivalent at the start of the experiment; the two 

groups are theoretically interchangeable. So, the counterfactual for those receiving the treatment 

are those who did not receive it (and vice-versa). The treatment effect is simply the difference in 

y for the treatment and control group. In a randomized experiment the treatment effect is 

correctly estimated when using a regression (or ANOVA) model.  

 However, when the two groups of individuals are not the same on observable (or 

unobservable characteristics), and one group has received a treatment, we cannot observe the 

counterfactuals: The groups are not interchangeable. What would the treated group’s y had been 

had they not received the treatment and what would the untreated group’s y be had they received 

the treatment? The counterfactual cannot be observed because the two groups are systematically 

different in some way, which obscures the effect of the treatment. To obtain consistent estimates, 

therefore, this selection (to treatment and control group) must be modeled. Modeling this 
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selection correctly is what causal analysis, in non-experimental settings, is all about.  

 Also, in this review, we are exclusively focusing on quantitative research because when done 

correctly it is only through this mode of inquiry that counterfactuals, and hence causality can be 

reliably established. Proponents of qualitative methods have suggested that causality can also be 

studied using rigorous case-studies and the like (J. A. Maxwell, 1996; Yin, 1994). Yin (1994), for 

example, compares case study research to a single experiment--although what Yin states might be 

intuitively appealing, a case study of a social-science phenomenon is nothing like a chemistry 

experiment. In the latter the experimenters have complete control of the system of variables that 

are studied and can add or remove molecules or perform interventions at will (experimenters 

have complete experimental control). If the experiment works and can be reliably repeated (and 

ideally, this reliability is analyzed statistically), then causal inference can be made.  

 However in the post-hoc case study or even one where observation is real-time, there are a 

myriad of variables both observed or unobserved that cannot be controlled for and thus confound 

results. These latter problems are the same ones that plague quantitative research; however, 

quantitative researchers can control for these problems if the model is correctly specified and 

accounts for the bias. Qualitative research can be useful when quantified (cf. Diamond & 

Robinson, 2010); however, matching “patterns” in observations (i.e., finding qualitative 

“correlations”) cannot lead to reliable inference if sources of bias in the apparent pattern are not 

controlled for and the reliably of the relation is not tested statistically (and we will not get into 

another limitation of observer, particularly participant-observer, confirmation bias, Nickerson, 

1998).   

 We begin our methodological voyage with the mainstay of psychology: The randomized field 

experiment. A thorough understanding of the mechanics of the randomized field experiment is 

essential because it will be a stepping stone to exploring quasi-experimental methods that allow 
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for causal deductions. 

2.0 The Gold Standard: The Randomized Field experiment 

 This design ensures that the correlation between an outcome and a treatment is causal; more 

specifically, the origin of the change in the dependent variable stems from no other cause other 

than that of the manipulated variable (Rubin, 2008; Shadish, Cook, & Campbell, 2002). What 

does random assignment actually do and why does it allow one to make causal conclusions?  

 We first draw attention to how the Ordinary Least Squares (OLS) estimator (i.e., the estimator 

used in regression or ANOVA-type models that minimizes the sum of squared residuals between 

observation and the regression line) derives estimates for a model. For simplicity, we will only 

discuss a treatment and control; however, the methods we discuss can be expanded to more than 

two conditions (e.g., we could add an alternative/bogus treatment group).  

 Assume a model where we have a dummy (binary) independent variable x reflecting a 

randomly-assigned treatment (a manipulation, leadership training, which is 1 if the subject 

received the treatment else it is 0) and a continuous independent variable z, which is a covariate 

(e.g., IQ of leaders). This model is the typical ANCOVA model for psychologists; in an 

ANCOVA model, including a covariate that is strongly related to y (e.g., leadership 

effectiveness) reduces unexplained variance. Thus, it is desirable to include such a covariate 

because power to detect a significant effect in the treatment increases (Keppel & Wickens, 2004; 

S. E. Maxwell, Cole, Arvey, & Salas, 1991). The covariate is also useful to adjust for any 

observed initial--albeit it small, that are due to chance--differences in the intervention and control 

groups that may have occurred due to chance (Shadish, et al., 2002). Let: 

�� � �� � ���� � �	
� � ��                                                                                            Eq. 1 

Where y is the dependent variable, i is from 1 to n observations, β0 is a constant (the intercept, 

where x = 0 and z = 0, and the line--a two dimensional plane in this case given that the equation 
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has two independent variables--cuts the y axis), β1 and β2 are unstandardized regression 

coefficients of the independent variables x and z and refer how much a change in one unit of x 

and z respectively affect y (i.e., β1 = ∆y/∆x and β2  = ∆y/∆z respectively), e is a disturbance term 

(also known as the error term), reflecting unobserved causes of y as well as other sources of error 

(e.g., measurement error). The error term, which is an unobserved latent variable must not be 

confused with the residual term, which is the difference between the predicted and the observed 

value of y. This residual term is orthogonal to the regressors regardless of whether the error term 

is or not.  

 Let us focus on x for the time being, which is the manipulated variable. When estimating the 

slopes (coefficients) of the independent variables, OLS makes an important assumption: That e is 

uncorrelated with x. This assumption is usually referred to as that of the orthogonality of the 

error term with the regressor. In other words, x is assumed to be exogenous. Exogenous means 

that x does not correlate with the error term (i.e., it does not correlate with variables in the system 

of equations or omitted causes). When x is not exogenous, that is, when it is endogenous (hence 

the problem of endogeneity) then it will correlate with the error term and this for a variety of 

reasons. We discuss some of these reasons in the next section.  

 To better understand the problem of endogeneity, suppose that extraversion is an important 

factor for leadership effectiveness. Now, if we assign the treatment randomly there will be an 

equal amount of extraverts in the treatment and control conditions. If we find that the treatment 

group is higher than the control group on effectiveness, this difference cannot be accounted for 

by an unmodeled potential cause (e.g., extraversion). Thus, random assignment assures that the 

groups are equal on all observed or unobserved factors because the probability that a particular 

individual has to be assigned to the treatment and control group is equal. In this condition, the 

effect of x on y can be cleanly interpreted.  
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 When x correlates with e (i.e., x is endogenous) then the modeler has a serious problem and 

what happens next is something very undesirable: In the process of satisfying the orthogonality 

assumption, the estimator (whether OLS or maximum likelihood) adjusts the slope, β1 of x, 

accordingly. The estimate thus becomes inaccurate (because it has been changed to the extent that 

x correlates with e). In this case suppose that selection to treatment was not random and that the 

treatment group had more extraverts; thus, x will “correlate” with extraversion in these sense that 

the level of extraversion is higher in the treatment group and that this level is correlated with y 

too because extraverts are usually more effective as leaders. Now because extraversion has not 

been measured, x will correlate with e (i.e., all omitted causes of y that are not expressly 

modeled). The higher the correlation of x with e the more inaccurate (inconsistent) the estimate 

will be. In such conditions, finding a significant relation between x and y is completely useless; 

the estimate is not accurate because it includes the effects of unmeasured causes, and having a 

sample size approaching infinity will not help to correct this bias. The estimate not only includes 

the effect of x on y but also all other unobserved effects that correlate with x and predict y (and 

thus the coefficient could be biased upwards or downwards)!  

 We cannot stress how important it is to satisfy the orthogonality assumption because not only 

will the coefficient of the problematic variable be inconsistent; any variables correlating with the 

problematic variable will also be affected (because their estimate will also be adjusted by the 

regression procedure to the extent that they correlate with the problematic variable). Refer to 

Figure 1, which demonstrates these points graphically as path models (we explain this problem in 

more detail below using some basic algebra). 

[Insert Figure 1 here] 

 In a randomized field experiment, causal inference is assured (Shadish et al., 2002); that is, it 

is very unlikely that there could be any confounds. The correlation of the treatment to the 
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outcome variable must be due to the treatment and nothing else. Because subjects were randomly 

assigned to conditions, the characteristics of subjects (on the average) are approximately equal 

across conditions, whether they are measured or unmeasured characteristics; any differences that 

might be observed will be due to chance (and hence very unlikely). Having, subjects that are 

approximately the same in the treatment and control groups occur allows for solid conclusions 

and counterfactuals. If there is a change in y and this change is reliably (statistically) associated 

with the manipulated variable x then nothing else could possibly have provoked the change in y 

but the treatment. Thus, in a randomized field experiment, the selection process to treatment 

groups is correctly modeled (it is random) and the model is estimated in accordance with the 

assumptions of the OLS estimator (i.e., given the random assignment, thus the correlation of x 

with e is truly zero). In other words, the assumption that OLS makes about selection is met by 

random assignment to treatment.  

 As we discuss later, if there has been systematic selection to treatment or any other reason 

that may affect consistency then estimates could still be consistent if the appropriate 

methodological safeguards are taken. Note, that there is one situation in experimental work where 

causality can be confounded, which would be in the case where the modeler attempts to link the 

manipulation (x) to a mediator (m) in predicting y as follows: x�m�y. In this case, the mediator 

is endogenous (the mediator is not randomly assigned and it depends on the manipulation; thus m 

cannot be modeled as exogenous). This model can only be correctly estimated using the two-

stage least squares procedure we describe later; the widely-used procedure recommended by 

Baron and Kenny (1986), which models the causal mechanism by OLS will actually give biased 

estimates because it models the mediator as exogenous. We discuss this problem in depth later.   

3.0 Why Could Estimates Become Inconsistent? 

 There are many reasons why x might be endogenous (i.e., correlate with e) thus rendering 
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estimates inconsistent. We present five threats to what Shadish, et al. (2002) referred to as 

“internal validity” (i.e., threats to estimate consistency). We introduce these five threats below 

(for a more exhaustive list of examples see Meyer, 1995); we then discuss the basic remedial 

action that can be taken. In the next section, we discuss techniques to obtain consistent estimates 

for more complicated models. We also address threats to inference (validity of standard errors) 

and model misspecification in simultaneous equation models. For a summary of these threats 

refer to Table 1.  

[Insert Table 1 here] 

3.1 Omitted Variables  

Omitted variable bias comes in various forms, including omitted regressors or omitted 

interaction terms or polynomial terms. We discuss the simplest case first and then more advanced 

cases below.  

3.1.1 Omitting a regressor  

Suppose that the correctly-specified regression model is the following, and includes two 

exogenous variables (traits); y is leader effectiveness measured on some objective scale: 

�� � �� � ���� � �	
� � ��                                                                                            Eq. 2 

Assume that a researcher wants to examine whether a new construct x (e.g., “emotional 

intelligence” measured as an ability) predicts leadership effectiveness. However, this construct 

might not be unique and suppose it shares common variance with IQ. Thus, the researcher should 

control for z (i.e., IQ) too, because x and z are correlated and, of course, because z predicts y as 

implied in the above model. Although one should also control for personality in the above 

equation, to keep things simple for the time being assume that both x and z are orthogonal to 

personality. Now, assume that instead of the above model one estimated the following:  

�� � �� � ���� � 
�                                                                                                     Eq. 3 
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This model now omits z; because x and z correlate and z also predicts y, x will correlate 

with 
�. In this case, instead of obtaining the unbiased estimate �� one obtains ��; these two 

estimates may differ significantly, as could be established by a what is referred to a Hausman 

(1978) test (see formula in Section 3.1.3). To see why these two estimates might not be the same, 

we use some basic algebra and express z as a function of x and its unique cause u. Nnote, the next 

equation does not necessarily have to be causal with respect to the relation between x and z; also, 

we omit the intercept for simplicity:  


� � ���� � ��                                                                  Eq. 4 

Omitting z from Eq. 2 means that we have introduced endogeneity in the sense that x 

correlates with a new “combined” error term 
�. The endogeneity is evident when substituting 

Eq. 4 into Eq. 2:   

�� � �� � ���� � �	����� �	���	�	��,                                                                         Eq. 5a 

Multiplying out gives:  

�� � �� � ���� � ��	���� �	�	��	�	���          Eq. 5b 

                                              
� 
Or, rearranging as a function of x gives 

�� � �� � ��� � �	����� �	��	�� 	�	��)                                              Eq. 5c 

Whichever way we look at it, whereas the slope ��was correctly estimated in Eq. 2, it 

cannot be correctly estimated in Eq. 3 because as shown in Eq. 5c, the slope will include the 

correlation of x with z (i.e., ��). Thus, x correlates with the error term (as per Eq. 5b) and is 

inconsistent. In the presence of omitted variable bias, one does not estimate ��as per Eq. 3, but 

something else (��). Whether ��would go up or down when including z will depend on the signs 

of �	[2] and ��. It is also clear that if  �	 � 0 or if �� � 0 then 
� reduces to �� 	and there is no 
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omitted variable bias if z is excluded from the model.  

 Also, bear in mind that all other regressors that correlate with z and x will be inconsistent 

too when estimating the wrong model. What effect the regression coefficients capture is thus not 

clear when there are omitted variables, and this bias can increase or decrease remaining 

coefficients or change their signs!  

Thus, it is important that all possible sources of variance in y that correlate with the 

regressor are included in the regression model. For instance, the construct of “emotional 

intelligence” has not been adequately tested in leadership or general work situations; one of the 

reasons is that researchers fail to include important control variables like IQ, personality, sex, 

age, and the like (Antonakis, 2009; Antonakis, Ashkanasy, & Dasborough, 2009; Antonakis & 

Dietz, 2010a, 2010b).  

What if irrelevant regressors are included? It is always safer to err on the side of caution 

by including more than fewer control variables (Cameron & Trivedi, 2005). The regressors that 

should be included are ones that are theoretically important; the cost of including them is reduced 

efficiency (i.e., higher standard errors), but that is a cheap price to pay when consistency is at 

stake. Note, there are tests akin to Ramsey’s (1969) regression-error-specification (RESET) test, 

which can be useful for testing whether there are unmodeled linearities present in the residuals by 

regressing y on the predicted value of polynomials of y (the 2nd, 3rd, and 4th powers) and the 

independent variables. This test is often incorrectly used as a test of omitted variables or 

functional form misspecification (Wooldridge, 2002); however, the test actually looks at whether 

the predicted value of y is linear given the predictors.   

3.1.2 Omitting fixed effects 

Oftentimes, researchers have panel data (repeated observations nested under an “entity”). 

Panel data can be hierarchical (e.g., leaders nested in firms; followers nested in leaders) or 
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longitudinal (e.g., observations of leaders over time). Our discussion below is relevant to both 

types of panels, though we will discuss the first form, hierarchical panels (or otherwise known as 

pseudo-panels). If there are “fixed-effects” as in the case of having repeated observations of 

leaders (Level 1) nested in firms (Level 2), the estimates of the other regressors included in the 

model would be inconsistent if these fixed effects are not explicitly modeled (Cameron & 

Trivedi, 2005; Wooldridge, 2002). By fixed-effects, we mean the unobserved firm-invariant 

(Level 2) constant effects (or in the case of a longitudinal panel, the time-invariant panel effects) 

common to those leaders nested under a firm (we refer to these effects as uj below, see Eq. 7).  

We discuss an example regarding the modeling of firm fixed-effects. By explicitly 

modeling the fixed effects (i.e., intercepts) using OLS, any possible unobserved heterogeneity in 

the level (intercept) of y common to leaders in a particular firm--which would otherwise have 

been pooled in e thus creating omitted variable bias--is explicitly captured. As such, the estimator 

is consistent assuming that the regressors are exogenous. If the fixed effects correlating with 

Level 1 variables are not modeled, Level 1 estimates will be inconsistent to the extent that they 

correlate with the fixed effects (which is likely). What is useful is to conceptualize the error term 

eij in a fixed effects model as having two components: uj, the Level 2 invariant component (that is 

explicitly modeled with fixed-effects), and eij, the idiosyncratic error component. To maintain a 

distinction between the fixed-effects model and the random-effects model, we will simply refer to 

the error term as eij in the fixed-effect model (given that the error uj is considered fixed and not 

random and is explicitly modeled using dummy variables, as we show below). 

Obtaining consistent estimates by including fixed-effects comes at the expense of not 

allowing any Level 2 (firm-level) predictors because they will be perfectly collinear with the 

fixed effects (Wooldridge, 2002). If one wants to add Level 2 variables to the model (and remove 

the fixed effects) then one must ensure that the estimator is consistent by comparing estimates 
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from the consistent estimator to with the more efficient one, as we discuss in the next section.  

Assume we estimate a model where we have data from 50 firms and we have 10 leaders 

from each firm (thus we have 500 observations at the leader level). Assume that leaders 

completed an IQ test (x) and were rated on their objective performance (adherence to budget), y. 

