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Abstract. This study demonstrates, for the first time, how 

Bayesian hierarchical modeling can be applied to yield novel 
insights into the long-term temporal dynamics of subjective well-
being (SWB). Several models were proposed and examined using 
Bayesian methods. The models were assessed using a sample of 
Australian adults (n = 1,081) who provided annual SWB scores on 
between 5 and 10 occasions. The best fitting models involved a 
probit transformation, allowed error variance to vary across 
participants, and did not include a lag parameter. Including a 
random linear and quadratic effect resulted in only a small 
improvement over the intercept only model. Examination of 
individual-level fits suggested that most participants were stable 
with a small subset exhibiting patterns of systematic change.  
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longitudinal, Bayesian hierarchical models, set-point theory 

1.   Introduction 
Researchers have long been interested in the long-term 

stability and change of subjective well-being (SWB). Test-retest 
correlations from longitudinal data (Schimmack & Oishi, 2005) 
and twin studies (Lykken & Tellegen, 1996), together with the 
generally small long-term effect of major life events, all attest to 
the stability of SWB over time. However, test-retest correlations 
do decline as test-retest intervals increase (Schimmack & Oishi, 
2005), and more recent work suggests that some life events lead to 
long-term changes in SWB for some people. To explain these 
temporal dynamics, several theoretical models of SWB have been 
proposed (e.g., Brickman & Campbell, 1971; Cummins, 2015; 
Easterlin, 2003; Headey & Wearing, 1989). Underpinning the 
evidence for these theoretical models are various statistical 
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approaches that have been used to analyze longitudinal datasets 
(e.g., Charles, Reynolds, & Gatz, 2001; Easterlin, 2003; Ehrhardt, 
Saris, & Veenhoven, 2000; Headey & Wearing, 1989; Helliwell, 
2003; Lucas & Donnellan, 2007; Mroczek & Spiro III, 2005; Orth, 
Trzesniewski, & Robins, 2010). In particular, various hierarchical 
modeling and latent variable approaches have provided insights 
into the nature of SWB dynamics. 

While these statistical models have provided useful 
insights, they also have their limitations. In particular, they have 
tended to rely on standard distributional assumptions and used a 
limited set of model comparison tools. More recently, researchers 
in a wide range of fields, including psychology, have begun to 
explore the potential of the Bayesian approach to model estimation 
and comparison (e.g., Anglim & Wynton, 2015; Averell & 
Heathcote, 2011; Elliott, Gallo, Ten Have, Bogner, & Katz, 2005; 
Lee, 2008; Nikodijevic, Moulding, Anglim, Aardema, & 
Nedeljkovic, 2015). Software such as BUGS, Jags, and Stan have 
made flexible Bayesian model specification more accessible to 
applied quantitative researchers by reducing the need for the user 
to specify an algorithm for parameter estimation. Furthermore, the 
Bayesian approach offers a range of powerful model comparison 
tools which include model recovery, measures of fit with advanced 
penalties for model complexity, and checks on whether models 
recover theoretically important features of the data (Gelman et al., 
2013). However, despite their increased accessibility, such models 
have not yet been applied to longitudinal SWB research.  

Thus, the purpose of this paper is to apply the Bayesian 
approach in order to parsimoniously model the features of long-
term change in SWB. We propose several alternative models and 
show how a Bayesian approach to estimation and model 
comparison provides novel insights into the temporal dynamics of 
SWB. We estimate models and apply this approach to 10 years of 
SWB data from a large representative sample of Australian adults. 
1.1.  Subjective Well-Being (SWB): An Overview 

Subjective well-being (SWB) commonly refers to a broad 
range of emotional reactions and cognitive evaluations that 
represent an individual's assessment of their overall life quality 
(Diener, Suh, Lucas, & Smith, 1999). When measured either by a 
single global life satisfaction item or by a composite scale based on 
satisfaction with multiple domains of life (e.g., the Personal 
Wellbeing Index, International Wellbeing Group, 2013), several 
robust findings have particular relevance to the current 
investigation. First, most people report feeling positive about their 
lives most of the time (Cummins, 1998, 2003, 2013). Second, 
positive mood provides an explanation for this stability with the 
combination of happiness, contentment, and alertness accounting 
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for up to 80% of SWB variance (Blore, Stokes, Mellor, Firth, & 
Cummins, 2011). Third, from the perspective of homeostatic 
theory, individual differences in this positive affect forms the basis 
of an affective set-point (Tomyn & Cummins, 2011), and when 
emotions create a level of SWB different from set-point, a 
homeostatic system is activated with responsibility for returning 
SWB to set-point (Cummins, Li, Wooden, & Stokes, 2014). 

An essential feature of SWB that can be understood as a 
consequence of the above is that it tends to be fairly stable over 
time. Hartmann (1934) provided initial evidence of this, reporting 
a one-month test–retest correlation of .70 in self-reported general 
happiness among college students. By the 1970s it was clear that 
considerable levels of stability in SWB extend over several years 
(Andrews & Withey, 1976; Palmore & Kivett, 1977). A meta-
analysis by Schimmack and Oishi (2005) obtained average test-
retest correlations for multi-item scales at 1 year of around r = .60, 
and at 10 years of around r = .35, but estimates based on more than 
5 years were based on small sample sizes. Supporting a partial 
genetic basis for this stability, Lykken and Tellegen (1996) found 
much larger SWB intraclass correlations for monozygotic twins 
(r=.44) than for dizygotic twins (r=.08). Finally, many major life 
events appear to have only a temporary effect on SWB (Headey & 
Wearing, 1989; Suh, Diener, & Fujita, 1996). 

Adding to the understanding of these trends, several strands 
of evidence suggest that SWB measurement for a given individual 
is more than just sampling from a stationary distribution. Test-
retest correlations do tend to decline somewhat over time and even 
over one year intervals such correlations are typically less than 
internal consistency measures of reliability. Furthermore, 
covariance models that seek to partial out trait and auto-regressive 
variance have estimated that auto-regressive factors explain almost 
as much variance as traits (Lucas & Donnellan, 2007). Additional 
auto-regressive variance may be explained by extreme life events, 
like approaching death (Gerstorf et al., 2008), marital transition 
(Lucas, Clark, Georgellis, & Diener, 2003), and acquiring a 
disability (Lucas, 2007). Finally, studies of overall age effects do 
suggest that small but meaningful changes in SWB occur over the 
life course (e.g. Mastekaasa & Moum, 1984). 

Despite the demonstration of such small changes, it is the 
overall stability of SWB over time that has led researchers to 
propose various stabilizing mechanisms (Cummins, 1995; 
Cummins, Eckersley, Pallant, Van Vugt, & Misajon, 2003). For 
example, Brickman and Campbell (1971) proposed that people 
adjust expectations to changing circumstances while Headey and 
Wearing (1989; 1992) proposed that stable personality traits 
systematically influence the experience and perception of life 
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events which, in turn, influences SWB. Finally,  Cummins (2015) 
proposed that HPMood set-points are the key to SWB stability, 
with systematic change in SWB is caused by homeostatic failure, 
when an individual’s resources are insufficient to effectively 
counter the level of experienced challenge. Such failure, however, 
is usually an acute event, with SWB normally recovering to the 
level of its set point. 
1.2.  Longitudinal Statistical Models of SWB 

Researchers have applied a range of statistical models to 
study the long-term temporal dynamics of SWB (for a review, see 
Eid & Kutscher, 2014). Such models almost always included a 
random intercept and generally adopt either a latent growth curve 
(e.g., Helson, Jones, & Kwan, 2002; Orth et al., 2010) or a 
hierarchical modeling approach (e.g., Lucas & Donnellan, 2011; 
Mroczek & Spiro III, 2005). Stochastic change is typically 
modeled using a lag parameter, whereas systematic change is 
commonly modeled using random linear and quadratic effects, 
although discrete change and growth-mixture models have also 
been employed (Mancini, Bonanno, & Clark, 2011; Wang, 2007). 
In particular, trait-state-error models (Kenny & Zautra, 2001) 
include parameters representing stable and lag components, as well 
as a state component which includes both occasion specific 
variance and measurement error (for a review, see Cole, Martin, & 
Steiger, 2005). 