Thus, we estimate the following model for leader i in firm j: 

��� � �� � ����� �������
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                                                              Eq. 6 

 
 

 The fixed effects are captured by 49 (k – 1) dummy or indicator variables, D identifying 

the firms. Not including these dummy variables would be a big risk to take because it is possible, 

indeed likely, that the fixed effects are correlated with x (e.g., some firms may select leaders on 

their IQ) and they will most certainly predict variance in y (e.g., fixed effects would capture 

things like firm size, which may predict y). Thus, even though x is exogenous with respect to eij 

the coefficient of x will be consistent only if the dummies are included; if the dummies are not 

included then the eij term will include uj and thus biases estimates of x. If the dummies are not 

included then the modeler faces the same problem as in the previous example: Omitted-variable 

bias. Note, if x correlates with eij, the remedy comes using another procedure, which we discuss 

later when introducing two-stage least squares estimation.  

Fixed-effects could be present for a number of reasons including group, microeconomic, 

macroeconomic, country-level, or time effects and researchers should pay more attention to these 

contextual effects because they can effect estimate consistency (Liden & Antonakis, 2009). 

Finally, when observations are nested (clustered), standard errors should not be estimated the 

conventional way (refer to the section below regarding Consistency of Inference).  

3.1.3 Using random effects without meeting assumptions of the estimator 

If the modeler wants to determine whether Level 2 variables predict y, the model could be 
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estimated using the random-effects estimator. The random effects estimator allows for a 

randomly-varying intercept between firms--this model is referred to as the “intercepts as 

outcomes” in multilevel modeling vernacular (Hofmann, 1997). Instead of explicitly estimating 

this heterogeneity via fixed effects, this estimator treats the leader level differences in y (i.e., the 

intercepts) as random effects between firms that are drawn from a population of firms and 

assumed to be uncorrelated with the regressors and the disturbances; the random effects are also 

assumed to be constant over firms and independently distributed. Failure to meet these 

assumptions will lead to inconsistent estimates and is tantamount to having omitted variable bias.  

Also, prior to using this estimator, the modeler should test for the presence of random 

effects using a Breusch and Pagan Lagrangian multiplier test for random effects if the model has 

been estimated by GLS (Breusch & Pagan, 1980), or a likelihood-ratio test for random effects if 

the model has been estimated with maximum likelihood estimation (see Rabe-Hesketh & 

Skrondal, 2008); this is a chi-square with 1 degree of freedom and if significant, rules in favor of 

the random-effects model. We do not discuss the random-coefficients model, which is direct 

extension of the of the random-effects model and allows varying slopes across groups. Important 

to note is that before one uses such a model, one must test whether it is justified by testing the 

random-coefficients models versus the random-effects model (using a likelihood-ratio test); only 

if the test is significant (i.e., the assumption that the slopes are fixed is rejected) should the 

random-coefficients estimator by used (Rabe-Hesketh & Skrondal, 2008). 

Now, the advantage of the random-effects estimator (which could simultaneously be its 

Achilles heel) is that then Level 2 variables can be included as predictors (e.g., firm size, public 

vs. private organization, etc), in the following specification for leader i in firm j: 

��� � �� � ����� ����
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                                                           Eq. 7 
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In the above, we include regressors 1 to q (e.g., firm size, type, etc) and omit the fixed-effects, 

but include a firm-specific error component, uj. The random effects estimator is more efficient 

than the fixed-effects estimator because it is designed to minimize the variance of the estimated 

parameters (loosely speaking it has fewer independent variables because it does not include all 

the dummies). But you guessed it; it comes with a hefty price in that it may not be consistent vis-

à-vis the fixed-effects estimator (Wooldridge, 2002). That is, uj might correlate with the Level 1 

regressors. To test whether the estimator is consistent, one can use what is commonly called a 

“Hausman Test” (see Hausman, 1978)--this test, which is crucial to ensuring that the random-

effects model is tenable--does not seem to be routinely used by researchers outside of 

econometrics, and not even in sociology, a domain that is close to economics (Halaby, 2004).  

Basically, what the Hausman test does is to compare the Level 1 estimates from the 

consistent (fixed-effects) estimator to those of the efficient (random-effects estimator). If the 

estimates differ significantly, then the efficient estimator is inconsistent and the fixed-effects 

estimator must be retained; the inconsistency must have come from uj correlating with the 

regressor. In this case estimates from the random-effects estimator cannot be trusted; our 

leitmotif in this case is consistency always trumps efficiency. The most basic Hausman test is that 

for one parameter, where δ is the element of β being tested (Wooldrige, 2002). Thus, the test 

examines whether the estimate of β of the efficient (RE) estimator differ significantly from that of 

the consistent (FE) estimator, using the following t test (which has an asymptotic standard normal 

distribution): 


 � ����� � �� ��
!"#������	 � "#��� ��	
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This test can be extended for an array of parameters. In comparing the fixed-effects to the 

random-effects estimator, an alternative to the Hausman test is the Sargan-Hansen test (Schaffer 

& Stillman, 2006), which can be used with robust or cluster-robust standard errors. Both these 

tests are easily implemented in Stata (see StataCorp, 2009), our software of choice. Again, 

because observations are nested (clustered), standard errors should not be estimated the 

conventional way (refer to the section below regarding Consistency of Inference). 

One way to get around the problem of omitted fixed effects and to still include Level 2 

variables is to include the cluster means of all Level 1 covariates in the estimated model 

(Mundlak, 1978). The cluster means can be included as regressors or subtracted (i.e., cluster-

mean centering) from the Level 1 covariate. The cluster means are invariant within cluster (and 

vary between clusters) and allow for consistent estimation of Level 1 parameters just as if fixed-

effects had been included (see Rabe-Hesketh & Skrondal, 2008). Thus, if the Hausman test is 

significant, we could still obtain consistent estimates of the Level 1 parameters with either one of 

the following specifications (given that the cluster mean will be correlated with the covariate but 

not with uj): 
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                                            Eq. 8 
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                                            Eq. 9 
 
 

 In the above two equations, the interpretation of the coefficient of the cluster mean differs; 

that is, in Eq. 8 it refers to the difference in the between and within effects whereas in Eq. 9 it 

refers to the between effect (Rabe-Hesketh & Skrondal, 2008). In both cases, however, the 

estimate of β1 remains the same (and equals that of the fixed-effects estimator). Note that if Level 

2 variables are endogenous, the cluster-mean trick cannot help; however, there are ways to obtain 
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consistent estimates by exploiting the exogenous variation in Level 2 covariates (see Hausman & 

Taylor, 1981).  

3.1.4 Omitting selection 

Selection refers to the general problem of treatment not being assigned randomly to 

individuals. That is, the treatment is endogenous. Assume:  

�� � �� � ���� � �	
� � ��                                                                                          Eq. 10 

Here, x takes the value of 1 if the individual receives a treatment (e.g., attends a 

leadership-training program), else x is 0 (the individual has not received the treatment). Assume 

that y is how charismatic the individual is rated. However, assume that individuals have been 

selected (either self-selected or otherwise) to receive the training. That is, x, the binary variable 

has not been randomly assigned, which means that the groups might not be the same on the outset 

on observed or unobserved factors and these factors could be correlated with y and of course x. 

Thus, the problem arises because x is explained by other factors (i.e., the selection can be 

predicted) that are not observed in Eq. 10, which we refer to as x*, which is subsumed in e. That 

is, assume x* is modeled in the following probit (or logistic) equation (Cong & Drukker, 2001) 

��∗ � �� ����
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                                                                              Eq. 11 
 
 

Where j refers to regressors 1 to q and u to a disturbance term. We observe x = 1 when x* 

> 0 (i.e., treatment has been received), else x = 0. The problem arises because u will be correlated 

with e (this correlation is called &',)) and thus x will be correlated with e.  

As an example, suppose that individuals who have a higher IQ (as well as some other 

individual differences that correlate with leadership) are more likely to attend the training; it is 

also likely, however, that these individuals are more charismatic. Thus, there are unmodeled 
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sources of variance (omitted variables) subsumed in e that correlate with x. As it is evident, this 

problem is similar to omitted variable bias in the sense that there are excluded variables, pooled 

into the error term, that correlate with endogenous choice variable and the outcome (Kennedy, 

2003). If the selection is not explicitly (and correctly modeled), then using untreated individuals 

to estimate the counterfactual is misleading: They differ from treated individuals with respect to 

things we do not know; that is, the counterfactuals are missing (and the effect of the treatment 

will be overestimated).  

Although this problem might seem unsolvable, it is not; this model can be estimated 

correctly if this selection process is explicitly modeled (Cong & Drukker, 2001; Maddala, 1983). 

In fact, for a related type of model where y is only observed for those who received treatment (see 

Heckman, 1979), James Heckman won the Nobel Prize in Economics! We discuss how this 

model is estimated later.  

Another problem related that is somewhat related to selection (but has nothing to do with 

selection to treatment) is having non-representative selection to participation or censored samples 

(a kind of missing-data problem). We briefly discuss the problem here and suggested remedies, 

given that the focus of our paper is geared more towards selection problems. The problem of 

nonrepresentativeness has to do with affecting the observed variability, which thus attenuates 

estimates. Range restriction would be an example of this problem; for example, estimating the 

effect of IQ on leadership in a sample that is high on IQ will bias the estimate of IQ downwards 

(thus, the researcher must either obtain a representative sample or correct for range restriction). 

Another example would be using self-selected participants for leadership training (where 

participants are then randomly assigned to treatment); in this case, it is possible that the 

participants are not representative of the population (and only those that are interested in 

leadership, for example, volunteered to participate). Thus, the researcher should check whether 
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the sample is representative of the population. Also, consider the case where managers participate 

in a survey and they select the subordinates that will rate them (the managers will probably select 

subordinates that like them). Thus, ideally, samples must be representative and random (and for 

all types of studies, whether correlation or testing for group differences); if they are not the 

selection must be modeled. Other examples of this problem include censored observations above 

or below a certain threshold (which creates a missing-data problem on the dependent variable). 

Various remedies are available in such cases, for example, censored regression models (Tobin, 

1958) or other kinds of truncated regression models (Long & Freese, 2006) depending on the 

nature of the problem at hand. 

3.2 Simultaneity 

This problem is one that is tricky and which has given many economists and other social 

scientists a headache. Suppose that x causes y and this relation should be negative; you regress y 

on x but to your surprise, you find a non-significant relation (or even a positive effect). How can 

this be? If y also causes x it is quite possible that their covariation is not negative. Simultaneity 

has to do with a two variables simultaneously causing each other. Note, this problem is not 

necessarily the supposed simplistic “backward causality” problem often evoked by researchers 

(i.e., that the positive regression coefficient of x on y could be due to y causing x); it has to do 

with simultaneous causation.  

Here is a simple example to demonstrate the simultaneity problem: Hiring more police-

officers (x) should reduce crime (y), right? However, it is also possible too that when crime goes 

up, cities hire more police officers. Thus, x is not exogenous and will necessarily correlate with e 

in the y equation (see Levitt, 1997; Levitt, 2002). To make this problem more explicit, assume 

that x is a particular leadership style (use of sanctions) and y is follower performance (and we 

expect the relation, as estimated in ��, to be negative):  
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�� � �� � ���� � ��               Eq. 12 

Because leader style is not randomly assigned it will correlate with �� making �� 

inconsistent. Why? For one, leaders could also change their style as a function of followers’ 

performance, leading to Eq. 13. 

�� � ���� � ��                                                                                                             Eq. 13 

We expect γ�, to be positive. Now, because we do not explain y perfectly, y varies as a 

function of e too; y could randomly increase (e.g., higher satisfaction of followers because of a 

company pay raise) or decrease (e.g., an unusually hot summer). Suppose y increases due to e; as 

a consequence x will vary; thus, e affects x though Eq. 13. In simple terms e correlates with x, 

rendering �� inconsistent. Instrumental-variable estimation can solve this problem, as we discuss 

later.  

3.3 Measurement error (errors-in-variables) 

Suppose we intend to estimate our basic specification, however, this time what we intent 

to observe is a latent variable, x*:  

�� � �� � ����∗ � ��               Eq. 14 

However, instead of observing x*, which is exogenous and a theoretically “pure” or latent 

construct, we observe instead a not-so-perfect indicator or proxy of x*, which we call x (assume 

that x* is the IQ of leader i). This indicator consists of the true component (x*) in addition to an 

error term (u) as follows (see Cameron & Trivedi, 2005; Maddala, 1977): 

�� � ��∗ � ��, or                                                                                                          Eq. 15a 

��∗ � �� � ��                                                                                                               Eq. 15b 

Now substituting Eq. 15b into Eq. 14 gives: 

�� � �� � ����� � ��� � ��              Eq. 16 
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Expanding and rearranging the terms gives: 

�� � �� � ���� � ��� � �����             Eq. 17 

As is evident, the coefficient of x will be inconsistent given that the full error term, which 

now includes measurement error too, is correlated with x. Note that measurement error in the y 

variable does not bias coefficients and is not an issue because it is absorbed in the error term of 

the regression model.  

The above is a special kind of omitted variable bias because by estimating the model only 

with x, we omit u from the model; given that u is a cause of x which is related to y (via x) creates 

endogeneity of the sort that x correlates with e because of the omitted cause u. This bias 

attenuates the coefficient of x, particularly in the presence of further covariates (Angrist & 

Krueger, 1999); the bias will also taint the coefficients of other independent variables that are 

correlated with x (Bollen 1989; Kennedy 2003)--refer to Antonakis (2009) for a example in 

leadership research, where he showed that “emotional intelligence” was more strongly related to 

IQ and the big five than some have suggested (which means that failure to include these controls 

and failure to model measurement error will severely bias model estimates). In fact, using error-

in-variables (with maximum likelihood estimation, given that he reanalyzed summary data), 

Antonakis (2009) showed that “emotional intelligence” measures were linearly dependent on the 

big five and intelligence, with multiple r’s ranging between .48 to .76 depending on the measures 

used. However, this relation was vastly underestimated when ignoring multivariate effects and 

measurement error, leading to incorrect inference.  

Fortunately, the effect of measurement error can be eliminated with a very simple fix: By 

constraining the residual variance of x to (1- reliabilityx) * Variancex (Bollen, 1989); if reliability 

is unknown, the degree of “validity” of the indicator can be assumed from theory and hence the 

residual is constrained accordingly (Hayduk, 1996; Onyskiw & Hayduk, 2001). What the 
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modeler needs is a reasonably good estimate for the reliability (or validity) of the measure. If x 

were a test of IQ, for example, and we have good reason to think that IQ is exogenous as we 

discuss later (see Antonakis, in press), a reasonable estimate could be the test-retest reliability or 

the Cronbach alpha internal consistency of estimate of the scale. Otherwise, theory is the best 

guide to how reliable the measure is. Using this technique is very simple in the context of a 

regression model with a program like Stata and its eivreg (errors-in-variables) routine or most 

structural equation modeling programs using maximum likelihood estimation (e.g., Mplus). The 

advantage of using a program like Stata is that the eivreg estimator does not have the 

computational difficulties, restrictive assumptions, and sample size requirements inherent to 

maximum likelihood estimation so it is useful with single indicator (or index) measures (e. g., see 

Bollen, 1996; Draper & Smith, 1998; Kmenta, 1986); for multi-item measures of a latent variable 

a structural equation modeling program must be used.  

Later, we also discuss a second way to fix the problem of measurement error--particularly 

if the independent variable correlates with e for other reasons beyond measurement error--using 

two-stage least squares regression.  

3.4 Common source, common methods variance 

Related to the above problem of measurement error is what has been termed common 

methods variance. That x causes y could be because they both depend on q. For example, suppose 

raters rate their leaders on their leader style (x) and raters are simultaneously asked to provide 

ratings on the leaders’ effectiveness (y); given that a common source is being used it is quite 

likely that the source (i.e., rater) will strive to maintain consistency between the two types of 

ratings (Podsakoff, MacKenzie, Lee, & Podsakoff, 2003; Podsakoff & Organ, 1986)—suppose 

due to q, which could reflect causes including halo effects from the common source (note, a 

source could also be a method of data gathering). Important to note is that the common 
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source/method problem does not only inflate estimates as most researchers believe; it could bias 

them upwards as well as downwards as we will show below. As will be evident from our 

demonstrations, common methods bias is a very serious problem and we disagree in the strongest 

possible terms with Spector (2006) that common methods is simply an “urban legend.” 

Although Podsakoff, et al. (2003) suggested that the common-methods variance problem 

biases coefficients, they did not specifically explain why the coefficient of x predicting y can be 

biased upwards or downwards. To our knowledge, we make this demonstration explicit for the 

first time (at least as far as the management and applied psychology literature is concerned). We 

also provide an alternative solution to deal with common methods variance (i.e., two-stage least 

squares, as discussed later), particularly in situations where the common cause cannot be 

identified. An often-used remedy for common-methods variance problem is to obtain 

independent and dependent variables from different sources or different times, a remedial action 

which we find satisfactory as long as the independent variables are exogenous. In the case of 

split-sample designs where half the raters rate the leader’s style and the other half the leader’s 

effectiveness (e.g., Koh, Steers, & Terborg, 1995) precision of inference (i.e., standard errors) 

will be reduced particularly if the full sample is not large. Also, splitting measurement occasions 

across different time periods still does not fully address the problem because the common-

methods variance problem could still affect the independent variables that have been measured 

from the common source (refer to the end of this section).  

One proposed way to deal with this problem is to include a latent common factor in the 

model to account for the common (omitted) variance (Loehlin, 1992; Podsakoff, et al., 2003, see 

Figure 3A in Table 5; Widaman, 1985). Although Podsakoff, et al. suggested this method as a 

possible remedy and cited research that has used it as evidence of its utility, they noted that this 

method is limited in its applicability. We will go a step further and suggest that this procedure 
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should never be used. As we will show, one cannot remove the common bias with a latent 

method factor because the modeler does not know how the unmeasured cause affects the 

variables (Richardson, Simmering, & Sturman, 2009). It is impossible to estimate the exact effect 

of the common source/method variance without directly measuring the common source variable 

and including it in the model in the correct causal specification.  

[Insert Figure 2 here] 

Suppose that an unmeasured common cause, degree of organizational safety and risk, 

affects two latent variables, as depicted in Figure 2; this context of leadership is one where team 

members are exposed to danger (e.g., oil rig). Suppose Ξ1 and Ξ2 measure subordinate ratings of 

a leader’s style (task and person-oriented leadership respectively). The effect of the cause on Ξ1 

is positive (.57), that is, in a high-risk situation the leader is very task-oriented because in these 

situations, violation of standards could cost lives; however, for Ξ2 the effect of the common 

cause is negative (-.57), that is, in high-risk situations, leaders pay less attention to being nice to 

subordinates. Thus, leadership style is endogenous; this explanation should make it clear why 

leader style can never be modeled as an independent variable. When controlling for the common 

cause the residual correlation between the Ξ1 and Ξ2 is zero. The data are such that the indicators 

of each respective factor are tau equivalent (i.e., they have the same loadings on their respective 

factors) and with strong loadings (i.e., all λ’s are .96 and are equal on their respective factors). 

We made the models tau equivalent to increase the likelihood that the model is identified when 

introducing a latent common method/source factor. The sample size is 10,000, and the model fits 

the data perfectly, according to the overidentification test: χ2(31) = 32.51, p > .05 (as well as to 

adjunctive measures of fit—CFI = 1.00, RMSEA = 00—which we do not care much for as we 

discuss later). Estimating the model without the common cause gives a biased structural estimate 
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(a correlation of -.32 between the two latent variables), although the model fits perfectly: χ2(25) = 

.28.06, p > .05 (CFI = 1.00, RMSEA = 00); hence, it is important of theoretically establishing if 

modeled variables are exogenous or not because a misspecified model (with endogeneity) could 

still pass a test of fit. Finally, when including a latent common factor to accounted for the 

supposed common-cause effects, the model still fits well: χ2(17) = .20.32, p > .05 (CFI = 1.00, 

RMSEA = 00). However, the loadings and the structural parameter are severely biased. This 

method, which is very popular with modelers, is obviously not useful; also, as is evident, this 

misspecification is not picked up with the test of model fit. The correct model estimates could 

have been recovered when using instrumental variables (we present this solution later for the 

simple case of a path model and then extend this procedure to a full structural-equation model).  

We first broaden Podsakoff, et al’s (2003) work to show the exact workings of common-

method bias, and then present a solution to the common-methods problem. We start with our 

basic specification, where a rateri has rated leaderj (n=50 leaders) on leader style x and leader 

effectiveness y, where we control for the fixed effects of firm (note, the estimator should be a 

robust one for clustering, as discussed later; also, assume in the below that we do not have 

random effects): 
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                                                  Eq. 18 
 

 
Similar to the case of measurement error we cannot directly observe y* or x*; however 

what we do observe is y and x in the following respective equations (where qi is the common 

bias):    

��� � ���∗ � �*+��              Eq. 19 

��� � ���∗ � �,+��              Eq. 20 
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Rearranging the equations gives: 

���∗ � ��� � �*+��              Eq. 21 

���∗ � ��� � �,+��              Eq. 22 

Substituting Equations 21 and 22 into 18 shows the following: 
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                Eq. 23 
 

 
Rearranging the equation gives: 
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                Eq. 24 
 

 
As with measurement error, common-methods variance introduces a correlation between x 

and the error term, which now consists of three components (and cannot be eliminated by 

estimating the fixed effects). Unlike before with measurement error, however, the bias can 

attenuate or accentuate the coefficient of x. Furthermore, it is now clear that this bias cannot be 

eliminated unless q is directly measured (or “instruments” are used to purge the bias).  

Thus, as we alluded to previously, the problem is not one of inflation of variance of 

coefficients; it is one of consistency of coefficients. The coefficient β1 is uninterpretable because 

it includes the effect of q on x and y. Assuming that the researcher has no other option but to 

gather data in a common-source way, and apart from measuring and including q directly in the 

model, which may be difficult to do because q could reflect a number of causes, there is actually 

a rather straightforward solution to this problem and one that, to our knowledge, will be presented 

for the first time to leadership, management, and applied-psychology researchers. This solution 

has been available to econometricians for quite some time, and we will discuss this solution in the 

section on two-stage least squares estimation.  
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Note, assume the case where only the independent variables (e.g., assume x1 and x2) suffer 

from common-method variance; in this case, the estimates of the two independent variables will 

be biased to zero and be inconsistent (though their relative contribution, 
-./
-,0 is consistent), which 

can be shown as follows. Suppose:  

� � 	�� �	����∗ � �	�	∗ � �                                              Eq. 25 

Instead of observing the latent variables ��∗	and �	∗, we observe x1 and x2, which are 

assumed to have approximately the same variance and are both equally dependent on a common 

variable q. Thus, by substitution it can be shown that both estimates will be biased downwards 

but equally so, suggesting their relative contribution will remain consistent: 

� � 	�� �	���� � �	�	 � �� � ���� � �	���          Eq. 26 

3.5 Consistency of inference 

We finish this section by bringing up another threat to validity, which has to do with 

inference. From a statistical point-of-view we mean whether the standard errors are consistent. 

There has been quite a bit of research on this area particularly after the papers by Huber (1967) 

and White (1980); this work is extremely technical so we will just provide a short overview of its 

importance and remedial action that can be taken to ensure correct standard errors.  

In a simple experimental setting, regression residuals will usually be i.i.d. (identically and 

independently distributed). By identically distributed we mean that residuals are homoscedastic, 

that is, they have been drawn from the same population and have a uniform variance. By 

independently distributed we mean that they are not clustered or serially correlated (as when 

observations are nested under a Level 2 entity). It is always a good idea, however, to check 

whether residuals are homoscedastic. Whether they are clustered is certainly evident from the 

data-gathering design. Programs like Stata have nice routines for checking for heteroscedasticity, 
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including White’s test, and for the presence of clustering.  

If residuals are heteroscedastic, coefficient estimates will be consistent; however, 

standard errors will not be. In this context, the variance has to be estimated differently as the 

usual assumptions do not hold. The variance estimator is based on the work of Huber-White, and 

the standard errors are usually referred to as Huber-White standard errors, sandwiched standard 

errors, or just robust standard errors. We cannot stress the importance of having the standard 

errors correctly estimated (either with a robust variance estimator or using bootstrapping) and this 

concern is really not on the radar screen of researchers in our field. Consistent standard errors are 

just as important as consistent estimates. If standard errors are not correctly estimated, p-values 

will be over or understated, which means that results could change from significant to non-

significant (and vice-versa); refer to Antonakis and Dietz (2010b) for an example.  

Similar to the above problem of heteroscedasticity, is the problem of standard errors from 

clustered observations. A recent paper published in a top economics journal blasted economists 

for failing to correctly estimate the variance and suggested that many of the results published 

with clustered data that had not corrected for the clustering were dubious (see Bertrand, Duflo, & 

Mullainathan, 2004), and this in a domain that is known for its methodological rigor! The 

variance estimator for clustered data is similar in form to the robust one but relaxes the 

assumptions about the independence of residuals. Note that at times, researchers have to correct 

standard errors for multiple dimensions of clustering; that is, we are not discussing the case of 

hierarchically clustered but truly independently clustered dimensions (see Cameron, Gelbach, & 

Miller, in press). Again, these corrections are easily achieved with Stata or equivalent programs.  

4.0 Methods for Inferring Causality 

To extend our discussion regarding how estimates can become inconsistent, we now 

review methods that are useful for recovering causal parameters in field settings where 
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randomization is not possible. We introduce two broad methods of ensuring consistent estimates. 

The first is what we refer to as statistical adjustment, which is only possible when all sources of 

variation in y are known and are observable. The second way we refer to as quasi-

experimentation: Here, we include simultaneous equation models (with extensive discussion on 

two-stage least squares), regression discontinuity models, difference-in-differences models, 

selection models (with unobserved endogeneity), and single-group designs. These methods have 

many interesting and broad applications in real-world situations, where external validity (i.e., 

generalizability) is assured, but where internal validity (i.e., experimental control) is not easily 

assured. Given space constraints, our presentation of these methods is cursory; our goal is to 

introduce readers to the intuition and the assumptions behind the methods and to explain how 

they can recover the causal parameter of interest. We include a summary of these methods in 

Table 2. 

[Insert Table 2 here] 

4.1 Statistical adjustment  

The most simple way to ensure that estimates are consistent is to measure and include all 

possible sources of variance of y in the regression model (cf. Angrist & Krueger, 1999); of 

course, we must control for measurement error and selection effects if relevant. Controlling for 

all sources of variance in the context of social science, though, is not feasible because the 

researcher has to identify everything that causes variation in y (so as to remove this variance from 

e). At times, there is unobserved selection at hand or other causes unbeknown to the researcher; 

from a practical point-of-view, this method is not very useful per se. We are not suggesting that 

researchers must not use controls; on the contrary, all known theoretical controls must be 

included. However, it is likely that researchers might unknowingly (or even knowingly) omit 

important causes, so they must also use other methods to ensure consistency because of possible 
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endogeneity.  

4.1.1 Propensity score analysis (PSA) 

Readers should refer back to Equations 10 and 11 so as to understand why PSA could 

recover the causal parameter of interest and thus approximate a randomized field experiment 

(Rubin, 2008; Rubin & Thomas, 1996). PSA can only provide consistent estimates to the extent 

that (a) the researcher has knowledge of variables that predict whether an individual would have 

received treatment or not, and (b) e and u in Equations 10 and 11 do not correlate. If e and u 

correlate, which may often be the case, a Heckman treatment effects model must be used to 

derive consistent estimates (discussed below).  

The idea behind PSA is quite simple and has to do with comparing treated individuals to 

similar control individuals (i.e., to “recreate” the counterfactual). Going back to the randomized 

experiment: What is the probability, or propensity to provide an introduction to the term, that a 

particular individual is in the treatment versus the control group? If the treatment is assigned 

randomly, it is .50 (i.e., 1 out of 2). However, this probability is not .50 is the treatment was not 

assigned randomly. Thus, the essence of PSA is to determine the probability (propensity) that an 

individual would have received treatment (as a function of measured covariates). Then, the 

researcher attempts to compare (match) individuals from the treatment and control groups who 

have the same probability of receiving treatment. In this way, the design mimics the true 

experiment (and the counterfactual), given that the researcher attempts to determine the treatment 

effect on y by comparing individuals who received the treatment to similar individuals who did 

not.  

Suppose in our example that we want to compare individuals who undertook leadership 

training (and were self-selected) versus a control group. In the first instance, we estimate a probit 

(or logistic) model to predict the probability that an individual receives the treatment: 
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                                                                              Eq. 27 
 
 

And x = 1 when x* > 0 (i.e., treatment has been received), else x = 0. The predicted 

probability of receiving the treatment (x) as a function of q covariates (e.g., IQ, demographics, 

and so forth) for each individual (i) is saved. This score, which ranges from 0 to 1, is the 

propensity score. The point is to match individuals in the treatment and control with the same 

propensity scores. That is, suppose two individual having the same (or almost the same) 

propensity score but one is in the treatment group and the other in the control group. What they 

differ on is what is captured by the error term in the propensity equation: ui. That is, what 

explains, beyond the covariates, whether a particular individual should have received the 

treatment but did not is the error term. In other words, if two subjects have the same propensity 

score and they are in different groups (assuming that ui is just “noise”), then it is almost like these 

two subject were randomly assigned to the treatment (D'Agostino, 1998). As mentioned, the 

assumption of this method is that ui is unrelated to the residual term ei (in Equation 10 ); the 

unobserved factors which explain whether someone received the treatment must not correlate 

with unobserved factors in the y equation (Cameron & Trivedi, 2005). If this assumption is 

tenable, then in the simplest case we can match individuals to obtain the counterfactual. That is, a 

simple t-test for the individuals matched across the two groups using some matching algorithm 

(rule) will indicate the average treatment effect. For more information on this method, readers 

should consult more detailed exposés and examples (Cameron & Trivedi, 2005; Cook, et al., 

2008; D'Agostino, 1998; Rosenbaum & Rubin, 1983, 1984, 1985).  

4.2 Quasi-Experimentation 

Below, we introduce quasi-experimental methods, focusing extensively on two methods 

that are able to recover causal parameters in rather straightforward ways: Simultaneous equation 
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models, and regression discontinuity models. We discuss two other methods, which have more 

restrictive assumptions (e.g., difference-in-differences models, selection models) but which are 

also able to establish causality if these assumptions are met. We complete our methodological 

journey with a brief discussion on single group, quasi-experimental designs.  

4.2.1 Simultaneous-equation models  

We begin the explanations in this section with two-stage least squares (2SLS) regression. 

This method, also referred to also as instrumental-variable estimation, is used to estimate 

simultaneous equations where one or more predictors are endogenous. 2SLS is standard practice 

in economics--a workhorse--and probably the most useful and most-used method to ensure 

consistency of estimates because of endogeneity. Unfortunately, beyond economics, this method 

has not had a big impact on other social science disciplines including psychology and 

management research (see Cameron & Trivedi, 2005; Foster & McLanahan, 1996; Gennetian, et 

al., 2008). We hope that our review will help correct this state of affairs particularly because this 

approach can be useful for solving the common-methods variance problem.  

The 2SLS estimator (or its cousin, the Limited-Information Maximum Likelihood 

estimator, LIML) is handy for a variety of problems where there is endogeneity because of 

simultaneity, omitted variables, common-method variance, or measurement error (Cameron & 

Trivedi, 2005; Greene, 2008; Kennedy, 2003). This estimator has some commonalities with the 

selection models discussed below because it relies on simultaneous equations and instrumental 

variables. Instrumental variables, or simply instruments, are exogenous variables and do not 

depend on other variables or disturbances in the system of equations. Recall, the problem of 

endogeneity makes estimates inconsistent because the problematic (endogenous) variable--which 

is supposed to predict a dependent variable--correlates with the error term of the dependent 

variable. Refer to Figure 3, for a simplified depiction of the problem and the solution, which we 
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explain in detail below. 

[Insert Figure 3 here] 

In our basic specification we will assume that x is continuous. The endogenous variable 

could be dichotomous too, in which case the 2SLS estimation procedure must employ a probit 

model in the first stage equation, that is, in Eq. 29 below (Greene, 2008). Other estimators are 

available too for this class of model (e.g., where the y variable is a probit but the endogenous is a 

continuous variable). The Stata cmp command (Roodman, 2008) can estimate a broad class of 

such mixed models by maximum likelihood similar to the Mplus structural-equation modeling 

program (L. K. Muthén & Muthén, 2007).  

Turning back to the issue at hand, let us assume we have a common methods variance 

problem, where x (leader behavior) and y (perceptions of leader effectiveness) have been 

gathered from a common source: bossi rating leaderi (n = 50 leaders; with q representing 

unobserved common-source variance, and c control variables). Here, following Eq. 24 we 

estimate:  

�� � �� � ���� ����1�� � ���
2

���
� ���,+� � �*+�� 

 
                        Eq. 28 
 

 
The coefficient of x could be interpreted causally if an exogenous source of variance, say 

z, were found that strongly predicts x and is related to y via x only, and unrelated to e (the 

combined term). For identification of the parameters two conditions must be satisfied: We must 

have at least as many instruments as endogenous variables and one instrument must be excluded 

from the second-stage equation; also, the instruments should be significantly and strongly related 

to the endogenous variable x (Wooldridge, 2002). If we have more instruments than endogenous 

variables, then we can test the overidentifying restrictions in this system (see below). If 

appropriate instruments are found, then the causal effect of x on y can be recovered by first 
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estimating Eq. 29 (i.e., the first-stage equation) and then using the predicted value of x to predict 

y. Note, all exogenous variables (in this case c, the control variables) should usually be used as 

instruments of the endogenous variables, otherwise estimates may be inconsistent in certain 

conditions (for further information refer to Baltagi, 2002).  