In contrast to latent growth curve models, hierarchical 
models have the benefit of easily incorporating unequal numbers 
of observations per participants, as well as placing the emphasis on 
predicting the criterion variable. A range of other approaches 
include iterative procedures to explore set points (Cummins et al., 
2014), models designed to capture changes in test-retest structure 
over time (Fraley & Roberts, 2005), and models of momentary 
measurement error and short to medium term response biases 
Ehrhardt et al. (2000).  

Despite the popularity and insights gained from 
hierarchical and latent growth curve approaches, they both have 
several limitations. First, many such models are incorporated into 
software which makes assumptions that are both difficult to 
modify and inappropriate for SWB data. For example, individuals 
differ in within-person variability, but standard models assume that 
variability is constant over individuals. Second, the data generating 
process implied by such models is rarely evaluated in terms of 
whether it captures theoretically relevant features of longitudinal 
SWB data, as described earlier. Such features also relate to degree 
of change, distributions of individual scores, and distribution of 
person-level means. Third, models are only sometimes compared, 
which in turn raises a number of challenges related to evaluating 
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model complexity. To overcome these limitations, a Bayesian data 
analytic approach provides a promising framework for refining 
longitudinal models of SWB.  
1.3.  Bayesian Hierarchical Modeling 

Bayesian hierarchical methods are increasingly applied in 
psychology to model repeated measures data (e.g., Anglim & 
Wynton, 2015; Averell & Heathcote, 2011; Lee, 2008; Nikodijevic 
et al., 2015). Adoption of Bayesian methods has been aided by 
increased computational power, refinement of algorithms, 
accessible software (e.g.,WingBugs, JAGS, and Stan) and 
textbooks relevant to a general applied quantitative audience (e.g., 
Gelman et al., 2013; Gelman & Hill, 2007; Kruschke, 2010). 
While Elliott et al. (2005) performed a Bayesian analysis of short 
term mood data, we are not aware of any attempt to apply 
Bayesian hierarchical methods to the study of long-term temporal 
dynamics of SWB. 

The Bayesian hierarchical approach incorporates all the 
advantages of standard hierarchical modeling, but also offers 
several additional benefits. First, it allows substantial flexibility in 
defining the probability model proposed to underlie the data 
generating process. For example, the distribution of residuals is not 
required to be constant or normal. Similarly, the distribution of 
person-level parameters is not required to be normal.  Second, the 
Bayesian approach provides a useful set of model evaluation tools. 
In particular, posterior predictive checks provide a powerful way 
of defining theoretical properties of interest and assessing whether 
a candidate model adequately recovers this feature. This moves 
beyond simple measures of fit, and seeks to assess the model on a 
range of theoretically important features using posterior predictive 
checks (for an overview, see Gelman, Meng, & Stern, 1996; 
Kruschke, 2013). The checks involve (a) defining a set of features 
of the sample data that a model should capture; (b) simulating data 
from the model; and (c) evaluating the model based on whether it 
produces simulated data that capture the features of the sample 
data.  

While general measures of fit are typically based on the 
global likelihood of the model, often with a penalty, posterior 
predictive checks allow more weight to be assigned to particular 
features when evaluating model performance. Such checks also 
can provide greater guidance regarding how the model could be 
improved. They also highlight the relative strengths of different 
models. For example, posterior predictive checks have been 
applied to models of SAT scores (Sinharay & Stern, 2003) and 
learning (Anglim & Wynton, 2015). In the light of this 
information, we now consider what features of longitudinal SWB 
data that models should aim to capture.  
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1.4.  Features of the Temporal Dynamics of SWB 
There are several important temporal dynamics of SWB 

that a comprehensive model should capture. First, there is the 
distribution of person-level means. While people normally have 
positive levels of SWB, there is a general negative skew. Second, 
there is the distribution of person-level standard deviations. That 
is, people differ in the extent to which they fluctuate around their 
set-point over time (Cummins et al., 2014) and thus individual 
SWB levels differ from occasion to occasion. This is a neglected 
feature of emotional dynamics in many statistical models.  

Additional consideration needs to be given to the 
relationship between mean levels of SWB and the standard 
deviation. This particularly applies to the degree to which lower 
standard deviations are caused by scale range restriction, whereby 
people with means closer to scale end points show less variability. 
Third, there is within-person change in terms of what we label 
stochastic and systematic change. Stochastic change refers to 
random change from a previous state, and is typically represented 
by some form of lag parameter. Systematic change refers to long-
term trends that are commonly represented using linear or 
quadratic models, although many functional forms are possible. 
Finally, there is the distribution of observation-level residuals. 
Such residuals are likely to be negatively skewed, showing that 
while people are generally positive, they may also experience 
chronic lower levels of SWB caused by homeostatic failure.  
1.5.  The Present Study 

The primary aim of the present study is to demonstrate how 
the Bayesian approach can be used as a framework to refine and 
evaluate models of the long-term temporal dynamics of SWB. 
Illustrating the flexibility of the Bayesian approach, we propose 
several innovations to existing models of SWB. The primary 
innovations are to (a) allow within-person error variance to vary 
between people; (b) include both lag and polynomial trend effects 
in one model; and (c) include a probit transformation of SWB. The 
focus of analyses is on comparing the16 models that result by 
crossing four model features related to within-person error 
variance (fixed or random), lag effect (present or absent), 
polynomial effects (random linear, and quadratic excluded or 
included), and transformation (probit transformed or 
untransformed).  

These models were applied to data from 10 waves of 
annually collected longitudinal SWB data. The sample size, 
number of waves, use of a multi-item scale to measure SWB, and 
use of a representative sample with a broad cross-section of ages, 
made the longitudinal dataset well-suited to evaluate the competing 
models. Traditional models have often incorporated polynomial 
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trends or lag effects but almost never incorporated random error or 
formally evaluated implications of transformations. Thus, we used 
comparisons of model fits and posterior predictive checks to assess 
the degree to which random within-person error and probit 
transformations resulted in superior model fit and whether these 
modifications altered the need for lag or polynomial effects. We 
predicted that using a probit transformation and allowing within-
person error variance to vary between people would substantially 
improve model fit. The need for lag or polynomial effects was 
more of an open question. Whether such parameters are required to 
parsimoniously represent the temporal dynamics of SWB will be a 
test-case for the idea of SWB set points. 