To illustrate the workings of 2SLS with a theoretical example (later, we also demonstrate 

2SLS with a simulated data set as well to should how solve the problem of common-methods 

variance). Assume that z is IQ; given that IQ is genetically determined (i.e., has high genetic 

heritability, thus it is exogenous) it makes for an excellent instrument as would personality, and 

other stable individual differences (Antonakis, in press), as long as they do not correlate with 

omitted causes with respect to y. IQ affects how effectively a leader behaves (Antonakis, in press) 

and leader behavior affects leader outcomes (Barling, Weber, & Kelloway, 1996; Dvir, Eden, 

Avolio, & Shamir, 2002; Howell & Frost, 1986); note, these studies are not correlational but 

manipulated leadership. Also, the instruments must be related to y but less strongly than is the 

endogenous predictor. Assume that d is the distance of the rater from the leader (which is 

assigned by the company randomly), and which may impact how effective a leader can be with 

respect to that follower because it limits interaction frequency with followers (Antonakis & 

Atwater, 2002). We also include c control variables (e.g., leader age, leader sex, etc). Thus, we 

model:  
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                                             Eq. 29 
 

 
Because z and d (and f, which directly effects y) are exogenous, they will, of course not 

correlate with u, and more importantly with the error term in Eq. 28 (which consists of three 

components). Thus, the predicted value,	�4, will not correlate with the combined error term either. 

In the second stage we use	�4 to predict y as follows:  



39 
 

�� � �� � ���4� ����1�� � ��
2

���
 

 
                                                         Eq. 30 

 
 

How does 2SLS ensure consistency? What the 2SLS estimator does is very simple. Only 

the portion of variance that z and d (and the controls) predict in x that overlaps with y is 

estimated; given that z and d are exogenous, this portion of variance is isolated from the error 

term in the y equation (for an excellent intuitive explanation see Kennedy, 2003). Thus, the 2SLS 

estimate of β1 is consistent, but less efficient than the OLS estimator given that less information is 

used to produce the estimate (Kennedy, 2003). The significance of each indirect (nonlinear) 

effect, that is �� ∗ �� and �	 ∗ ��can also be tested using the traditional Sobel (delta) method 

(Sobel, 1982) or bootstrapping (Shrout & Bolger, 2002). Note that sums of indirect effects can be 

tested too in programs like Stata (i.e,. �� ∗ �� + �	 ∗ ��). 
What is very important to understand here about the estimation procedure is that, as we 

depict in Figure 3, consistency can only occur if the cross-equation disturbances (e and u) are 

estimated. This procedure is standard practice in econometrics and the reason that it is done is 

quite straightforward. If the errors are not correlated then estimates will equivalent to OLS, which 

will be inconsistent if x is endogenous (Maddala, 1977). Estimating this correlation 

acknowledges the unmodeled common cause of x and y; it is a common unmeasured “shock” 

which affects both x and y, which must be included in the model. Failing to estimate it suggests 

that x is exogenous and does not require instrumenting.  

How can we test if the errors are correlated? The Hausman endogeneity test (see 

Hausman, 1978) or the Durbin-Wu-Hausman endogeneity test (or an augmented regression, 

wherein the residuals of the first-stage equation are included as a control in the second-stage 

equation) (see Baum, Schaffer, & Stillman, 2007) can tell us if the mediator is endogenous. 

Given that we have one endogenous regressor, this is a one degree of freedom chi-square test of 
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the difference between the constrained model (the correlation of the disturbance is not estimated) 

and the unconstrained model (where the correlation of the disturbance is estimated); this 

procedure can be done in SEM programs. Thus, if the model where x is instrumented (the 

consistent estimator), generates a significantly different estimate from that where x is not 

instrumented (the OLS estimator, which is efficient), the OLS model must be rejected and x 

requires instrumenting. 

A common mistake we see in management and applied psychology is the estimation of 

simultaneous equations without correlating the cross-equation disturbances as per the method 

suggested by Baron and Kenny (1986) or derivatives of this method. If the correlation is not 

estimated and if x is endogenous, then the estimate of β will change accordingly (and will not be 

consistent). Thus, most of the papers testing mediation models that have not correlated the 

disturbances of the two endogenous variables have estimates that are potentially biased. If, 

however, x is exogenous, then the system of equations could be estimated by OLS (or Maximum 

Likelihood) without correlating disturbances (refer to section 4.2.1.4 for a specific example with 

data). This procedure we propose should not be confused with correlating disturbances of 

observed indicators in factor models, which addresses another issue to the one we discuss in 

mediation (or two-stage models). In principle, disturbances of indicators of factor models should 

not be correlated unless the modeler has a priori reason to do so (see Cole, Ciesla, & Steiger, 

2007). 

Systems of equations can be estimated using 2SLS, which is a limited information 

estimator (i.e., it uses information only from an “upstream” equation to estimate a “downstream” 

variable). This estimator is usually a “safe bet” estimator because if there is a misspecification in 

one part of the model and if the model is quite complicated with many equations, this 

misspecification will not bias estimates in other parts of the model as would full-information 
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estimators like three-stage least squares (e.g., Zellner & Theil, 1962) or maximum likelihood, the 

usual estimator in most structural-equation modeling programs (Baltagi, 2002; Bollen, 1996; 

Bollen, Kirby, Curran, Paxton, & Chen, 2007). Thus, using a Hausman test, one could check 

whether the full-information estimator yields different model estimates (of the coefficients) from 

the limited-information estimator; if the estimates are significantly different, then the limited-

information estimator must be retained (as long as the model fits, see below).  

4.2.1.1 Examining Fit in Simultaneous-Equation Models (Overidentification Tests) 

In the above example, we can test whether the veracity of the model and the 

appropriateness of the instruments. For instance, one can examine whether the instruments are 

“strong” (Stock, Wright, & Yogo, 2002); these routines are implemented in the ivreg2 module of 

Stata (Baum, et al., 2007). Also important, if not more important, is to test whether the 

overidentifying restrictions of the system of equations if viable (when having more instruments 

than mediators); this is a test of fit to determine whether there is a discrepancy between the 

implied and actual model. Essentially, what these tests examine is whether the instruments 

correlate with the residuals of the y equation. It should be now clear to readers that this 

undesirable situation is due to a model that is misspecified, which means that estimates are biased 

and cannot be interpreted. Thus, the model must fit before estimates can be interpreted.  

In the example above, Eq. 29 is overidentified (i.e., we have one more instrument that we 

do endogenous regressors); thus, the chi-square test of fit has 1 degree of freedom; if we had only 

one instrument, the model would be just-identified and a test of fit cannot be conducted (though 

the Hausman endogeneity test can still be done). In the context of regression models, these test of 

fit are chi-square tests and are usually called Sargan tests, Hansen-Sargan tests, or simply J-tests 

(see Basmann, 1960; Hansen, 1982; Sargan, 1958). These tests are direct analogs to the chi-

square test of fit in the context of maximum likelihood estimation, as is usually the case with 
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structural equation modeling software. A significant p-value for this test means that the model 

fails to fit (i.e., that the data rejected the model); this test are well-known in psychology and 

management but is often (and incorrectly so) ignored. Interestingly, economists pay attention to 

the test of fit. If it is significant, the model is no good, end of story (and one must refine the 

model or find better instruments); they do not use approximate indexes of fit, for instance the 

RMSEA (Browne & Cudeck, 1993), CFI (Bentler, 1990), or TLI (Tucker & Lewis, 1973), which 

are not statistical tests with known distributions (Fan & Sivo, 2005; Marsh, Hau, & Wen, 2004) 

or have arbitrary cut-offs, as in the case of RMSEA (Chen, Curran, Bollen, Kirby, & Paxton, 

2008).  

There are researchers (outside of economics) who are starting to seriously question the 

common practice in some social-sciences field of accepting models that fail the chi-square test of 

fit apparently because with a large sample even minute discrepancies will be detected and thus 

the p-value of the test will always be significant (see Antonakis, House, Rowold, & Borgmann, 

2010; Hayduk, Cummings, Boadu, Pazderka-Robinson, & Boulianne, 2007; Marsh, et al., 2004; 

McIntosh, 2007; Shipley, 2000) [add Kline]; if the model is correct specified, it will not be 

rejected by the chi-square test even at very large samples sizes (Bollen, 1990). Also, the chi-

squared test is the most powerful test to detect a misspecified model, as Marsh et al. (2004) 

demonstrated in comparing the chi-square test to a variety of approximate fit indices. Thus, we 

urge researchers to pay attention to the chi-square test of fit and not to report failed models as 

acceptable.  

Finally, it is essential to study samples that are causally homogenous (Mulaik & James, 

1995); causally homogenous samples are not infinite (thus, there is a limit to how large the 

sample can be). Thus, finding sources of population heterogeneity and controlling for it will 

improve model fit whether using multiple groups (moderator models) or multiple indicator, 
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multiple causes (MIMIC) models (Antonakis, et al., 2010; Bollen, 1989; B. O. Muthén, 1989). 

4.2.1.2 The PLS problem 

Researchers in some fields (particularly information systems and less so in some 

management subdisciplines) use what has been referred to as Partial-Least Squares (PLS) 

techniques to test path models or latent variable (particularly composite) models. We discuss this 

modeling method briefly, because it is quite popular in other fields yet PLS has no important 

advantages of regression or OLS. Because it seems to be slowly creeping into management 

research we feel it is important to warn researchers to not use PLS to test their models. PLS 

estimates are identical to OLS in saturated models with observed variables. Whether modeling 

composites in PLS or indexes/parcels in saturated regression models will not change estimates by 

much (Temme, Kreis, & Hildebrandt, 2006).  

The problem with PLS, however, is that it cannot test systems of equations causally (i.e., 

overidentifying restrictions cannot be tested) nor can it directly estimate standard errors of 

estimates. Because the model’s fit cannot be tested, the modeller cannot know if model estimates 

are biased. Also, its apparent advantages over regression-based (OLS, 2SLS) or covariance-based 

modeling (e.g., SEM) is rather exaggerated (see Hair, Black, Babin, Anderson, & Tatham, 2006; 

Hwang, Malhotra, Kim, Tomiuk, & Hong, in press; Marcoulides & Saunders, 2006; McDonald, 

1996); recently it has been also shown that PLS can experience convergence problems too 

(Henseler, 2010). PLS users commonly repeat  the mantra that “PLS is good for prediction, 

particularly in early phases of theory development whereas SEM models are good for theory 

testing;” this comment suggests that one cannot predict using SEM or 2SLS, which is obviously a 

baseless assertion. We really find it odd that those using PLS would knowingly not want to test 

their model when they could use more robust tests.  

In a recent simulation PLS was found to perform worse than SEM (both in conditions of 
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correct and misspecification); also, although a new approach, referred to as generalized structured 

component analysis, has been proposed as a better alternative to PLS (because it is similar to 

SEM in the sense that it can test model fit), it does not provide for better estimation when the 

model is correctly specified (Hwang, et al., in press). Interesting in this simulation is that the new 

method performed better under conditions of model misspecification (which makes sense given 

that it is a limited-information estimator); however, it is unclear as to whether this estimation 

approach is better than other limited-information (e.g., 2SLS) estimators (e.g., Bollen, et al., 

2007). 

Other apparent advantages of PLS are that it makes no distributional assumptions 

regarding variables and does not require large sample sizes; however, regression or two-stage 

least squares analysis do not make any assumptions either about independent variables and can 

estimate models with small sample sizes. More importantly, there are estimators build into 

programs like MPlus, LISREL, EQS, and Stata that can accommodate a large class of models, 

using robust estimation and various types of variables, which might not be normally distributed 

or continuous (e.g., dichotomous, polytomous, ordered, counts, composite variables, etc.). Thus, 

given the advances that have been made today in statistics software, there is no use for PLS 

whatsoever (see in particular McDonald, 1996). We thus strongly encourage researchers to 

abandon it.  

4.2.1.3 Finding instruments 

Finally, one of the biggest challenges that researchers face when attempting to estimating 

instrumental variable models has to do with where to find instruments. In the case of an 

experiment, where the modeler wishes to establish mediation, the modeler will have the perfect 

instrument/s: The manipulated variables. As long as the model is estimated correctly (with the 

cross-equation disturbances of the endogenous variables correlated), then the causal mediation 



45 
 

influence can be correctly identified. In the case of cross-sectional or longitudinal research, stable 

individual difference that are genetically determined could do (personality, cognitive ability), as 

would age, height, hormones (e.g., testosterone), or physical appearance (Antonakis, in press); 

geographic factors (distance from the leader as mentioned above) could work. Time effects could 

be used as an exogenous source of variance as could exogenous “shocks” of from a particular 

event; there are contextual effects that could affect leadership, including laws or cultural-level 

factors (Liden & Antonakis, 2009). With panel data, fixed-effects of leaders or more simply 

cluster-means should also do the trick because they would capture all unobserved sources of 

variance in the leader that predict behavior (e.g., Antonakis, et al., 2010); this procedure will 

essentially purge rater i’s score from idiosyncratic bias, common-methods bias, or other errors, 

given that the fixed-effect (i.e., the cluster-mean score) should mostly capture true variance 

(Mount & Scullen, 2001; Scullen, Mount, & Goff, 2000). Others have had ingenious ideas, 

estimating the effect of a change of leadership (presidents) on country-level outcomes using death 

in office as an exogenous source of variance (Jones & Olken, 2005); thus, the change of the 

handover of power is random (exogenous sources of variances such as this could be used to 

identify causal effects in two-stage models). Finding instruments is, at times, not easy; however, 

the time spent to find instruments is an investment that will serve science and society in good 

stead because the estimated parameters of the model will be consistent.  

Important to note, once again, is that the instruments must not correlate with e, omitted 

causes. For instance, if an omitted common cause of leader style and effectiveness is affect for 

the leader and if leader IQ is used as an instrument, the modeler must be sure that affect for the 

leader and IQ do not correlate. If they do correlate, the model will be misspecified; however, 

misspecification could be caught by the overidentification test (as long as true exogenous 

variables, in addition to the “bad” instrument are included). Thus, it is crucial to try and obtain 
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more instruments than endogenous variables so that the overidentification test can be performed. 

Also, the instruments must first pass a “theoretical overidentification” test before an empirical 

one (if all the model instruments are not truly exogenous the overidentification test will not 

necessarily catch the misspecification, as we have shown).  

4.2.1.4 Solving the common-methods variance problem with 2SLS 

We provide two examples below; one where we show how to recover causal estimates 

with instrumental variable and 2SLS. The second example is a full SEM causal model, where we 

recover the causal estimates with instrumental variables using maximum likelihood estimation.  

Example 1 using 2SLS: The previous discussion has been a theoretical one and readers 

might be skeptical about how the 2SLS estimator can recover causal estimates. We thus 

generated data with a known structure where there is a strong common-methods variance effect. 

Assume that we have an endogenous independent variable x, a dependent variable y, two 

exogenous and perfectly-measured variables m and n, and a common source effect, q. The true 

model that generated the data is (note that e and u are normally distributed and independent of 

each other): 

� � 5� � + � .88 � .89 � �                                                                   Eq. 31 

� � 	�� � + � .2� � �              Eq. 32 

 We generated this data for a sample size of n = 10,000. Refer to Table 3 for the 

correlation matrix and sample statistics of this data (note, these summary data can be inputted 

into a structural-equation modeling program to derive the same estimates with maximum 

likelihood).  

[Insert Table 3 here] 

 Estimating the OLS model (or using Maximum Likelihood), where y is simply regressed 

on x, clearly gives a wrong estimate with the wrong sign (.11); the true estimate (-.20) is 281.82% 
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lower! Here is an example of the sinister effect of the common method variable, which when 

omitted from the equation makes x endogenous; as we mentioned, the biased OLS coefficient 

could be higher, lower, of a different sign or not significant. We trust it is now clear that 

Spector’s (2006) suggestion that common methods bias is an urban legend is an urgent legend in 

itself.  

The estimates of this model are depicted in Panel A of Table 4. The known-model 

estimates, based on two OLS equations (i.e., and not correlating cross-equation disturbances) 

reproduce the correct estimate precisely (-.20), as indicated Panel B in Table 4. However, in the 

real-world this model would not be estimated because it is highly probably that the common 

cause, q, cannot be measured directly.  

[Insert Table 4 here] 

Thus, the only correct solution that is available to address this problem is one that is 

straightforward to use, provided the modeler has instruments. Using the 2SLS estimator, which 

exploits the exogenous sources of variance from m and n, recovers the true estimate (see Panel C 

in Table 4); the exogenous variables do not correlate with q (and thus not with e when q is not 

included in the equation) nor with u because they vary randomly. They are strongly related to x 

and only affect y via x. Next, even though q is not included in the model, the 2SLS estimator 

recovers the estimate of interest exactly (-.20), though with a slightly larger confidence interval; 

as we said before, the price that is paid is reduced efficiency. In the case of two-equation models, 

and with strong instruments, the 2SLS estimator gives similar estimates to three stage least 

squares (3SLS), iterated 3SLS, maximum likelihood (ML), and limited information ML (LIML).  