2.   Method 
2.1.  Participants and Procedure 

Participants were drawn from the Australian Unity 
Longitudinal Wellbeing Study. This national survey has been used 
to assess the subjective well-being (SWB) of the Australian 
population since 2001 and by the end of 2013 a total of 30 surveys 
had been conducted, each of 2,000 people. Participants were 
initially recruited through telephone numbers, randomly selected 
from proportional sampling of the Australian population, based on 
50 geographic areas. At the end of their telephone interview, 
participants were asked if they would be willing to participate in a 
longitudinal written survey. Those who agreed joined the panel, 
along with others who remained in the longitudinal study from the 
previous waves. Participants in the longitudinal study completed 
each wave of measurement at approximately annual intervals. For 
the present study, participants were retained if they provided at 
least five waves of data and their data passed several validity 
checks including consistent age and gender reporting across waves. 
The final sample involved 1,081 participants (57% female) who 
completed between 5 and 10 waves (M = 6.8, SD = 1.6) for a total 
of 7,317 observations. Age at first wave of testing ranged from 
18.3 to 87.6 years (M= 58.1, SD = 12.9). Based on the Australian 
Bureau of Statistics in 2004 (midpoint of first waves), mean age of 
the adults over 18 in Australian population was 45.7 (SD = 17.9) 
(Australian Bureau of Statistics, 2014). Thus the sample was 
somewhat older than the Australian adult population and, in 
particular, had few participants under 30.   

In general, retained participants with five or more 
observations reported slightly higher SWB with a mean wave 
SWB score of 7.50 out of 10 compared to 7.40 out of 10 for 
participants with four or fewer observations (d = 0.07). With 
regards to demographics, participants providing fewer observations 
than five observations were on average 3 years younger and were 
three percentage points more likely to be male. 
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2.2.  Subjective Well-Being (SWB) 
The Personal Wellbeing Index (PWI) (Cummins et al., 

2003; International Wellbeing Group, 2013) is a well-validated 7-
item measure of SWB. Each item is rated on an end-defined, 11-
choice scale, anchored by 0 = "no satisfaction at all" to 10 = 
"completely satisfied". The seven items ask the participant to rate 
how satisfied they are with a particular domain of life: (1) standard 
of living, (2) personal health, (3) achieving in life, (4) personal 
relationships, (5) personal safety, (6) community-connectedness, 
and (7) future security. An overall measure of SWB is taken as the 
mean of these seven items. The PWI scale correlated highly with a 
single-item 0-10 measure of general life satisfaction (i.e., "How 
satisfied are you with your life as a whole?"); for example, the 
cross-sectional correlation for the first wave was r = .78. In 
addition, in one wave of the study, the commonly used 5-item 
Satisfaction with Life Scale (Diener, Emmons, Larsen, & Griffin, 
1985) was administered; it also correlated highly with the PWI 
scale (r = .75, n = 696).  Also, the correlation of single-item 
general life satisfaction with Diener et al's scale (r = .771) was 
similar to the correlation with the PWI scale (r = .785). Thus, 
overall the PWI scale correlates highly with commonly used life 
satisfaction measures, yet it differs in that it is scored as a unit 
weighted composite of domain satisfaction scores. 
2.3.  Data Analytic Approach 

We estimated and compared several hierarchical models of 
the longitudinal SWB data using a Bayesian approach. Common 
hierarchical linear models used in the literature to date have 
involved random intercepts, random linear and quadratic effects, 
and lag effects. Our models include these along with several 
important extensions, reflecting the flexibility of the Bayesian 
approach. The person-level standard deviation was allowed to vary 
between people, lag effects were incorporated using a Bayesian 
approach, and the non-normal intercepts and residuals were 
examined by modeling a probit transformation of the SWB data. 
Using posterior predictive checks, we were able to assess whether 
the probit transformation replicated distributional features of the 
raw data after back transformation. To assist others in applying 
Bayesian methods and to encourage further model development, 
we make the raw data and code available on https://osf.io/qcfnk. 

Before specifying the model, we briefly describe 
conventions for Bayesian model specification. For those unfamiliar 
with Bayesian model notation, Kruschke (2013) has an accessible 
introduction. A Bayesian model requires that the likelihood and the 
prior be specified. The likelihood is generally a potential data 
generating process with parameters, and the prior is a probability 
model of belief about what values the parameters will take prior to 
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seeing the data. Thus, when defining a likelihood we say that the 
data is drawn from a distribution. For example, 

   
yij  N (µij ,σ i

2 )  

expresses the idea that the data  
yij  is distributed (~) normally (N) 

with a parameters for the mean and variance. It is then common to 
model the mean function as a function of parameters and 
covariates (e.g.,   

µij = β1i + β2ixij ) as we would see in regression 
models. This notation is equivalent to the general regression 
notation  

yij = µij + eij  (or with covariates   
yij = β1i + β2ixij + eij ), 

where 
   
eij   N (0,σ i

2 ) , but is more flexible in that it covers the 
situation where the model is not neatly divided into a mean and an 
error component. Often, as is the case with hierarchical models, 
these parameters themselves are drawn from distributions. For 
example, in the model below, the person-level intercepts are also 
drawn from a normal distribution. This is analogous to traditional 
hierarchical models. However, the Bayesian approach also gives 
greater flexibility, so for example, distributions other than the 
normal distribution can be readily used to describe variation in 
person-level parameters, and distributions can be placed on other 
terms such as the person-level standard deviation. In this way, the 
Bayesian approach encourages the analyst to describe a 
theoretically plausible data generating process and modify it in 
flexible ways. 

2.3.1.   Model description 
The likelihood part of the model of SWB was 
  

 

   

yij ~ N (µij ,σ i
2 )

′µij = β1i + β2ixij + β3ixij
2 + γ 1zij + γ 2zij

2 + γ 3zij
3

µij = ′µij + β5( yi( j−1) − ′µi( j−1) )

βi ~ N4(µβ ,Σ)

σ i ~ exp(β4i )

 

where  
yij  represents SWB (0 to 10 on the PWI) for participant 

  i = 1,..., N  at observation   j = 1,...,ni . Observation number was 

person-mean centered, where   
xij = xi. − ′xij ,   ′

xij = 1,2,...,ni , and 

where   
xi. = 1/ ni i

i

ni∑  is the person-level mean of observation 
number. Thus, when combined with group-level age effects, 
intercept   β1i  represents the predicted SWB for an individual at the 
middle of their supplied observations. Intercept   β1i , linear   β2i , 
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quadratic   β3i , and variability  β4  parameters were all modeled as 
varying between people and drawn from a multivariate normal 
distribution with covariance Σ  and a vector of means µβ , where 
the linear and quadratic effects where constrained to be zero to 
avoid multicollinearity with the group-level age effects. Age  ′

zij  
was centered at the rounded mean of all age observations (i.e., 62 
years,   

zij = 62− ′zij ). Group-level age effects were modeled with 

fixed linear  γ 1 , quadratic  γ 2 , and cubic  γ 3  parameters. Individuals 
also had their own within-person standard deviation  σ i  which was 
obtained by taking the exponential of   β3i . Given   β3i  is draw from a 
normally distribution, taking the exponential of   β3i  results in a log 
normal distribution which both respects the requirement of  σ i  to 
be greater than zero and reflects expectations that the distribution 
would be positively skewed. Drawing the vector  βi  from a 
multivariate normal distribution also allows the correlation 
between parameters to be formally modeled. In particular, we 
expected intercept   β1i  and variability either in the form of   β4i  or 

 σ i  to be negatively correlated. The lag effect  β5  was held constant 
over individuals and represents the expected increase at the current 
time point as a multiple of the deviation of the previous time point 

  
yi( j−1)  

from that expected by the model   ′µi( j−1) .  
Sixteen variants of the above model were formed from 

crossing four binary model features. First, fixed and random error 
models were examined. In fixed error models, person-level error 
variance  σ i  was held constant over individuals as is the case in 
almost all models of SWB in the literature, whereas in random 
error models,  σ i  was allowed to vary over individuals as specified 
above. Second, models were examined with and without the 
random polynomial coefficients representing the linear   β2i  and 
quadratic   β3i  effects. Models with only a random intercept were 
labeled intercept and models with linear and quadratic effects of 
observation were labeled polynomial. The model with both linear 
and quadratic terms is able to capture a broad range of systematic 
trends. In order to keep number of models to a manageable level, 
we did not report a model that included a random linear term but 
not a random quadratic term. Third, models either did or did not 
include the lag effect  β5 . Finally, raw and probit transformed data 
were modeled. Specifically, the raw data ranged from 0 to 10, and 
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the probit transformation was   
φ(( yij + 0.5) / 11) , where φ  is the 

standard normal quantile function. This function increases relative 
differences between scores at the extremes (i.e., towards 0 or 10) 
and reduces relative differences around the mid-point (i.e., 5 on a 0 
to 10 scale). Thus, on the transformed scale, a value of 0 represents 
the arithmetic midpoint of the raw scale (i.e., 5). The probit 
transformation is a good choice for transforming psychological 
data where observed scores are constrained by a forced choice 
response scale to lie on an interval, but where the latent factor is 
assumed to be continuous, unconstrained, and approximately 
normally distributed. 

2.3.2.   Priors 
In general, relatively uninformative priors were used. This 

allows the data to inform parameter estimates rather than prior 
expectations. Uniform priors were used for mean intercept 

 
µβ1

 (0 

to 10 for untransformed; -2, to 2 for transformed), the mean of the 
variation coefficient 

 
µβ1

 (-4 to 1) and the lag effect  β5  (-0.6 to 

0.6). The prior for the covariance matrix for the vector of 
coefficients  βi  was an inverse-Wishart distribution with large 
variances, zero-valued covariances and 4 degrees of freedom. 
Priors for group level age effects were normal distributions with 
mean of zero and variances of 2/30, 2/302, and 2/303 for linear, 
quadratic, and cubic effects respectively. In order to include the 
first observation for each participant in the lag models, it was 
necessary to model a latent observation zero   yi0  (for a discussion 

see Congdon, 2007). This was modeled as   yi0 ~ N ( ′µi0 ,σ i
2 )  where 

  ′µi0  was calculated as implied above with   xi0 = xi1 −1  and 

  zi0 = zi1 −1. 

2.3.3.   Parameter estimation 
Posterior parameter estimates were obtained using Markov 

Chain Monte Carlo (MCMC) methods using JAGS (Plummer, 
2003). Trace-plots of MCMC samples were used to examine 
convergence and determine an appropriate burn-in period. Four 
chains with 5,000 burn-in and 25,000 sample iterations per chain 
were used for estimating posterior density estimates. Parameter 
estimation in a Bayesian MCMC context involves sampling 
parameter estimates from the posterior density estimate of the 
sample. The mean of that distribution provides a point estimate and 
quantiles provide a credible interval (e.g., .025 and .0975 quantiles 
provide a 95% credible interval). Bayesian credible intervals are 
analogous to confidence intervals used in frequentist statistics, 
except that a credible interval expresses belief in the parameter 
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rather than appealing to long run frequency coverage of confidence 
intervals. 

2.3.4.   Measures of fit.  
We also obtained deviance statistics to measure model fit 

using the above MCMC methods including mean deviance and 
Deviance Information Criterion (DIC) (Spiegelhalter, Best, Carlin, 
& Van Der Linde, 2002). Deviance is defined as the -2 log 
likelihood of the data given the model and parameter values. 
Because of the uncertainty in the value of the parameters, there is 
also uncertainty in the deviance. Thus, in a Bayesian context, 
researchers typically look at the expected deviance integrating over 
the uncertainty of parameter values. Computationally, using 
MCMC, a deviance is calculated for every iteration based on the 
sampled parameters. The mean of this sample is the expected 
deviance. This Bayesian measure of deviance is analogous to that 
provided by traditional estimation methods such as maximum 
likelihood, but differs particularly in the way that it is an estimate 
that is averaged over the uncertainty of parameter values. 

When comparing measures of fit for alternative models, it 
is important to penalize models that have greater flexibility. In the 
traditional approaches, researchers often use number of parameters 
and degrees of freedom for this purpose. However, several 
researchers have noted that this often fails to capture the actual 
differences in flexibility between competing models (Pitt & 
Myung, 2002). DIC (Spiegelhalter et al., 2002) provides a 
modified measure of deviance that incorporates a data driven 
penalty for model complexity (i.e., DIC = Mean Deviance + 
Penalty). When comparing DIC between models, rules of thumb 
for comparing AIC and related penalized measures of deviance are 
typically applied. For example, Spiegelhalter et al. (2002) suggests 
after ruling out computational error due to the finite MCMC 
sample, differences between models of around 3 to 7 or more 
indicate that the model with the larger DIC has considerably less 
support. Thus, given the large sample and potential for MCMC 
sampling error, we suggest in this paper to interpret differences in 
DICs between models of 20 or more as indicating a substantive 
difference in fit.  
2.3.5.   Posterior predictive checks 

To assess the 16 models of interest, posterior predictive 
checks were performed (Gelman et al., 2013). These checks 
provide a flexible means for assessing the ability of a given model 
to capture theoretically relevant features of the data. It involves 
several steps. First, for a given model, parameters are sampled 
from the posterior density estimates. Second, data are simulated for 
each of these sets of parameters. Third, a set of relevant statistics 
are calculated for each sample. Fourth, the mean and spread of the 
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statistics from the simulated data are compared to the statistics 
calculated on the actual data. A good model should create 
simulated data with statistics similar to statistics on the actual data. 
This approach can also be used to identify shortcomings with a 
given model and lead to proposals for model improvement. In 
particular, there is a choice between simulating both observation-
level data and participant-level parameters, or, simply simulating 
observation-level data assuming posterior estimates of participant-
level parameters. We chose the more stringent test of simulating 
participant-level parameters. This requires that the model of the 
distribution of participant-level parameters is reasonable.  

We proposed 11 statistics that we felt a good model of the 
temporal dynamics of SWB should recover (see Table 4 and Table 
5 of the results). They all involved summarizing person-level 
statistics of SWB scores (e.g., person-level means, SDs, skewness) 
with summary functions (e.g., mean, SD, skew). We calculated the 
mean, SD, and skewness of person-level means. Because person-
level means are a rough approximation to set points (Cummins et 
al., 2014), a good model should capture this distribution. We 
calculated the mean and SD of person-level standard deviations to 
capture the typical degree to which SWB scores vary within-
person and the degree to which people differ in this quantity.   

The mean of the person-level lag 1 auto-correlation (i.e., 
the correlation between the previous time point and the subsequent 
time point) was calculated to assess the degree to which more 
proximal time points were more related. Auto-correlation is a 
feature of longitudinal data and can reflect a range of processes 
including incremental stochastic change as well as longer term 
systematic trends.  

 The mean of person-level skew was calculated. A value of 
zero indicates a symmetric distribution, negative skew indicates 
that the tail of the distribution trails off towards lower values, and 
positive skew indicates that the tail of the distribution trails off 
towards higher values.  