To demonstrate the stability of the 2SLS estimate, a Monte Carlo simulation of this data 

structure based on 1,000 simulations provided an estimate of -.20, with a 95% confidence interval 

of between -.2007859 and -.1992456!). Finally, a Sargan chi-square test of overidentification 
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(Sargan, 1958) suggests that the instruments are valid, p = .30 (the simulation results confirmed 

this finding too, p = .32). 

Now, had we estimated this above model using the standard approach (irrespective of the 

estimator) that is usually used in management and applied psychology where the cross-equation 

disturbance are not correlated would have given an incorrect estimate (i.e., .11, which is, in fact, 

that of the OLS model); not estimating the cross-equation disturbance suggests that there is no 

“common shock” that might predict x and y, which is unmeasured and not accounted for in the 

model. That assumption is too strong to make, and as we demonstrate, incorrect in the context of 

such mediation models.  

Example 2 using ML: The above demonstration should now explain further that if the 

effect of a common source/method is not explicitly modeled, true parameter estimates cannot be 

recovered (e.g., by attempting to model a method factor, because how the method factor affects 

the variable is unknown to the researcher). Thus, one defensible statistical way to control for this 

problem is the way we have demonstrated above, by using instrumental variables. The same 

procedures can be extended to full SEM models. We provide a brief example below, following a 

similar specification in Figure 2 where we include a dependent variable y, presidential leader 

effectiveness, and two independent variables. All measures were obtained from voters, who only 

have some knowledge of the leaders behaviors. We include a common cause--suppose it is affect 

for the leader or any other common-cause mechanism--as well as two instrumental variables z1 

and z2 that do not correlate with the common cause (also assume not selection effects due to the 

instruments). The first instrument, z1 is the leader’s IQ and z2 is the leader’s neuroticism, which 

are orthogonal to each other. Ξ1 and Ξ2 are transformational and transactional-oriented 

leadership respectively (for simplicity these are the only styles of leadership that matter). Thus, 
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the more subordinates like the leader the more they see her as charismatic and the less they see 

her as transactional; however, these styles vary too because of the leaders’ personality. Given that 

personality is largely exogenous (i.e., due to genes), it will vary independently of other factors in 

the model.  

The correct model is depicted in Figure 4, Panel A, which fits the data perfectly: χ2(51) = 

47.48, p > .05, n = 10,000; all estimates are standardized. In Panel B, we estimate the model only 

using the instruments. The parameters estimates are correct as long as the residuals are correlated; 

the model fits perfectly, despite omitting the common cause: χ2(45) = 48.50, p > .05. In Panel C 

the model is still correct. Given that the instruments are exogenous, they do not correlate with the 

common cause. Thus, omitting the instruments (or the common cause, as we showed in Panel B) 

will not bias the estimates; also, the model fits perfectly: χ2(37) = 37.96, p > .05. Finally, the 

model depicted in Panel D is incorrect because the latent variables are endogenous and are not 

purged from endogeneity bias. The structural estimates are incorrect although the model fits: 

χ2(31) = 34.46, p > .05. Again, this example not only demonstrates that instruments can purge the 

bias from endogenous variables but that it is imperative that the model be correctly specified. 

Note, we tried to recover the correct causal estimates by modeling a latent common factor; the 

model included a “Heywood” case on y whose variance we had to constrain so that it could be 

estimated); doing so resulted in good model fit. However, the model estimates were wrong.  

[Insert Figure 4 here] 

Thus, we hope that our demonstrations will provide new directions in solving the 

common-methods problem and in estimating mediation models correctly. Also, as is evident, the 

modeler must rely on theory as well as statistical tests when specifying models and ensure that 

they model exogenous sources of variance to obtain consistent estimates.  
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4.3 Regression discontinuity models 

The regression discontinuity design (RDD) is a deceptively simple and useful model. It 

was first proposed by Thistlethwaite and Campbell (1960) and brought to the fore by Cook and 

Campbell (1979). Interestingly, this design has been rediscovered independently in several fields 

(Cook, 2008). After the randomized experiment the RDD is the design that most closely 

approximates a randomized experiment (Cook, et al., 2008); however, it is underutilized in 

social-sciences research and not well understood (Shadish, et al., 2002). It is currently 

experiencing a renaissance in economics (Cook, 2008). We discuss this design extensively, 

because it is very useful in field settings.   

The reason why the design is so useful is that like the randomized experiment, it 

specifically models the selection procedure. Whereas in the randomized experiment selection to 

treatment is random, in the RDD selection is due to a specific cut-off (or threshold) that is 

observed explicitly and modeled as such; this cut-off can be a pretest or any other continuous 

variable that does not necessarily have to be correlated with y (Shadish, et al., 2002). From an 

ethical point of view, and when the cutoff is a pretest of y, this design is very useful in that the 

individuals who are most likely to benefit from the treatment obtain it; however, this non-

randomization to condition is precisely why the RDD is difficult to grasp in terms of whether its 

estimates are consistent. The reason why the RDD yield consistent estimates is that selection to 

experiment and control group is based on an explicitly-measured criterion that is included in the 

regression equation (thus, the disturbance term contains no information that might correlate with 

the grouping variable). The advantages of this design are many, given that it is relatively easy to 

implement in field settings to test the effectiveness of a policy (particularly when using a pretest 

threshold).  

To explain the basic workings of this design assume that a company decides to give 
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leadership training to its managers; however, the company CEO is not sure if leadership training 

works. A professor, eager to test the workings of the RDD, suggests that they could emulate a 

randomized experiment and simultaneously help those that need leadership training the most (i.e., 

provide the training only to the leaders who are below a certain threshold). Let s be the selection 

threshold for training, based on a pretest of a validated diagnostic test of the leaders’ charisma 

(xi). Leaders who score below a threshold--which will be the group mean (this choice maximizes 

power in the RDD Shadish, et al., 2002)--are placed in the treatment condition. Thus, for leader i, 

selection is based on the following explicit rule: 

 ;� � 1	=1	�� > �̅ 

 ;� � 0	=1	�� ? �̅ 

Then, the following regression model is estimated, using the mean centered pretest score 

to set the intercept to the cut-off value (note, controls could be included in this equation to 

increase power) [Right?]: 

�� � �� � ��;� � �	��� � �̅� � ��                                                                               Eq. 33 

Thus, the treatment effect is ��. The counterfactual is �� (what the treatment group would 

have had had it not been treated). Too good to be true, right? As mentioned by Shadish, et al. 

(2002) many “will think it implausible that the regression discontinuity design would yield 

useful, much less unbiased, estimates of treatment effect” (p. 220). Below, we thus show 

explicitly why RDD approximates the randomized experiment almost perfectly (we base our 

examples on the arguments and figures presented by Shadish, et al., 2002). We use our own, 

simulated data, with a known structure, coupled with errors-in-variables regression as well as a 

Monte Carlo experiment to show how the RDD can provide consistent estimates (so we “kill 

three birds” with one stone given that we plead in the conclusions too for more use of the Monte 



52 
 

Carlo simulation method).  

We first begin with a simple example to show the parallel between the RDD and the 

randomized experiment. Five hundred participants were randomly assigned to a control and 

treatment condition (x = 1 if in treatment, else x = 0). We include a perfectly measured pretest (z) 

correlating .60 with the posttest (y); both variables are standardized, thus structural parameters 

are standardized too. We generated the data such that the treatment increases y by 2 points on the 

scale. The regression model we estimated (the typical ANCOVA model in psychology) was:  

�� � �� � ���� � �	
� � ��                                                                                         Eq. 34 

Results indicate a significant regression model, F(2, 497) =544.80. The coefficient of �� = 

2.00, standard error = .07, t = 27.87, p < .001. The coefficient of  �	 = .60, standard error = .04, t 

= 16.71, p < .001. The constant is 2.60. The regression lines are parallel given that the x*z 

interaction was insignificant (see Figure 5a).  

[Insert Figure 5 here] 

Now, to understand how regression discontinuity works and to see its visual relation to 

the experiment (Shadish, et al., 2002), suppose that we had given the treatment only to that part 

of the treatment group that scored below 9, which was the group mean, on the pretest. Also, 

suppose that those who score above the threshold do not receive the treatment. Using the same 

data as before, we obtain the two regression lines (see Figure 5b).  

The discontinuity can be seen at the mean of x (the threshold for assigning a participant to 

the treatment or control condition); this sharp-drop in the line suggests that those just left of the 

treatment cut-off benefitted greatly as compared to those just to the right of the cut-off in the 

control group who did not receive the treatment. Estimating Equation 33 shows that the 

regression model was significant, F(2, 243) = 82.21. The coefficient of  �� = 1.99, standard error 
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= .17, t = 6.78, p < .001. The coefficient of  �	 = .58, standard error = .09, t = 6.78, p < .001. The 

constant is 8.03. The regression lines are parallel given that the x*z interaction was insignificant, 

note, it is always good policy to include the x*z interaction in case the experiment produces not 

only a change in the constant but also in the slope (Hahn, Todd, & Van der Klaauw, 2001; Lalive, 

2008). 

Note, that the treatment effect is almost precisely the same as before (1.99 now, versus 

2.00). As we mentioned before, the counterfactual is the constant; thus, if the experimental group 

had not received the treatment, its mean would have been 8.03. Now, going back to the 

randomized experiment, the fitted model indicated that zxy 60.260.2ˆ ++= . Thus, at the mean 

value of z we predict y to be the following for the control group, which is the true counterfactual--

or the estimated marginal mean: 2.60 + 2*0+.60*9 = 8.00!  

This exercise never ceases to amaze us, but it is so obvious once one understands how the 

RDD works. As is evident from the graphs, the randomized experiment replaces the discontinuity 

with random assignment. Rather than allocating everyone using a cutoff to the treated condition, 

the randomized experiment assigns a random subgroup to either the treated or the control 

condition (which undoes the discontinuity). Furthermore, readers should not fall into the trap of 

thinking that RDD is simply explained by regression to the mean, in the sense that when 

remeasuring participants with extreme values their post-scores regress to the mean. As mentioned 

by Shadish, et al. (2002), any regression effects are already captured in the regression line. Of 

course, those initially scoring in the extremes will regress; however, this causes the slope of the 

regression line to become flatter, but it does not cause discontinuities.  

To test RDD a step further we then conducted a Monte Carlo experiment. To provide for a 

strong test, we made the correlation between y and x more realistic by adding error to x, and thus 
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also show the workings of the errors-in-variables estimator: We add a normally distributed error 

term (e) to x (i.e., .5*e). The reliability of x is (Bollen, 1989): 1 – (error variance)/(total variance). 

Given that the original x (without error) had a variance of 1, and we observe the variance of x-

with-error to be 1.28, the theoretical reliability of x is 1  – (1.28 – 1) /1.28 = .78. We then ran a 

Monte Carlo experiment, estimating the same regression model as in the RDD above using the 

mean of x as the cut-off. We simulated this process 1,000 times to see how stable this estimator is 

(i.e., specifically to see how the causal parameters of interested were distributed).  

The results showed that the RDD coupled with the errors-in-variables estimator recovered 

the true causal parameters almost precisely! The mean of the constant was 8.01 (95% confidence: 

8.00 to 8.01). The mean of coefficient of �� = 2.02 (95% confidence: 2.01 to 2.03). Finally, the 

coefficient for of �	 = .60 (95% confidence: .59 to 60)!  

We re-ran the Monte Carlo using OLS to demonstrate the effect of measurement error on 

the estimates. The mean of the constant was 8.21 (95% confidence: 8.20 to 8.21). The mean of 

coefficient of ��	= 1.62 (95% confidence: 1.61 to 1.63). Finally, the coefficient for of �	 = .34 

(95% confidence: .34 to .34). These estimates are way off the correct estimates; the treatment 

effect was underestimated by a large margin (-19.80%). The effect of the covariate was 

underestimated by a much larger margin (-43.33%). Finally, the counterfactual was 

overestimated (+2.50%); however, the intercept seems to be less affected. Results with more than 

one ill-measured covariate would certainly create much more bias than what we have showed 

here with a very simple model.  

To conclude, we trust that our demonstrations will create some interest in using RDD in 

leadership research as well as in related areas (management, applied psychology, strategy, etc.). 

This design is clean and simple to run. Because of space restrictions we have only covered the 

basics of RDD; readers should refer to more specialized literature for further details (e.g., Angrist 
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& Krueger, 1999; Angrist & Pischke, 2008; Hahn, et al., 2001; Lee & Lemieux, 2009). Finally, 

modelers can find creative ways to use the RDD. For instance, regression discontinuities could 

also be used where the modeled cut-off is an exogenous shock (e.g., war). 

4.4 Difference-in-differences models 

In the case where a treatment and a very similar control group are compared before and 

after a treatment, causal inference could be made provided certain assumptions are met (the most 

important being that in the absence of the treatment, the difference between the two groups is 

relatively stable over time). This type of model is called a difference-in-differences model in 

economics (see Angrist & Krueger, 1999; Angrist & Pischke, 2008; Meyer, 1995); in 

psychology, it is usually referred to as an untreated control group design with pre- and post-test 

(Shadish, et al., 2002). We will discuss these models from the point of view of economics, given 

that the literature on estimation methods is more developed in this field.   

The basic idea of the difference-in-differences model is to observe the effect of an 

exogenous “shock” on a “treatment” group; the treatment effect is the difference between the 

treated group and a comparable control group across time. Using a comparable group thus 

“differences-out” confounding contemporaneous factors. For a graphic depiction of this model 

see Figure 6. 

[Insert Figure 6 here] 

The following model, in panel form, is thus estimated: 

��@ � �� � ���� � �	A� � �B�. A� � ��@               Eq. 35 

Where person i is either in a treatment group (x = 1, else it is 0) in time period t; for 

simplicity, suppose that data are on two periods, before and after the intervention, where t = 1 is 

post-treatment, else it is 0; the model should include control variables, which we have omitted for 

simplicity. The treatment effect is captured by the coefficient of the interaction term, �B. Another 
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way of looking at the treatment effect is to difference y across time and groups, which gives:   

[ ] [ ]{ } [ ] [ ]{ } 30,0|0,1|1,0|1,1| β===−==−==−== txYEtxYEtxYEtxYE      Eq. 36 

That there may be differences between the groups prior to the intervention is captured by 

the fixed effect of group membership, that is, the coefficient of x (thus, random assignment is not 

of issue here, as long as the assumptions of the method are satisfied).  Fixed effects of time are 

captured by the coefficient of t, that is, because changes in y might be due to time. Note, fixed 

effects of individual could be modeled as well in which case the between group differences will 

be captured by the individual fixed effects rather than by the parameter ��. What is important for 

this model is that x.t  is not endogenous, that is, that the difference between the groups is stable 

over time and that the timing of the treatment is exogenous (i.e., that differences in y are not due 

to unmeasured factors); this assumption can be examined by comparing data historically to see if 

differences are stable across the groups before (and after) the treatment (Angrist & Krueger, 

1999). Also, given that the data are panel data, it is important to correct standard errors for 

clustering on the panel variables (Bertrand, et al., 2004). Note, that �� � �� � �	 provides for the 

counterfactual (i.e., �C	of the treatment group had it not been treated). Of course, the basic 

difference-in-differences model can be expanded in more sophisticated ways (Angrist & Krueger, 

1999, 2001; Angrist & Pischke, 2008; Meyer, 1995).  

Applied to leadership research, suppose that a CEO of a company that has two similar 

factory sites suddenly decides to hire a professor to conduct an experiment to see whether 

leadership training works. She decided this on the basis of yearly data the company has been 

gathering using a 360 leadership instrument, which showed that the mean level of charisma has 

been declining across the two sites (at a similar rate) and that it is now below a critical threshold 

in both sites. Trained as a medical researcher, she suggests to the professor that all the company’s 
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500 supervisors should be randomized into a treatment or a control group. Instead of doing a 

randomized experiment within each factory, which could have spillover effects from the 

treatment to the control groups, the professor convinces the CEO to allow her to train the 

managers on one site only. Given the fact that they are separated by a distance of 2,000km and 

because they produce pharmaceutical products for different markets (which both have strong 

demand for their products), it is very unlikely that managers in the control site will get to know 

about the training that will be conducted in the experimental site. Furthermore, because 

demographic indicators regarding the managers and the workers are similar in the two sites (as 

are charisma trends in the managers), and socioeconomics about the same (as historical data 

indicates) the difference-in-differences would be an appropriate tool to use in this particular case.  

4.5 Selection models (Heckman models) 

As discussed previously, when there is unmodeled selection to treatment (i.e., participants 

attend leadership training, but training is not assigned randomly), estimates will be inconsistent 

because unobserved variance which affects selection in the selection equation (see Eq. 11) could 

be correlated with unobserved variance that affects the dependent variable (see Eq. 10)—this 

endogeneity can inflate or deflate the treatment effect. One way around this problem is to 

estimate a Heckman type two-step selection model (Heckman, 1979) or more specifically, what is 

referred to as a treatment effects model (see Cong & Drukker, 2001; Maddala, 1983).  