To assess model recovery of outliers, an index of within-
person outliers was created as the maximum absolute deviation of 
a person's SWB scores from their person-level mean. The mean 
and SD of this outlier index were calculated. Longer term change 
was evaluated using the SD of the linear regression coefficient 
obtained for a person when predicting SWB from age. Thus, the 
unit indicates the expected change in SWB for a one year increase 
in age. Finally, the correlation between person-level means and 
person-level standard deviations was obtained. 
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3.   Results 
3.1.  Descriptive Statistics 

Cronbach's alpha reliability was consistently high for the 
SWB scale. Calculated for each measurement occasion (i.e., 1 to 
10) the mean alpha was .87 (range: .86 - .89). A factor analysis of 
data from the first measurement occasion showed clear support for 
a one factor solution with item loadings ranging from .60 to .79. 
The intraclass correlation (ICC1) was .72 indicating that 72% of 
variance in SWB was due to differences between people . When 
each participant's scores were averaged over all available times 
points, the mean was 7.50 (SD = 1.25, skew = -0.95)  with 95% of 
participants having means on the positive side of the scale (i.e., > 
5.0). Within-person standard deviations were moderate and highly 
skewed with a mean of 0.66  (SD = 0.39, skew = 1.80). The 
correlation between person-level means and person-level standard 
deviations was r = -.48 indicating that lower levels of SWB were 
associated with greater volatility in SWB. Further descriptive 
statistics are provided in Table 4, but will be discussed further 
under posterior predictive checks. 

Figure 1 shows the distributions of all observations, person-
level means, deviations from person-level means (unstandardized 
and standardized, i.e., division by person-level SD) for both raw 
and probit transformed SWB. It highlights how the probit 
transformation reduces the skew in the person-level means. It also 
highlights the kurtosis in unstandardized deviations. However, 
after division by person-level standard deviations, kurtosis is less 
prominent. This adds support for allowing person-level standard 
deviations to vary as kurtosis of unstandardized observations may 
result from a mixture of normal distributions with different SDs.  

Insert Figure 1 about here 

Estimates of stability using test-retest correlations were 
examined for different subsets of the data based on number of 
waves provided. This involved comparing the correlation between 
baseline and one year with baseline and final wave. Test-retest 
correlations were as follows: (a) Five or more waves (baseline with 
1 year: r = .77; baseline with 4 years r = .68, n = 1,081; 
  Δr = .77 − .68 = .09 ). (b) seven or more waves (baseline with 1 
year: r = .76; baseline with 6 years r = .67, n = 559,   Δr = .09 ). (c) 
nine or more waves (baseline with 1 year r = .76; baseline with 8 
years r = .70, n = 189,   Δr = .07 ) . In summary, while using 
different subsets of participants and time-points yields slightly 
different estimates, in all cases the reduction in test-retest 
correlations over many years was small. This suggests that there is 
some, but not a lot, of either systematic or stochastic change. 
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3.2.  General Temporal Trends 
Figure 2 shows the relationship between age and SWB 

using all observations and a model fit with 95% credible interval 
for group level data based on the probit transformed, polynomial, 
no lag, random error model. The plot highlights several features of 
well-being data. First, the model is negatively skewed with most 
observations in the positive range. Group-level model fits show 
that SWB generally fluctuated between about 0.2 or 0.3 either side 
of 7.5. In terms of age trends, SWB is lower for people aged in the 
40s and early 50s, as has been commonly reported (e.g. 
Mastekaasa & Moum, 1984), followed by increases in the 60s and 
70s and a decline in the early 80s. There are not enough 
observations to determine whether SWB is systematically higher in 
the 20s or lower in the late 80s.  

Insert Figure 2 about here 

Figure 3 shows the relationship between measurement 
occasion and SWB scores, at the individual-level, for a random 
sample of 15 participants who provided 10-years of data. Focusing 
only on the pattern of the data, the overall impression is one of 
underlying stability, with clear individual differences in the 
average levels of SWB. There are also a small number of cases that 
seem to incrementally change relative to their previous 
observations. This pattern is consistent with some systematic 
influence. Finally, there are a few instances where SWB dropped 
abruptly and was typically restored on the subsequent 
measurement occasion.  

Insert Figure 3 about here 

3.3.  Model Estimates 
The set of models were estimated based on (a) whether or 

not a probit transformation was applied; (b) whether a lag effect 
was estimated; (c) whether person-level error was allowed to vary 
over people; and (d) whether random linear and quadratic terms 
were included. Table 1 presents model fit statistics for all models. 
While deviance based measures of fit cannot be compared across 
untransformed and transformed variable models, the general 
pattern of fit statistics was similar. Allowing the within-person 
standard deviation to vary over people led to a large reduction in 
deviance, and despite the penalty associated with estimating 
additional parameters, the Deviance Information Criteria (DIC) 
was also much less. Inclusion of a lag effect increased the deviance 
and DIC. Adding random linear and quadratic terms led to a 
massive reduction in the deviance, but only a small reduction in 
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DIC and this reduction in DIC appeared somewhat smaller for the 
transformed data.  

Thus, based on DIC the preferred model had random error, 
no lag effect, and a random polynomial effect. In general, 
including both the random linear and quadratic effects gives the 
model a great deal more flexibility. The improvement in fit from 
including the random polynomial effect was less for random error 
models than for fixed error models, and for transformed rather than 
untransformed data. It may be that this flexibility is needed more 
for the untransformed and fixed error data in order to recover from 
other problems related to outliers and skewness. Furthermore, the 
improvement in DIC from including the polynomial effect was 
relatively small compared to whether random error or the lag effect 
was included.  

Insert Table 1 about here 

Parameter estimates for the random error, no lag, random 
intercept and random polynomial models are presented in Table 2 
for the raw scale and Table 3 for the probit transformed scale. For 

all models the mean within-person standard deviation (mean of  σ i

) is a little over half the standard deviation of person-intercepts 

 
σ βintercept  highlighting that between person variability in SWB was 
much greater than within-person variability. The ratio of the 

standard deviation of  σ i  to the mean of  σ i  captures how much 
individuals differed in their within-person standard deviations. In 
particular, it was slightly larger for the untransformed model 0.49 
(0.34 / 0.69 ) than for the transformed model 0.40 (0.08/ 0.20). The 
negative correlation between intercept and SD between-person 
coefficients was also smaller for the probit transformed variable.  

Insert Table 2 about here 

The group-level age effects were centered on the rounded 
mean age of all observations (62 years). Thus, the mean of the 

intercept ( 
µβintercept ) can be interpreted as the expected value at that 

age. Linear and quadratic terms were small and significant in both 
transformed and untransformed models, while the cubic term was 
only significant in the untransformed model . The group-level 
trend line is summarized in Figure 2.  

Insert Table 3 about here 

As mentioned above, mean deviance and DIC was not 
reduced by the inclusion of the lag parameter. Given the emphasis 
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of existing trait-state-error models in the literature on an auto-
regressive term, we further investigated this result. Across the 
eight models estimates of the lag effect ranged from .03 to .24. In 
general random error models had a slightly larger lag effect (.03 to 
.05 larger than fixed error models), and models that included the 
random polynomial effect had a much smaller lag effect (.10 to .17 
smaller than intercept models). For the random error probit 
intercept model, when a lag effect was included the estimate of the 
lag effect was .24, 95% CI [.20, .28]. Given that it was a 
significant lag effect, it was surprising that mean deviance was 
greater when a lag effect was added to the model. To further 
investigate this result, we temporarily fixed the lag effect to be the 
sample estimate (.24), but the model without the lag effect still had 
a much lower mean deviance. Examination of model fits showed 
how the small changes in predictions implied by the lag effect did 
not visually seem to capture the model predictions. One plausible 
explanation of this result is that our approach does not treat the 
time before the first observation as known. While we could have 
discarded the first observation as outcome data and used it as the 
basis for estimating the lag effect, such a lag effect would be 
confounded by the fact that this first time point would contribute 
substantially to the reliability of estimation of the participant-level 
mean and thus should be positive purely because of this artifact.  

As a comparison, we also compared parameter estimates 
using the above Bayesian approach with standard frequentist 
multilevel modeling approaches using the lme4 package in R 
(Bates, Maechler, Bolker, & Walker, 2013) in general and the nlme 
package in R (Pinheiro, Bates, DebRoy, & Sarkar, 2013) to 
examine the lag model. For the random intercept models without 
lag effects the parameter estimates the frequentist estimates were 
almost identical to the corresponding Bayesian estimates. Lag 
models and linear and quadratic models generally required some 
re-specification to be implemented but parameter estimates were 
similar. The models with random standard deviations could not 
readily be implemented. 
3.4.  Individual-Level Model Predictions and Credible Intervals 

Figure 3 shows the model fits and 95% credible intervals 
for the two best performing models, i.e., the probit transformed, no 
lag, random error models with either (a) a random intercept or (b) 
random polynomial. The credible intervals show how these two 
models capture individual differences in within-person variation. 
They also capture the skewness of that variation, as person-level 
means deviate from the scale mid-point.  

Comparing the model fits for the two models is particularly 
useful as the random intercept model embodies a strict form of set-
point theory whereas the random polynomial model allows for 
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systematic trends over multiple years. It is worth noting that the 
random intercept model does allow for small changes over time 
due to group-level age related changes. Overall, there are several 
cases where the polynomial model appears to provide improved fit 
to the data. However, the polynomial model also has substantially 
greater flexibility which may result in curves capturing noise. 
Table 1 showed how the polynomial model resulted in a massive 
reduction in the model deviance, but only a small reduction in the 
parsimony adjusted measure of fit, DIC. The model fits in Figure 3 
appear consistent with this interpretation whereby polynomial 
curves are fitting a mixture of some systematic change and some 
fitting to noise in the data. 

3.5.  Posterior Predictive Checks 
To further evaluate the proposed models we ran posterior 

predictive checks. Interpreting posterior predictive checks involves 
first interpreting the sample statistics of interest when applied to 
the sample data. We then examined the degree to which the models 
are able to generate simulated data with statistics consistent with 
the sample data. 
3.5.1.   Statistics on sample data.  

The sample data (see the "dataset" column of Table 4) 
shows that the typical within-person standard deviation (0.66) was 
around half the standard deviation of the means (1.25). It also 
shows that the SD of within person SDs (0.39) is fairly large 
relative to the mean of the within-person SDs (0.66), thereby 
suggesting the importance of including a parameter that captures 
this variability. The mean of means of 7.50 combined with the SD 
of within-person means (1.25) is consistent with previous reports 
that 95% of the data from such samples lie above the scale 
arithmetic average of 5.0 due to the combined influence of SWB 
set points (Cummins et al., 2014) and homeostasis (Cummins, 
2015). 

Insert Table 4 about here 

The absence of a positive lag 1 autocorrelation is somewhat 
surprising (mean lag 1 autocorrelation of -.06). Several theories 
suggest that SWB stability involves restoring values to a base-line 
or set point. Additionally, there is much evidence that life events 
can temporarily alter well-being, and that, if the level of challenge 
is strong and maintained, the reduced level of SWB can become 
chronic. Where such effects are operating, a positive lag1 
autocorrelation would be expected. This is not evident in these 
data. 

Insert Table 5 about here 
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Negative skew was present in both between and within-
person-levels. However, the skew in between-person means 
(−0.94) was much larger than the mean skew of within-person data 
(−0.17). Thus, while people occasionally experience SWB outside 
their set point-range, they are more likely to experience a chronic 
reduction rather than a chronic elevation. Interpreting the outlier 
statistic is a little more challenging, but it does indicate that 
average maximum deviation  from a person's mean is 1.08 units, 
which is a little under double the mean of SDs. It may also be that 
the SD of the outliers is a little larger than one might normally 
expect based on normal distribution assumptions. This reflects the 
non-normality of the actual data distribution, the fact that few 
people have substantial outliers, and is in conformity with 
homeostasis theory. 

When a linear regression was fit to individual SWB 
trajectories, the mean linear change was close to zero, but at the 
individual-level some values increased and some decreased.  
However, a certain amount of variability in individual-level linear 
change is due to error in estimating such a coefficient for each 
participant on only 5 to 10 data points.  

The correlation between the within-person means and 
within-person SDs was -.48. This shows that that greater 
variability is associated with lower means. While this is partially 
due to scale constraints, this is only part of the reason. Specifically, 
scale constraints dictate that the maximum possible standard 
deviation for person i on a 0 to 10 scale is   yi.(10− yi. )  where   yi.  
is the person-level mean for person i. To inspect the degree to 
which the correlation between means and SDs was driven by scale 
constraints, we compared the sample correlation between person-
level means and (a) raw person-level SDs (r = -.48) or (b) person-
level SDs divided by the maximum possible SD given the person's 
scale mean (r = -.25). Thus, about half of the correlation was 
explained by scale constraints. The remainder is consistent with 
prediction based on homeostasis theory. 

3.5.2.   Model recovery of statistics.  
Results of the posterior predictive checks for candidate 

models are presented in Table 4 for untransformed data and Table 
5 for transformed data. The values for the models are the mean 
statistic for the posterior samples, and statistics are bolded where 
they appear to capture the sample statistic or are notably better 
than other models at capturing the sample statistic. This bolding is 
purely a device to facilitate interpretation and a more sophisticated 
interpretation should emphasize the proximity of the statistic of the 
model simulated data to the sample dataset.  
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Several major points can be made. First, models where 
standard deviations were allowed to vary were better able to 
capture within-person standard deviations, outliers, and the 
correlation between the mean and standard deviations. 
Interestingly the correlation between person-level means and 
person-level standard deviations was captured with a fixed 
standard deviation when the probit transformation was applied. 
Second, the autocorrelation and SD of linear change statistics 
provide indices of the within-person change. Without a lag or 
polynomial parameter, the lag 1 autocorrelation and the SD of 
linear change was slightly underestimated. Introduction of either 
the lag effect or the polynomial terms seemed sufficient to capture 
these statistics. Third, transformed data were much better at 
capturing the skewness in the data. That said, while the 
untransformed model implies that there is no skew, the probit 
transformed model captured about two thirds of the skew in the 
sample data.  