The idea behind this model is to use instruments to predict participation in the treatment 

or control group (the probit first-step equation). Thereafter, a control variable, which captures all 

unobserved differences between the treatment and control groups due to selection, is added in the 

second step (the substantive equation). This control variable will remove the variance from the 

error term due to selection, so as the coefficient on the treatment term can be correctly estimated. 

This model is easily estimated in advanced statistics programs like Stata.  
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Note, there are other types of models that can be estimated having sample selection bias, 

for example, models where the dependent outcome could be binary instead of continuous. 

Another type of selection model is the classic Heckman two-step model for situations where one 

observes the dependent variable only for the selected group (i.e., there is missing data on the 

dependent variable). The example Heckman used is to estimate the effect of education on wages 

for women, with the selection problem being the fact that women choose to work depending on 

the offer wage and the minimum wage a woman would expect to have (i.e., her reservation 

wage); thus, simply regressing the wages on education will not provide a consistent estimate.  

Applied to leadership, suppose we wish to estimate whether there are sex differences in 

leadership effectiveness. The selection problem is that individuals are appointed to positions of 

leadership based in part on their sex and not only on their competence (Eagly & Carli, 2004). 

That is, because of social prejudice mechanisms, stereotype threat, and self-limiting behavior, 

females may be less likely to be appointed to leader roles as a function of the gender typing of the 

context. Thus, in male-oriented environments, the sample of observed male leaders is biased 

upward in male-stereotypical settings and only the performance of very competent women would 

be observed (because women are held to a higher standard of performance and thus only the more 

competent women are observed); indeed, when comparing the effectiveness of women versus 

men in business settings that would reflect this selection, women are significantly more effective 

(Antonakis, Avolio, & Sivasubramaniam, 2003; Eagly, Johannesen-Schmidt, & van Engen, 

2003). The effect of being a woman could thus be overstated.  

The Heckman model could be useful in this context. In the first step, we would predict the 

probability of being a leader using exogenous instruments (e.g., sex, competence, sex-typing of 

the job, cultural factors, etc). Then in the second step, we would include sex as a predictor and 

control for unobserved heterogeneity in the selection in predicting effectiveness of leaders who 
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we observe to derive a consistent estimate of the effect of sex on effectiveness.  

4.6 Other types of quasi-experimental designs 

There are other ways to obtain causal estimates using very simple methods. Researchers 

should refer to Cook and Campbell (1979) and Shadish, et al. (2002) for ideas. For instance, 

extending the idea behind the non-equivalent dependent variable design (see Shadish, et al., 

2002), suppose that a researcher wants to investigate the efficacy of a leadership training 

program; however, for whatever reason (e.g., restrictions imposed by an organization, ethical 

reasons, etc.) the researcher cannot have a control group. One way to obtain estimates that could 

be consistent is to pretest the participants on the measure of interest (e.g., charisma) as well as on 

a closely-related measure that the researcher did not intend to change (e.g., communication skills, 

see Frese, Beimel, & Schoenborn, 2003 for an example). The point of this design is to show a 

significant difference between the Time 1 and Time 2 measure of interest and no difference in the 

other measure that the researchers did not intend to manipulate. In the Frese et al., (2003) study, 

however, they did find differences too in communication skills, which can be interpreted as 

learning effects; however, they could have used this information to “unbias” their parameters of 

interest (though they did not). That is, a simple way to remove the variance due to learning 

effects is to include the non-equivalent measure as a control variable, particularly if one has pre 

and post measures as well as control variables (and can thus estimate a panel model). Of course, 

such methods will are not substitutes for the experiments, but if the right controls are included 

they may provide good enough estimates of treatment effect. 

Next, we discuss the state-of-the-art of causal analysis in leadership research. We first 

explain the sample we used in this review and our coding method. Thereafter we present the 

findings and discuss their implications.   

5.0 Review of Robustness of Causal Inference in Management and Applied Psychology  
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5.1 Sample 

 To gauge whether leadership research is currently dealing with central threats to causal 

inference (i.e., reporting estimates that are consistent), we reviewed and coded a random sample 

of articles appearing in top management and applied psychology journals. The initial sample 

from which the final set of articles was drawn was quite large (n = 120) and current--covering the 

last 10 years (i.e., between 1999-2008). We did not code any laboratory experiments given that 

their estimates would be consistent by design (because of randomization). We only coded 

empirical non-experimental papers and field experiments, because it is in these categories of 

research where potential problems would be evident. The population of journals we surveyed, 

including The Leadership Quarterly are all top-tier journals according to objective criteria (i.e., 

5-year ISI impact factor reported in 2009) in the domain of management or applied psychology. 

These journals publish research on leadership and have a strong micro or psychology focus. 

Below, we include the list of journals as well as their 5-year impact factor (IF) and rank in either 

management (MGT) where there are 89 journals listed and/or in applied psychology (AP) where 

there are 61 listed journals:  

1. Academy of Management Journal: Management (IF=7.67; MGT=3rd) 

2. Journal of Applied Psychology (IF=6.01; AP=1st) 

3. Journal of Management (IF=4.53; MGT=9th) 

4. Journal of Organizational Behavior (IF=3.93; MGT=14th; AP=4th) 

5. The Leadership Quarterly (IF=3.50; MGT=18th; AP=5th)  

6. Organizational Behavior & Human Decision Processes (IF=3.19; MGT=21st; AP=10th) 

7. Personnel Psychology (IF= 5.06; AP=2nd) 

We first identified the population of articles that met our selection criteria. We used ISI 

Web of Science to initially identify potential articles which included either “leader” or 
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“leadership” in the “topics” field, which searches in the title, keywords, and abstract. We only 

examined studies that focused on leadership per se. We limited studies using the definition of 

leadership provided by Antonakis, Cianciolo, and Sternberg (Antonakis, Cianciolo, & Sternberg, 

2004, p. 5), that is, “leadership can be defined as the nature of the influencing process—and its 

resultant outcomes—that occurs between a leader and followers and how this influencing 

processes is explained by the leader’s dispositional characteristics and behaviors, follower 

perceptions and attributions of the leader, and the context in which the influencing process 

occurs.” Thus, we coded only studies that examine the influencing process of leaders from a 

dispositional or behavioral perspective, where leadership could be either an independent or 

dependent variable.   

We then determined how many papers were quantitative non-experimental studies or field 

experiments. The population of studies that met our criteria was 287 (i.e., 281 non-experiment 

and 6 field experiments). This population was distributed as follows across the journals:  

Academy of Management Journal (9.06%), Journal of Applied Psychology (24.04%), Journal of 

Management (3.14%), Journal of Organizational Behavior (13.24%), The Leadership Quarterly 

(42.16%), Organizational Behavior & Human Decision Processes (3.14%), and Personnel 

Psychology (5.22%).  

We then randomly selected 120 studies using stratified (proportionate) sampling by 

journal and type of study (i.e., non-experimental or field experiment). From this sample of 120 

studies, we dropped 10 which, although quantitative in nature, did not make any implicit or 

explicit causal claims as in the case of scale validation studies; we did though retain those that 

made, for example, comparison of factors across groupings like gender (e.g., Antonakis, et al., 

2003). Thus, the final sample was 110 studies, distributed as follows: Academy of Management 

Journal (8.18%), Journal of Applied Psychology (26.36%), Journal of Management (3.64%), 
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Journal of Organizational Behavior (14.55%), Leadership Quarterly (38.18%), Organizational 

Behavior & Human Decision Processes (3.64%), and Personnel Psychology (5.45%). The final 

distribution of papers was the same as the original distribution, D	(6) = 0.67, p = 1.00.  

5.2 Coding 

We evaluated studies on each of the sub-criteria of the seven categories listed below (i.e., 

in total there were 14 criteria). We coded each criterion, using a categorical scale: 0 = irrelevant 

criterion; 1 = relevant criterion for which the authors did not correct; 2 = relevant criterion for 

which we were unable to determine whether it was taken into account by the authors; 3 = relevant 

criterion which the authors addressed. Note, we not code for correct use of statistical tests, for 

example, use of the chi-square overidentification test. The criteria we coded included those listed 

in Table 1.  

When papers reporting several studies, we only coded those which were non-experimental 

studies or field experiments even if they represent a small portion of the paper; for example, the 

coding of de Cremer and van Knippenberg (2004) is based solely on the one non-experimental 

study reported by the authors and does not take into account the experimental studies presented in 

the paper. 

The coding was undertaken by the second and third authors of this study. The coders were 

first familiarized with the coding criteria. To ensure that the coders of the study were well 

calibrated with each other, they independently coded five randomly-selected studies from the 

eligible population of leadership studies we had identified (but which had not been selected in our 

random sample). Thereafter, differences were reconciled. The coders then independently coded 

20 studies and we calculated agreement statistics (which indicated very high agreement, i.e., 

80.51% agreement across the 280 coding events). After differences were reconciled, the coders 

then coded the rest of the studies independently.  
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Each study was then discussed between the coders and differences were reconciled. 

Finally, the first author crossed-checked a random sample of 10 studies from the total population 

of studies coded (and reconciled situations where either one or the other coder was unsure as to 

what to code; see below). The final coding represents the agreed ratings of both coders.  

6.0 Results 

We first report results for the coding to examine whether it was undertaken reliably by the 

two coders. The total coding events were 1,540 (14 criteria times 110 papers); however, we 

computed agreement statistics for 1,519 coding events only given that for 21 of the coding events 

either one or the other coder was unsure about how the coding procedure should be applied. In 

this case, the first author reconciled the coding.  

Initial agreement based on the first independent coding of the 110 studies was 74.39% 

(1,130 agreements out a possible 1,519 coding events) and the initial agreement κ coefficient was 

.60, SE = .02, z = 33.51, p  < .001 (see Cohen, 1960). This result suggests that the coders did 

significantly better than chance (which would have generated an agreement of 36.41% given the 

coding events and coding categories). This level of agreement has been qualified as being close 

to “substantial” (Landis & Koch, 1977).  

We present the results of the coding in Appendix A, summarized for the full sample and 

by journal. As a descriptive indicator of our findings, the data across the four coding categories 

for all journals indicated that: 43.83% (675/1,540) received a code of 0 (irrelevant criterion), 

37.21% (573/1,540) received a code of 1 (relevant criterion for which the authors did not 

correct), 13.57% (209/540) received a code of 2 (relevant criterion for which we were unable to 

determine whether the authors undertook the necessary correction), and 5.39% (83) received a 

code of 3 (relevant criterion, which the authors addressed). The frequency distribution of coding 
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categories across the journals (see Appendix) were very similar as indicated by a chi-square test: 

D	�18� � 	14.88, F � 	0.67. Because the distribution of this chi-square test can be affected by 

small sample sizes in cells and given that we could not compute the Fisher exact test (Fisher, 

1922) with so many permutations, we repeated this analysis only for the journals that had many 

observations (i.e., which regularly publish leadership research:  Academy of Management 

Journal, Journal of Applied Psychology, Journal of Organizational Behavior, and The 

Leadership Quarterly). The result remained unchanged: D	�9� � 	7.20, F � 	0.62. 

Considering only the codings that were applicable (i.e., excluding the 675 codings 

receiving 0), indicates that 66.24% received a code of 1, 24.16% a code of 2, and 9.60% a code of 

3. Assuming that those codings given a 2 were not actually corrected by the authors indicates that 

90.40% (66.24% + 24.16%) of coded validity threats were not adequately handled. We can 

consider this 90.40% as an upperbound percentage of codings that did not deal with the validity 

threat appropriately; thus, 66.24% is the lowerbound (assuming that those codings receiving a 2 

were actually corrected for by the authors but that the correction was not reported). These results 

are depicted in Figure 7. Again, the distribution of aggregate coding categories across the 

journals were very similar for the full sample, chi-square test: D	�12� � 	8.37, F � 	0.76, as well 

as for the four journals that had sufficient observations: chi-square test: D	�6� � 	1.18, F � 	0.98. 

Note that all articles, save one, had at least one threat to validity and most (90.91%) had three or 

more threats.  

We compared the distribution of codings across the seven journals for the 14 coding 

criteria using the Fisher (1922) exact test and setting the overall Type I error to be less .05 across 

the 14 tests (Bonferroni correction). The distributions across the 14 criteria were the same across 

the journals, suggesting that practices and standards for these top-tier journals regarding 
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leadership research were essentially the same. 

What are the most frequent and important threats to validity (see bottom part of Panel A 

in the Appendix)? Criterion 4 (measurement error) and 6a (heteroskedastic errors) applies to 

more than 94 % of all the studies we survey. Measurement error is not addressed by 70 % of all 

studies to which the problem applies, and only 16.4 % of the studies adequately deal with the 

problem. Heteroskedasticity is a potential pervasive problem but 92.3 % of the studies possibly 

facing the problem do not report whether or not they dealt with it; only 6.7 % reported using 

robust inference. Common methods variance (Criterion 5) is a threat to validity that is also very 

pervasive in leadership research (it applies to 83.6 % of the studies). Yet 77 % of the studies 

affected by the threat do not deal with it adequately, and only 20.7 % of the studies adequately 

address it.  

Are there threats to validity that are dealt with better than others? Threat 2c (sample is not 

representative) applies to 58.2 % of all the studies we survey. Of the studies that face this 

problem, 32.8% address it adequately whereas 48.4% do not; leaving 18.8% for which we cannot 

assess whether sample selection has been addressed or not.  

7.0 Discussion 

Our review indicated that methodological practices regarding causal modeling in the 

domain of leadership are unsatisfactory. Our results essentially point to the same conclusions as 

do the recent reviews of the literature regarding endogeneity by Hamilton and Nickerson (2003) 

in the strategy domain, that of Halaby (2004) in sociology regarding panel models, and that of 

Bertrand et al. (2004) regarding the use of cluster-robust standard errors in econometrics. 

Although we looked at similar issues to those of the three reviews, the contribution of our review 

was unique in that we examined multiple validity threats (beyond those three reviews).  

Except for The Leadership Quarterly, the articles we coded were published in general 
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management and organizational behavior journals. Thus, we could assume that the practices of 

others disciplines publishing in those journals are very similar to the practices we identified; our 

findings may thus have implications for other areas and also for the meta-analytic reviews which 

may have used estimates that were inconsistent. We can only echo what Halaby (2004, p. 508) 

noted about for research in sociology using panel data “Key principles that ought to routinely 

inform analysis are at times glossed over or ignored completely.”  

Why is current practice not where it should be given that the methodological tools have 

been available for some time? We can only speculate as to why practice has been slow to follow 

the methodological advances that have been made. The most important reason probably has to do 

with doctoral training; in psychology at least, it appears that adequate training in field research 

and quantitative methods in general is not provided, even at elite universities (Aiken, West, & 

Millsap, 2008). We can assume that the level of training provided in non-experimental causal 

analysis in management is insufficient as well, particularly in econometrics training. As Aiken et 

al. (2008, p. 44) state “Psychologists must reinvigorate the teaching of research design to our next 

generation of graduate students, to bring new developments burgeoning in other fields into the 

mainstream of psychology.” 

We believe that coupled with the above problem is the fact that users of statistical 

programs have been very slow to adopt software that can do the job correctly when causal 

analysis in non-experimental settings is concerned; as mentioned by Steiger (2001) statistical 

practice is, unfortunately, software driven and there are many “simplified” books that make it 

easy to use software to estimate complicated models (Alberto Holly, one of our econometrics 

colleagues, refers to this as the “push-button” statistics syndrome). We find it very unfortunate 

that easy-to-use programs (e.g., like SPSS now called PASW), which have very limited and at 

times inexistent routines to handle many of the challenging methodological situations we 
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identified in our review, are firmly entrenched in psychology and business schools. In our 

experience, SPSS is sufficient for analyzing basic experimental data, but as soon as researchers 

venture out into the non-experimental domain we would urge them to migrate to other software 

(e.g., Stata, SAS, R) that will allow them to test models in robust ways and also to widen the 

research horizons on which they can explore. Of course, professors who teach methods and 

statistics classes should also seriously consider using more appropriate software (and in also 

providing more extensive training to their students).  

We note the same concern regarding structural-equation modeling (SEM) software, where 

much of the market is using SPSS’s AMOS software; this program makes it very easy to estimate 

models. However, this program has very limited capabilities as compared to MPlus (our SEM 

software of choice), LISREL or EQS, though even these programs have some catching-up to do 

concerning the estimation of certain types of models (e.g., selection models).  

7.1 Recommendations: The 10 Commandments of Causal Analysis 

 Our review and the coding criteria we identified can be used as a summary framework 

around which researchers should plan and evaluate their work to ensure that estimates are 

consistent and that inferences are valid. We briefly represent these criteria below, grouped in the 

form of 10 best practices, implicating research design or analysis. Concerning these two aspects 

of research, simply put, design rules (Shadish & Cook, 1999); only when the design is adequate 

can appropriate statistical procedures be used to obtain consistent estimates.  