Thus, overall, the random error transformed models with 
lag or polynomial effects performed best in the posterior predictive 
checks as determined by greater recovery of sample statistics. The 
transformed intercept-only random error model preferred by DIC 
also performed well, but appeared to fail to capture small amounts 
of more systematic within-person change. Based on principles of 
parsimony, the posterior predictive checks would favor the lag 
model over the polynomial because the lag model involves a single 
fixed parameter, whereas the polynomial model is estimating two 
additional parameters per participant.  
4.   Discussion 

The set of models present a picture of the temporal 
dynamics of SWB over time frames ranging from 5 to 10 years. 
The core findings are that (a) the underlying level of SWB is quite 
stable over time and much of the variability from year to year is 
not systematic; (b) people vary in how much they vary over time, 
(c) people with lower person-level means tend to have greater 
variability, (d) the distribution of person-level means and residuals 
is negatively skewed. Importantly, the inclusion of random error 
and a probit transformation reduced the need for lag or polynomial 
trend components. Overall, without denying the existence of some 
systematic change, the results in the present study, albeit grounded 
in its particular sample and measure of SWB, provide somewhat 
greater support for the notion of set points and SWB homeostasis 
than would be implied by some of the existing SWB literature. 
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4.1.  Features of Temporal Dynamics of SWB 
4.1.1.   Stability 

Correlations of SWB over time were generally larger and 
exhibited smaller reductions than some previous studies (Lucas & 
Donnellan, 2012; Schimmack & Oishi, 2005). One likely 
explanation for the larger absolute correlations, but perhaps not the 
reduced reduction in correlations over time, is that some previous 
longitudinal studies have relied on single item measures and 
sometimes used fewer response options than the 0 to 10 scale used 
in the present study. In contrast, the PWI scale used in the present 
study had seven items which provide more reliable measurement. 
The broad range of domains measured in PWI may also result in 
domain compensation (Best, Cummins, & Lo, 2000). As a follow-
up analysis, we compared test-retest correlations between our 7-
item PWI and a single item global life satisfaction (GLS) measure. 
Using data with at least seven waves, correlations between baseline 
and one year were r = .63 for GSL and r = .76 for PWI, and 
between baseline and six years were r = .52 for GLS and r = .67 for 
PWI. Thus, consistent with principles of attenuation due to 
imperfect reliability, the test-retest correlations were attenuated 
more for GLS, but the pattern of only modest declines in 
correlations over time was similar for both measures.  

Another broad explanation for differences is the study 
design and sample. The sample comprised a mid- to older-adult 
population who might be expected to have more established life 
circumstances. For example, Lucas and Donnellan (2011) found 
that four year personality test-retest correlations exhibited an 
inverted-u shape that tended to be lower in the 20s peaking in the 
middle age (40s to 60s) and reducing in the mid-70s and 80s. 
Consistent with this pattern follow-up analysis indicated that the 
intraclass correlation (i.e., an index of stability) was not smaller for 
younger participants (mostly starting late 20s and early 30s), and 
there was a slight reduction in stability for participants over the age 
of 75 (ICC = .65 compared to whole sample ICC = .72). The 
Australian sample may also be more stable given that it is a 
developed, literate, democratic, politically-stable country with 
reasonable levels of social security, potentially providing a 
relatively stable environment where dispositional tendencies may 
be more influential. All of these points highlight the need to extend 
the modeling in this paper to other longitudinal datasets in order to 
further clarify the relative impact of modeling approach versus 
sample and study design on understanding stability and change in 
SWB. 
4.1.2.   Aggregate age trends.  

Consistent with earlier studies (e.g. Mastekaasa & Moum, 
1984) the overall age trend suggests that SWB reaches a low point 
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in the 40s gradually increases into the 50s and 60s where it may 
begin to plateau and possibly declines again towards the late 70s 
and 80s. Overall, the size of these effects were small to moderate, 
with group-level changes varying about .2 or .3 from the mean of 
around 7.5 over the ages of examination (around ages 30 to 85). 
While the dataset does not allow for an assessment of whether such 
effects are age or cohort based, several reasonable explanations 
could be offered for the age related trends. Such challenges include 
stresses associated with work, parenting, and marital relationships.  
4.1.3.   Within-person variability 

The results show that people meaningfully differ in how 
much their SWB varies from year to year. Although such change 
has been modeled in the experience sampling literature (e.g., 
Kuppens, Oravecz, & Tuerlinckx, 2010; Kuppens, Van Mechelen, 
Nezlek, Dossche, & Timmermans, 2007), this fundamental 
characteristic is missing from most hierarchical and covariance 
models of long term temporal dynamics. While the finding is 
partially explained by scale constraints, whereby participants who 
have means closer to scale end-points have less potential 
variability, even after this is controlled, a substantial correlation 
remains. Many theories of short term emotional experience include 
emotional volatility (e.g., Kuppens et al., 2010) as a component 
with bipolar disorder reflecting a clinical extreme. Tendencies for 
variability over short time frames may impact the longer-term 
evaluations implied by SWB measurement. There may also be a 
longer timeframe analogue to the tendency for short term volatility. 
Homeostasis theory also offers a possible explanation in that lower 
values are more likely to represent homeostatic failure and, so, 
increased volatility (Cummins et al., 2014). Finally, while models 
of SWB often downplay the role of the environment, it seems 
likely that people would differ in the degrees to which their 
environments are volatile over longer time frames. Insecure 
employment, financial difficulties, intermittent health problems, 
and unstable relationships are all potential candidates for increases 
volatility. Future research should seek to disentangle measurement, 
individual differences, and environmental predictors of within-
person variability. The Bayesian framework provides a useful 
framework for performing such predictions.  

4.1.4.   Non-normality 
The results also reinforced the point that SWB scores have 

a strong negative skew, rather than being normally distributed. A 
probit transformation is a principled transformation for mapping a 
constrained scale onto the real number line. It resulted in SWB 
data with substantially reduced skew. While we imagine that it is 
common knowledge amongst SWB researchers that SWB is 
negatively skewed, this assumption is rarely incorporated into 
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formal models of temporal dynamics. Future work could further 
explore these transformations or could seek to adapt the Bayesian 
model to use a skewed or constrained distribution (e.g., a beta 
distribution). 

Importantly, the use of the probit transformed SWB data 
and the use of a random within-person standard deviation had 
implications for model differences (see Table 1). Specifically, the 
improvement in model fit, as indexed by DIC from including the 
random linear and quadratic effects, varied substantially based on 
whether random error and probit transformations were applied. On 
untransformed data with fixed error variance, including the random 
polynomial terms resulted in a large improvement in DIC. In 
contrast, when the random polynomial was added to the probit 
transformed random error model, DIC became worse. It is likely 
that some of what appears to be meaningful linear and quadratic 
effects relates to capturing outliers and skew in the data. In 
particular, the probit transformation better reflects the actual 
distribution of residuals, and random within-person standard 
deviation allows participants with different levels of year-to-year 
volatility to not be constrained to a single variance model. Thus, 
accounting for these important features of residuals reduces 
outliers and reduces the potential for linear and quadratic effects to 
overfit the data.  
4.1.5.   Systematic and stochastic individual change 

The results have implications for understanding the extent 
to which there is stochastic or systematic change in SWB. If we 
focus on the probit-transformed random error models, we observe 
support for both a high degree of stability and a small amount of 
meaningful change. As already discussed, the group-level data 
supports the existence of small systematic changes in SWB over 
the adult life course which, barring cohort effects or differential 
survival rates, should be the manifestation of average individual-
level changes. Also, posterior predictive checks suggest that 
inclusion of either a fixed lag effect or random polynomial change 
is able to better capture the auto-correlation in the data. We also 
have data from a range of other studies that have found that certain 
events such as unemployment, divorce, and acquiring a disability 
may have medium to long-term effects on SWB (e.g., Gerstorf et 
al., 2008; Lucas, 2007; Lucas et al., 2003), as well as state-trait-
error models which assign relatively large effects to auto-
correlation rather than trait variance (e.g., Lucas & Donnellan, 
2007).  