7.22 Best Practice For Causal Inference 

1. To avoid omitted variable bias include adequate control variables. If adequate control 

variables cannot be identified or measured obtain panel data and use exogenous sources of 

variance (i.e., instruments) to identify consistent effects.  

2. With panel (multilevel) data, always model the fixed effects using dummy variables or 
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cluster means of level 1 variables. Do not estimate random-effects models without ensuring that 

the estimator is consistent with respect to the fixed-effects estimator (using a Hausman test). 

3. Ensure (and demonstrate) that independent variables are exogenous. If they are 

endogenous (and this for whatever reason) obtain instruments to estimate effects consistently.  

4. If treatment has not been randomly assigned to individuals in groups, if membership to 

a group is endogenous, or samples are not representative between-group estimates must be 

corrected using the appropriate selection model or other procedures (difference-in-differences, 

propensity scores). 

5. Use overidentification tests (chi-square tests of fit) in simultaneous equations models to 

determine if the model is tenable. Models that fail overidentification tests have untrustworthy 

estimates that cannot be interpreted. 

6. When independent variables are measured with error, estimate models using errors-in-

variables or use instruments (well-measured, of course, in the context of 2SLS models) to correct 

estimates for measurement bias.  

7. Avoid common-methods bias; if it is unavoidable use instruments (in the context of 

2SLS models) to obtain consistent estimates.  

8. To ensure consistency of inference, check if residuals are i.i.d. (identically and 

independently distributed). Use robust variance estimators as the default (unless residuals can be 

demonstrated to be i.i.d). Use cluster-robust variance estimators with panel data (or group-

specific regressors).  

9. Correlate disturbances of potentially endogenous regressors in mediation models (and 

use a Hausman test to determine if mediators are endogenous or not).  

10. Do not use a full-information estimator (i.e., maximum likelihood) unless estimates 

are not different to that of limited information (2SLS) estimator (based on the Hausman test). 
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Never use PLS. 

Apart from addressing the guidelines above and the methods we reviewed, researchers 

should also consider using Monte Carlo analysis more than they do. Monte Carlo analysis is very 

useful for understanding the working of estimators (Mooney, 1997); for example, when an 

estimator may be potentially unstable (e.g., in the case of high multicollinearity) a researcher 

could identify the sample size requirement to ensure that the estimator is consistent. 

8.0 Conclusion 

  Research in applied psychology and related social sciences is at the cusp of a renaissance 

regarding causal analysis and field experimentation; there are many reasons for this push 

including, in part, for the need for evidence-based practice (Shadish & Cook, 2009). Researchers 

cannot miss this call; understanding the causal foundations of social phenomena is too important 

a function for society. Important social phenomena deserve to be studied using the best possible 

methods and in sample situations that can generalize to real-world settings; ideally our goals 

should be to improve policies and practices.  

  Although our review makes for telling conclusions we are hopeful and confident that 

research practice will change in ways that produces research that will be more useful to society. 

We conclude by referring to the problem of alignment of theory, analysis, and measurement: 

When not correctly aligned Schriesheim, Castro, Zhou, and Yammarino (2001, p. 516) noted that 

researchers “may wind up erecting theoretical skyscrapers on foundations of empirical jello.” 

This warning is pertinent for a broader class of problems relating to causal modeling too; implicit 

or explicit causal claims must be made on concrete foundations.  
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Table 1: The 14 Threats to Validity 

 
 
Validity Threat 

 
Explanation 

  
  
1. Omitted variables: (a) Omitting a regressor, that is, failing to include important 

control variables when testing the predictive validity of 
dispositional or behavioral variables (e.g., testing predictive 
validity of “emotional intelligence” without including IQ or 
personality; not controlling for competing leadership styles) 

(b) Omitting fixed effects 
(c) Using random-effects without justification  
(d) In all other cases, independent variables not exogenous (if it is 

not clear what the controls should be) 
 

2. Omitted selection:  (a) Comparing a treatment group to other non-equivalent groups 
(i.e., where the treatment group is not the same as the other 
groups)  

(b) Comparing entities that are grouped nominally where selection 
to group is endogenous (e.g., comparing men and women 
leaders on leadership effectiveness where the selection process 
to leadership is not equivalent) 

(c) Sample (participants or survey responses) suffer from self-
selection or is non-representative 

 
3. Simultaneity: (a) Reverse causality (i.e., an independent variable is potential 

caused by the dependent variable) 
 

4. Measurement error: 
 
 

(a) Including imperfectly-measured variables as independent 
variables and not modelling measurement error 

5. Common-methods variance: 
 
 

(a) Independent and dependent variables are gathered from the 
same rating source 

6. Inconsistent inference: (a) Using normal standard errors without examining for 
heteroscedasticity 

(b) Not using cluster-robust standard errors in panel data 
 

7. Model misspecification: (a) Not correlating disturbances of potentially endogenous 
regressors in mediation models (and not testing for endogeneity 
using a Hausman test or augmented regression),  

(b) Using a full information estimator (e.g., maximum likelihood, 
three-stage least squares) without comparing estimates to a 
limited information estimator (e.g., two stage-least squares).  

 
 
Note: The above 14 threats to validity are the criteria we used for coding the studies we reviewed.    
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Table 2: Six Methods for Inferring Causality  
 
 
Method 

 
Explanation 

  
  
1. Statistical adjustment:  Measure and control for all causes of y (impractical and not 

recommended) 
 

2. Propensity score analysis: Compare individuals who were selected to treatment to statistically similar 
controls using a matching algorithm 
 

3. Simultaneous-equation 
models:  

Using “instruments” (exogenous sources of variance that do not correlate 
with the error terms) to purge the endogenous x variable from bias.  
 

4. Regression discontinuity Select individuals to treatment in using a modelled cut-off.  
  
5. Difference-in-differences 
models:  

Compare a group who received an exogenous treatment to a similar 
control group over time 
 

6. Heckman selection 
models: 

Predict selection to treatment (where treatment is endogenous) and then 
control for unmodeled selection to treatment in predicting y. 
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Table 3: Correlation matrix for 2SLS demonstration 
 

Variable Mean SD 
 

q m n x  y 

        

        q -.01 1.00 1.00 
    m -.01 1.01 -.01 1.00 

   n .02 1.00 .00 -.01 1.00 
  x -.01 1.82 .55 .44 .45 1.00 

 y .00 1.32 .62 -.13 -.12 .15 1.00 
        
 
N=10,000. 
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Table 4: Estimates for 2SLS demonstration 
 

 
Independent 

variables 
 

Coef. 
 

Std. Err. 
 

t 
 

p-value 
 

95% Conf. Interval 
 

 
Panel A: OLS (dependent variable is y) 
F(1, 9998) = 237.47, p < .001, K	=.02 

 
x .11 .01 15.41 .00 .10 .12 
Constant .01 .01 .26 .79 -.02 .03 
       

 
Panel B: Two-equation model estimated with OLS (dependent variable is y) 

F(2, 9997) = 3927.65, p < .001, K	=.44 
 

x -.20 .01 30.34 .00 -.21 -.18 
q 1.02 .01 86.26 .00 1.00 1.04 
Constant .01 .01 .83 .41 .01 .03 

 
Two-equation model estimated with OLS (dependent variable is x) 

F(3, 9996) = 7706.09, p < .001, K	=.70 
 

q 1.00 .01 10.20 .00 .98 1.02 
m .80 .01 81.41 .00 .78 .82 
n .81 .01 81.33 .00 .79 .83 
Constant -.01 .01 -1.07 .29 -.03 .01 
       

 
Panel C: Simultaneous equation model estimated with 2SLS (dependent variable is y) 
F(1, 9998) =  263.32, p < .001, K	= .02a; Sargan overidentification D	(1)=1.07, p=.30 

 
x -.20 .01 -16.23 .00 -.23 -.18 
Constant -.00 .01 -.02 .98 -.03 -.03 

 
Simultaneous equation model estimated with 2SLS (dependent variable is x) 

F(  2,  9997) =  3985.68, K	=.44 
 

m .80 .01 56.93 .00 .77 .82 
n .82 .01 57.75 .00 .79 .84 
Constant -.02 .01 -1.35 .18 -.04 .01 
       

 
N=10,000; anote, it is possible that the r-square in the y equation in simultaneous equations models is 
undefined; however, this is not a problem in simultaneous equation models and structural estimates will be 
correct (Wooldridge, 2009). As a measure of regression fit, the predicted value of y, �4 can be correlated to 
the observed y and squared (which is one way that r-square is calculated). We used this calculation for r-
square in this model.    
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Figure 1: How Endogeneity Affects Consistency 

 

 

Notes:  

1. Figure 1A: β1 is consistent because x does not correlate with e.  

2. Figure 1B: β2 is inconsistent because z correlates with e.  

3. Figure 1C: Although x is exogenous β1 is inconsistent because z, which correlates with e correlates 

with x too and thus “passes-on” the bias to x.  

4. Figure 1D: β1 is consistent even if β2 is not consistent because x and z do not correlate (though this 

is still not an ideal situation because β2 is not interpretable; all independent variables should be 

exogenous or corrected for endogeneity bias).  
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Figure 2: Correcting for Common Source Variance: The Common Method Factor Fallacy  
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Notes:  

1. Figure 2A: this model is correctly specified.  

2. Figure 3B: failing to include the common cause estimates the correlation between Ξ1 and Ξ2 

incorrectly (-.32). 

3. Figure 3C: including an unmeasured common factor estimates the loadings (which are also not 

significant for Ξ1) and the correlation between Ξ1 and Ξ2 (.19, not significant) incorrectly. 
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Figure 3: Consistent Estimation with a Simultaneous Equation (Mediatory) Model  

 

Notes:  

1. Figure 3A: β1 is inconsistent because x correlates with e.  

2. Figure 3B: β1 is consistent because z and d, the instruments (which are truly exogenous), do not 

correlate with e (or u for that matter). 

3.  Figure 3C: β1 is inconsistent because the common cause of x and y, which is reflected in the 

correlation between e and u, is not estimated (i.e., this is akin to estimating the system of 

equations using OLS, which ignores cross-equation correlations among disturbances). 

x y

e

β1 = inconsistent

ψ1 ≠ 0

Figure 3A

x y

e

β1 = consistent

ψ1 ≠ 0 (and estimated)

Figure 3B

z

u

x y

e

β1 = inconsistent

x is endogenous, but ψ1 constrained to 0 (i.e,. not estimated)

Figure 3C

u

q

z

q



84 
 

Figure 4: Recovering Causal Estimates in a Structural Equation Model with Instrumental Variables 
 
 

 
 

Panel A: Correct Model 

 
 

Panel B: Correct Model 
   

Ξ1

x1
ε1

x2
ε2

x3
ε3

x4
ε4

Ξ2

x5
ε5

x6
ε6

x7
ε7

x8
ε8

Measured
Common

Cause

.26 -.58

.66

.94 .95 .94 .94 .96 .96 .96 .96

y
.56

z2z1

.68 .57

.77

.00

ζ3

.00 .00

ζ1 ζ2

.00.00

.00

Ξ1

x1
ε1

x2
ε2

x3
ε3

x4
ε4

Ξ2

x5
ε5

x6
ε6

x7
ε7

x8
ε8

.67

.94 .95 .94 .95 .96 .96 .96 .96

y
.54

z2z1

.68 .57

-.25

ζ3

.32 -.64

ζ1 ζ2

.00



85 
 

 
 

Panel C: Correct Model 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Panel D: Incorrect Model 
 
Notes: 
 

1. Panel A: This is the correctly specified model including the common cause and two instrumental variables z1 and z2; note, the 

instruments and the common cause do not correlated. Thus, omitting the common cause or z1 and z2 will not bias estimates. 

2. Panel B: Despite omitting the common cause, this model is correctly specified given that the endogeneity bias is purged with 

instruments z1 and z2 

3. Panel C: This model is also correct; because the common cause does not correlate with the instruments z1 and z2. 

4. This model is incorrect, and estimates are biased because the latent variables Ξ1 and Ξ2 correlate with ζ3.  
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Figure 5: Similarity Between Randomized Experiment and Regression Discontinuity 

 

 

Figure 5a: Estimating Causal Effect Using a Randomized Experiment 

 

 

 

Figure 5b: Estimating the Causal Effect Using Regression Discontinuity 
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Figure 6: Estimating Causal Effect Using Differences-in-Differences  
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Figure 7: Summary of Coded Validity Threats by Journal 
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Appendix A: Coded Studies and Results 

 Coding criteriaa   

Study coded 1a 1b 1c 1d 2a 2b 2c 3 4 5 6a 6b 7a 7b Total Total* 

Panel A: All journals (n = 110)   

Summary statistics (by criterion)                 
% of 0 (irrelevant) 19.1 20.0 86.4 20.9 97.3 95.5 41.8 25.5 5.5 16.4 5.5 21.8 68.2 90.0 43.83  
% of 1 (relevant not corrected) 80.9 64.5 12.7 76.4 1.8 4.5 28.2 73.6 66.4 64.5 0.9 4.5 31.8 10.0 37.21 66.24 
% of 2 (relevant, unknown if corrected) 0.0 4.5 0.9 0.0 0.0 0.0 10.9 0.0 12.7 1.8 87.3 71.8 0.0 0.0 13.57 24.16 
% of 3 (relevant, corrected) 0.0 10.9 0.0 2.7 0.9 0.0 19.1 0.9 15.5 17.3 6.4 1.8 0.0 0.0 5.39 9.60 

Summary statistics excluding % of 0                 
Relevancy percentage (100%-% of 0) 80.9 80.0 13.6 79.1 2.7 4.5 58.2 74.5 94.5 83.6 94.5 78.2 31.8 10.0   
% of 1 (relevant not corrected) 100.0 80.7 93.3 96.6 66.7 100.0 48.4 98.8 70.2 77.2 1.0 5.8 100.0 100.0   
% of 2 (relevant, unknown if corrected) 0.0 5.7 6.7 0.0 0.0 0.0 18.8 0.0 13.5 2.2 92.3 91.9 0.0 0.0   
% of 3 (relevant, corrected) 0.0 13.6 0.0 3.4 33.3 0.0 32.8 1.2 16.3 20.7 6.7 2.3 0.0 0.0   

Panel B: Academy of Management Journal (n = 9)   

Avolio, Howell, et al. (1999)  1 1 0 1 0 1 0 1 1 1 3 2 1 0   
Waldman, Ramirez, et al. (2001) 1 1 0 3 0 0 1 3 1 1 2 2 0 0   
Shin & Zhou (2003) 1 1 1 1 0 0 0 1 1 1 2 2 1 0   
Wang, Law , et al. (2005) 1 1 1 1 0 0 1 1 3 1 2 2 1 1   
Rubin, Munz , et al. (2005) 1 1 0 0 0 0 0 0 1 0 0 2 0 0   
Agle, Nagarajan , et al. (2006) 0 1 0 3 0 0 1 0 1 0 2 2 0 0   
Sparrowe, Soetjipto , et al. (2006) 0 1 1 1 0 0 0 1 1 1 2 2 0 0   
Srivastava, Bartol , et al. (2006) 1 1 0 1 0 0 1 1 1 1 2 2 1 1   
Ling, Simsek , et al (2008) 1 1 0 1 0 0 3 1 3 3 2 2 1 1   

Summary statistics (by criterion)                 
% of 0 (irrelevant) 22.2 0.0 66.7 11.1 100.0 88.9 44.4 22.2 0.0 22.2 11.1 0.0 44.4 66.7 35.71  
% of 1 (relevant not corrected) 77.8 100.0 33.3 66.7 0.0 11.1 44.4 66.7 77.8 66.7 0.0 0.0 55.6 33.3 45.24 70.37 
% of 2 (relevant, unknown if corrected) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 77.8 100.0 0.0 0.0 12.70 19.75 
% of 3 (relevant, corrected) 0.0 0.0 0.0 22.2 0.0 0.0 11.1 11.1 22.2 11.1 11.1 0.0 0.0 0.0 6.35 9.88 

Panel C: Journal of Applied Psychology (n = 29)   

Hofmann & Morgeson (1999) 1 0 0 1 0 0 0 1 3 1 2 0 1 1   
Davidson & Eden (2000) † 1 0 0 0 3 0 0 0 3 1 2 0 0 0   
Liden, Wayne et al.  (2000) 1 3 0 1 0 0 0 1 3 1 2 2 1 0   
Judge & Bono (2000) 1 0 0 1 0 0 1 1 3 1 2 0 0 0   
Lam & Schaubroeck (2000) † 1 0 0 0 1 0 0 0 1 0 2 0 0 0   
Martell & DeSmet (2001) 1 0 0 0 0 1 1 0 1 0 2 0 0 0   
Turner, Barling, et al. (2002) 1 3 0 0 0 0 2 0 3 0 2 2 0 0   
Sherony & Green (2002) 1 3 0 1 0 0 3 1 1 1 2 2 0 0   
Chen & Bliese (2002) 1 1 1 1 0 0 2 1 1 1 2 2 1 0   
Eisenberger, Stinglhamber, et al. (2002) 1 1 0 0 0 0 1 0 1 1 2 2 0 0   
de Cremer & van Knippenberg (2002) 1 0 0 1 0 0 1 1 1 1 2 0 0 0   
Offermann & Malamut (2002) 1 1 0 1 0 0 2 1 1 1 2 0 1 0   
Hofmann, Morgeson et al. (2003) 1 1 1 1 0 0 3 1 1 1 2 2 0 0   
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Baum & Locke (2004) 1 3 0 1 0 0 3 1 3 1 2 2 1 1   
Lim & Ployhart (2004) 1 0 0 1 0 0 0 1 1 3 2 0 1 0   
Dineen, Lewicki et al. (2006) 1 1 1 1 0 0 0 1 1 1 2 2 0 0   
Judge, LePine et al. (2006) 0 1 0 1 0 0 0 1 1 1 2 2 0 0   
Aryee, Chen, et al. (2007) 1 1 0 1 0 0 0 1 1 1 2 2 1 1   
Tangirala, Green, et al. (2007) 1 1 1 1 0 0 3 1 1 3 2 2 0 0   
Liao & Chuang (2007) 0 1 1 1 0 0 0 1 1 3 2 3 1 0   
den Hartog, de Hoogh, et al. (2007) 1 3 0 1 0 0 3 1 1 1 2 2 1 0   
Mitchell & Ambrose (2007) 1 0 0 1 0 0 2 1 1 1 2 0 0 0   
Kamdar & Van Dyne (2007) 1 1 0 1 0 0 0 1 1 3 2 2 0 0   
Furst & Cable (2008) 1 1 0 1 0 0 0 1 1 1 2 2 0 0   
Ng, Ang, et al. (2008) 1 1 0 1 0 0 0 1 1 1 2 2 1 0   
Ozer (2008) 1 1 0 1 0 0 3 1 2 1 2 2 0 0   
Henderson, Wayne, et al. (2008) 0 1 1 1 0 0 1 1 1 1 2 2 1 0   
Hinkin & Schriesheim (2008) 1 1 0 1 0 0 0 1 2 1 2 2 0 0   
Eisenbeiss, van Knippenberg, et al. (2008) 1 1 0 1 0 0 0 1 1 1 2 2 1 0   

Summary statistics (by criterion)                 
% of 0 (irrelevant) 10.3 27.6 79.3 17.2 93.1 96.6 48.3 17.2 0.0 10.3 0.0 31.0 58.6 89.7 41.38  
% of 1 (relevant not corrected) 89.7 55.2 20.7 82.8 3.4 3.4 17.2 82.8 72.4 75.9 0.0 0.0 41.4 10.3 39.66 67.65 
% of 2 (relevant, unknown if corrected) 0.0 0.0 0.0 0.0 0.0 0.0 13.8 0.0 6.9 0.0 100.0 65.5 0.0 0.0 13.30 22.69 
% of 3 (relevant, corrected) 0.0 17.2 0.0 0.0 3.4 0.0 20.7 0.0 20.7 13.8 0.0 3.4 0.0 0.0 5.67 9.66 

Panel D: Journal of Management (n = 4)   

Ahearn, Ferris, et al. (2004) 1 0 0 1 0 0 1 1 1 0 2 0 0 0   
Elenkov & Manev (2005) 1 1 2 0 0 0 1 0 1 3 2 2 0 0   
Tepper, Uhl-Bien et al. (2006) 0 1 0 0 1 1 1 0 1 1 2 2 0 0   
Walumbwa, Avolio, et al. (2008) 1 1 0 1 0 0 0 1 3 3 2 2 0 0   

Summary statistics                 
% of 0 (irrelevant) 25.0 25.0 75.0 50.0 75.0 75.0 25.0 50.0 0.0 25.0 0.0 25.0 100.0 100.0 46.43  
% of 1 (relevant not corrected) 75.0 75.0 0.0 50.0 25.0 25.0 75.0 50.0 75.0 25.0 0.0 0.0 0.0 0.0 33.93 63.33 
% of 2 (relevant, unknown if corrected) 0.0 0.0 25.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 75.0 0.0 0.0 14.29 26.67 
% of 3 (relevant, corrected) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.0 50.0 0.0 0.0 0.0 0.0 5.36 10.00 

Panel E: Journal of Organizational Behavior (n = 16)   

Yukl & Fu (1999) 0 1 0 1 0 0 3 1 1 1 2 2 0 0   
McNeese-Smith (1999) 1 1 0 1 0 0 1 1 1 1 1 1 0 0   
Wayne, Liden, et al. (1999) 0 1 0 1 0 0 1 1 1 1 2 2 0 0   
Crant & Bateman (2000) 1 0 0 0 0 0 3 0 1 1 2 2 0 0   
Cogliser & Schriesheim (2000) 0 0 0 1 0 0 1 1 1 1 2 0 0 0   
Conger, Kanungo, et al. (2000) 0 2 0 1 0 0 1 1 1 1 2 2 1 1   
Andrews & Kacmar (2001) 1 1 0 1 0 0 2 1 3 1 2 1 0 0   
Sparks & Schenk (2001) 1 0 0 1 0 0 3 1 3 1 2 0 0 0   
Sagie, Zaidman, et al. (2002) 0 1 0 1 0 0 0 1 2 1 2 2 1 0   
Cable & Judge (2003) 0 3 0 1 0 0 1 1 2 1 2 2 0 0   
Adebayo & Udegbe (2004) 1 0 0 0 0 0 0 0 0 0 0 0 0 0   
Spreitzer, Perttula, et al. (2005) 0 3 0 1 0 0 1 1 0 3 2 2 0 0   
Harris, Kacmar, et al. (2005) 0 1 0 1 0 0 0 1 1 3 2 2 0 0   
de Hoogh, den Hartog, et al. (2005) 1 0 0 0 0 0 1 0 1 3 2 0 0 0   
Liden, Erdogan, et al. (2006) 1 1 1 1 0 0 1 1 2 2 2 2 0 0   
Major, Fletcher, et al. (2008) 0 3 0 1 0 0 1 1 1 1 2 2 0 0   
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Summary statistics                 
% of 0 (irrelevant) 56.3 31.3 93.8 18.8 100.0 100.0 18.8 18.8 12.5 6.3 6.3 25.0 87.5 93.8 47.77  
% of 1 (relevant not corrected) 43.8 43.8 6.3 81.3 0.0 0.0 56.3 81.3 56.3 68.8 6.3 12.5 12.5 6.3 33.93 64.96 
% of 2 (relevant, unknown if corrected) 0.0 6.3 0.0 0.0 0.0 0.0 6.3 0.0 18.8 6.3 87.5 62.5 0.0 0.0 13.39 25.64 
% of 3 (relevant, corrected) 0.0 18.8 0.0 0.0 0.0 0.0 18.8 0.0 12.5 18.8 0.0 0.0 0.0 0.0 4.91 9.40 

Panel F: The Leadership Quarterly (n = 42)   

Schneider, Paul, et al. (1999) 1 1 0 1 0 0 1 1 1 1 2 2 0 0   
Connelly, Gilbert, et al. (2000) 1 1 0 1 0 0 0 1 1 3 2 2 1 0   
Mumford, Zaccaro, et al. (2000) 1 1 0 0 0 0 0 0 1 1 0 0 0 0   
Zacharatos, Barling, et al. (2000) 1 1 0 1 0 0 1 1 3 1 2 1 1 1   
Hooijberg & Choi (2000) 1 1 0 1 0 0 1 1 3 1 2 1 0 0   
Murry, Sivasubramaniam, et al. (2001) 1 1 0 1 0 0 1 1 2 1 2 2 1 0   
Thomas, Dickson, et al. (2001) 1 1 1 1 0 0 3 0 1 1 2 2 1 0   
Deluga (2001) 1 1 0 0 0 0 0 0 1 0 2 2 0 0   
Shipper & Davy (2002) 1 2 0 1 0 0 2 1 2 1 2 2 1 1   
de Vries, Roe, et al. (2002) 1 1 0 1 0 0 1 1 1 1 2 2 0 0   
Sosik, Avolio, et al. (2002) 1 1 0 1 0 0 1 1 2 3 3 2 1 0   
Wong & Law (2002) 1 1 0 1 0 0 0 1 1 1 2 2 0 0   
Schneider, Ehrhart, et al. (2002) 1 1 0 1 0 0 1 1 1 1 2 2 0 0   
Vecchio & Boatwright (2002) 1 3 0 0 0 0 3 0 0 0 2 2 0 0   
McColl-Kennedy & Anderson (2002) 1 2 0 1 0 0 0 1 3 1 2 2 1 1   
Xin & Pelled (2003) 0 1 0 1 0 0 2 1 1 3 2 2 0 0   
Hedlund, Forsythe, et al. (2003) 0 1 0 1 0 0 0 1 1 0 2 2 0 0   
Antonakis, J., Avolio, et al. (2003) 1 1 0 0 0 1 1 0 3 0 0 0 0 0   
Dvir & Shamir, 2003) 0 0 0 1 0 0 0 1 1 3 2 0 0 0   
West, Borrill, et al. (2003) 1 1 0 1 0 0 0 1 1 1 2 2 1 0   
Krause (2004) 1 1 0 1 0 0 3 1 1 1 2 2 0 0   
Howell & Boies (2004) 1 1 0 1 0 1 1 1 1 1 3 2 0 0   
Bligh, Kohles, et al. (2004) 1 0 0 1 0 0 0 1 1 0 0 0 0 0   
Hirst, Mann, et al. (2004) 1 1 0 1 0 0 3 1 1 3 2 2 1 0   
Waldman, Javidan, et al. (2004) 1 0 0 0 0 0 0 0 1 1 2 2 1 0   
Tosi, Misangyi, et al. (2004) 1 0 0 0 0 0 3 0 1 0 3 0 0 0   
Whittington, Goodwin, et al. (2004) 1 1 0 1 0 0 3 1 2 1 2 1 0 0   
de Hoogh, den Hartog, et al. (2005) 1 0 0 3 0 0 3 0 1 3 2 2 1 0   
Rowe, Cannella, et al. (2005) 1 3 0 0 0 0 0 0 0 0 3 2 0 0   
Howell, Neufeld, et al. (2005) 1 1 0 1 0 0 0 1 1 3 3 2 0 0   
Epitropaki & Martin (2005) 0 1 0 1 0 0 0 1 1 1 2 2 0 0   
Arvey, Rotundo, et al. (2006) 0 0 0 0 0 0 2 0 0 3 0 0 0 0   
Ensley, Hmieleski, et al. (2006) 1 1 0 1 0 0 2 1 1 1 2 2 0 0   
Hiller, Day, et al. (2006) 1 1 0 1 0 0 2 1 1 1 2 2 0 0   
Paunonen, Lonnqvist, et al. (2006) 1 1 0 0 0 0 0 0 1 1 2 2 0 0   
Carmeli & Schaubroeck (2007) 1 1 0 1 0 0 3 1 1 1 2 2 1 0   
Schaubroeck, Walumbwa, et al. (2007) 1 1 1 1 0 0 0 1 1 1 2 2 0 0   
Harvey, Stoner, et al. (2007) 1 1 0 1 0 0 1 1 1 1 2 2 0 0   
Cole & Bedeian (2007) 1 1 1 1 0 0 0 1 1 1 2 2 0 0   
Luria (2008) 1 1 0 1 0 0 0 1 1 1 2 2 0 0   
Ligon, Hunter, et al. (2008) 1 1 0 0 0 0 0 0 1 0 2 0 0 0   
Campbell, Ward, et al. (2008) 1 1 0 1 0 0 0 1 1 1 2 2 0 0   

Summary statistics                 
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% of 0 (irrelevant) 11.9 14.3 92.9 23.8 100.0 95.2 45.2 28.6 7.1 19.0 9.5 16.7 71.4 92.9 44.90  
% of 1 (relevant not corrected) 88.1 76.2 7.1 73.8 0.0 4.8 23.8 71.4 73.8 61.9 0.0 7.1 28.6 7.1 37.41 67.90 
% of 2 (relevant, unknown if corrected) 0.0 4.8 0.0 0.0 0.0 0.0 11.9 0.0 9.5 0.0 78.6 76.2 0.0 0.0 12.93 23.46 
% of 3 (relevant, corrected) 0.0 4.8 0.0 2.4 0.0 0.0 19.0 0.0 9.5 19.0 11.9 0.0 0.0 0.0 4.76 8.64 

Panel G: Organizational Behavior and Human Decision Processes (n = 4)   

de Cremer & van Knippenberg (2004) 1 2 0 1 0 0 0 0 2 1 2 2 0 0   
Brown, Trevino, et al. (2005) 1 2 0 1 0 0 0 1 3 3 2 2 0 0   
Martinko, Moss, et al. (2007) 1 3 0 1 0 0 0 1 1 1 2 0 1 0   
Giessner & van Knippenberg (2008) 1 0 0 1 0 0 2 1 2 1 2 0 1 0   

Summary statistics                 
% of 0 (irrelevant) 0.0 25.0 100.0 0.0 100.0 100.0 75.0 25.0 0.0 0.0 0.0 50.0 50.0 100.0 44.64  
% of 1 (relevant not corrected) 100.0 0.0 0.0 100.0 0.0 0.0 0.0 75.0 25.0 75.0 0.0 0.0 50.0 0.0 30.36 54.84 
% of 2 (relevant, unknown if corrected) 0.0 50.0 0.0 0.0 0.0 0.0 25.0 0.0 50.0 0.0 100.0 50.0 0.0 0.0 19.64 35.48 
% of 3 (relevant, corrected) 0.0 25.0 0.0 0.0 0.0 0.0 0.0 0.0 25.0 25.0 0.0 0.0 0.0 0.0 5.36 9.68 

Panel H: Personnel Psychology (n = 6)   

Tierney, Farmer, et al. (1999) 1 3 0 1 0 0 3 1 2 2 3 3 0 0   
Ployhart, Lim, et al. (2001) 1 1 0 0 0 0 0 0 2 0 2 2 0 0   
Ehrhart (2004) 1 1 0 1 0 0 3 1 3 1 2 2 1 1   
Day, Sin, et al. (2004) 0 1 1 0 0 0 0 0 0 0 2 2 0 0   
Walker, Smither, et al. (2008) 1 0 0 1 0 0 2 0 2 0 2 0 0 0   
Walumbwa, Avolio, et al. (2008) 1 1 0 1 0 0 3 1 1 1 2 2 1 0   

Summary statistics                 
% of 0 (irrelevant) 16.7 16.7 83.3 33.3 100.0 100.0 33.3 50.0 16.7 50.0 0.0 16.7 66.7 83.3 47.62  
% of 1 (relevant not corrected) 83.3 66.7 16.7 66.7 0.0 0.0 0.0 50.0 16.7 33.3 0.0 0.0 33.3 16.7 27.38 52.27 
% of 2 (relevant, unknown if corrected) 0.0 0.0 0.0 0.0 0.0 0.0 16.7 0.0 50.0 16.7 83.3 66.7 0.0 0.0 16.67 31.82 
% of 3 (relevant, corrected) 0.0 16.7 0.0 0.0 0.0 0.0 50.0 0.0 16.7 0.0 16.7 16.7 0.0 0.0 8.33 15.91 

Note: †denote a field experiment; *total percentage less coding category 0; to save space we only include the names of the first two co-authors and add “et al.” 
when there are more than two authors. 

 
a We coded for the following criteria:  

1. Omitted variables:  (a) omitting a regressor  
 (b)  omitting fixed effects 
 (c)   using random-effects without justification  
 (d)   in all other cases, independent variables not exogenous  
  
2. Omitted selection:  (a)  comparing a treatment group to non-equivalent groups  
 (b) comparing entities that are grouped nominally where selection to group is endogenous   
 (c)  sample is self-selected or is non-representative 
 
3. Simultaneity:  (a) reverse causality  
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4. Measurement error:  (a) not correcting for imperfectly-measured independent variables  
 
5. Common-methods variance: (a) independent and dependent variables that are correlated are gathered from the same source 
 
6. Inconsistent inference:  (a)  using normal standard errors in the potential presence of heteroscedastic residuals  
 (b)  not using cluster-robust standard errors in panel data 
 
7. Model misspecification:  (a) not correlating disturbances of potentially endogenous regressors in mediation models (and not testing for endogeneity 

using a Hausman test or augmented regression),  
 (b)  using a full information estimator without comparing estimates to a limited information estimator.  

 
The above criteria were coded as follows:  

0 = Irrelevant criterion 
1 = Relevant criterion for which the authors did not correct 
2 = Relevant criterion for which we were unable to determine whether it was corrected by the authors 
3 = Relevant criterion which the authors addressed. 