In contrast, supporting the claim that much of SWB is 
random variation around a set point, we see that the probit 
transformed random error intercept model had a DIC only a little 
less than the polynomial model, and with the exception of a small 



BAYESIAN WELLBEING  

 

24 

inaccuracy in estimating auto-correlation, posterior predictive 
checks were very good for the intercept model. A synthesis may be 
that both people who are susceptible to large systematic change in 
SWB, and the events that give rise to such change, are uncommon. 
This would explain the small improvements in capturing auto-
correlation and variance in the linear change by including a lag 
effect or random polynomial effects. Furthermore, large year-to-
year variability seems to be retained even in the subset of cases 
that appear to exhibit more systematic change. The functional form 
and timing of these changes is also likely to be quite variable. 
Thus, in the absence of external time-varying covariates to explain 
these changes, participants with difficult-to-model temporal 
change may be better explained by the model estimating a larger 
within-person standard deviation. Greater sample sizes for 
participants for even longer than 10 years may be required for 
these longer term effects to manifest over and above the 
background  variability.  

Given the smaller reductions in test-retest correlations over 
time observed in the present study (cf. Lucas & Donnellan, 2012; 
Schimmack & Oishi, 2005), future work should seek to clarify 
whether the reduced importance of the lag effect in the present 
study is due to unique features of the sample or whether it 
generalizes to other longitudinal datasets. If it does generalize, then 
this would require a more rigorous statistical examination of the 
meaning of the lag effect in the present Bayesian model and in 
previously used models of SWB that incorporate auto-correlation 
(e.g., Eid & Kutscher, 2014; Kenny & Zautra, 2001; Lucas & 
Donnellan, 2012). For example, the model presented in this paper 
treats the lag effect as a latent variable, whereas some models treat 
the lag effect as an observed variable (for a discussion, see 
Congdon, 2007). Treating a lag effect as latent captures the 
inherent uncertainty in estimating what is the lag effect and may 
prevent effects artificially being attributed to lag effect when they 
really are an aspect of latent person-intercepts. A second issue 
relates to the general challenge of model comparison, of which 
there are extensive debates particularly around the suitability of 
mean deviance and DIC in multilevel models (Spiegelhalter, Best, 
Carlin, & Linde, 2014). It is partially for this reason that we also 
examined posterior predictive checks which, in contrast to DIC, 
suggested that lag effects provided a small but meaningful 
improvement. However, more generally, applied Bayesian model 
comparison is a rich area that remains an active topic of research 
(Gelman et al., 2013). 
4.2.  Implications for Theories of SWB 

Overall, the results provide fairly strong support for the 
notion of individual set points with a few refinements. First, people 
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differ in their variability around their set point. Second, this 
variability tends to be greater for people with a lower set point. 
Third, there are small amounts of systematic individual and group-
level change in SWB, but this tends to be dwarfed by person-level 
means and year-to-year variation. 
4.3.  Implications for Modeling SWB 

A question for researchers modeling longitudinal SWB data 
is whether they should adopt a Bayesian or the more common 
frequentist approach. Ardent Bayesians may argue that their 
approach is the only consistent way to perform inference. 
However, a more pragmatic perspective involves weighing up the 
pros and cons of both approaches. Major benefits of the Bayesian 
approach are (a) greater flexibility in specifying the likelihood (i.e., 
the implied data generating process), (b) a set of powerful model 
comparison tools, and (c) more direct parameter estimation. The 
major challenges of the Bayesian approach are (a) the technical 
challenge of learning how to specify and estimate models and (b) 
the time it can take to fit complex models to moderately large 
datasets. 

Generally, when uninformative priors are used and the 
likelihood specified is the same, results will not differ much 
between a frequentist and a Bayesian approach. Thus, for example, 
when researchers want to run a basic multilevel model with a few 
different predictors, it will often be simpler to rely on standardized 
tools. However, if researchers are wanting to more precisely model 
the nuances of complex multilevel data, then the Bayesian 
approach provides a simpler way to model these features. Thus, the 
Bayesian approach is particularly useful in enabling a deeper 
examination of well-established research questions in psychology, 
particularly when such questions have a multilevel component. 

In summary, the greater benefit of the Bayesian approach 
comes from being able to specify more flexible models. This 
flexibility is facilitated particularly by software such as BUGS, 
Jags, and Stan, which provide the researcher with a wide range of 
options for specifying a likelihood and prior, while at the same 
time shielding the researcher from the mathematical complexities 
of specifying an algorithm for sampling from the posterior. 
4.4.  Limitations, Future Research, and Conclusion 

There are several opportunities to extend on the findings 
and modeling approach used in the present study. First, we did not 
seek to model observation-level SWB as a latent variable. Such an 
approach can be incorporated into the Bayesian approach and is a 
logical next step for Bayesian hierarchical models of SWB. 
Second, we focused on lag and polynomial structures of change. 
Future work could explore a broader range of temporal processes. 
In particular, different random-walk lag-related mechanisms may 
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be appropriate and latent trajectory mixture models also have 
merits. Third, it would be interesting to examine latent trajectory 
models to assess the claim in homeostasis theory about a subset of 
the low data demonstrating greater volatility. Fourth, future work 
could explicitly compare state-trait-error models and covariance 
modeling approaches to the models presented. There may also be 
scope for further syntheses of the two approaches. For example, 
assumptions of state-trait-error models could be further 
incorporated into the Bayesian approach or random error, while 
probit transformations could be incorporated into state-trait-error 
models. Fifth, the models presented could readily be extended to 
incorporate between-person covariates such as personality or 
family upbringing. Such models could also be extended to not only 
allow prediction of person-level means, but also differences in 
within-person standard deviations.  

In summary, the present study makes both methodological 
and substantive contributions to the study of the temporal 
dynamics of SWB. Methodologically, the Bayesian approach 
provides a flexible modeling framework. The benefits of this 
flexibility were illustrated using the proposed models that went 
beyond traditional techniques, by incorporating important 
assumptions regarding the non-normality of SWB and the 
variability of within-person variation. By providing raw data and 
source code we hope that the present study will motivate other 
researchers to apply Bayesian hierarchical methods to the study of 
the longitudinal dynamics of SWB.  
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Table 1 
Overall Model Fit Statistics for Candidate Models 

  Untransformed   Transformed 
  Deviance Penalty DIC  Deviance Penalty DIC 
No Lag        
   Fixed error intercept 16730 1024 17754  -1851 1024 -827 
   Random error intercept 13873 2000 15873  -3848 2083 -1765 
   Fixed error polynomial 15626 1708 17334  -3259 2032 -1227 
   Random error polynomial 12709 2992 15702  -5409 3565 -1845 
Lag        
   Fixed error intercept 16981 1030 18010  -1602 1029 -573 
   Random error intercept 14265 1944 16210  -3517 2067 -1450 
   Fixed error polynomial 16107 1559 17666  -3102 1998 -1104 
   Random error polynomial 13348 2713 16061   -5156 3477 -1680 

Note. Model fit statistics can not be compared across transformed 
and untransformed data. Models with smaller deviance are better 
fitting and models with larger penalties are more complex. DIC 
incorporates both fit and complexity whereby smaller models are 
generally preferred. Smallest DIC for transformed and 
untransformed data are shown in bold. 
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Table 2 
Parameter Estimates for Untransformed, Random Error, No Lag 
Models 

  Intercept    Polynomial 
  M Lower CI Upper CI   M Lower CI Upper CI 

Mean of intercepts  
µβintercept  7.56 7.48 7.64  7.54 7.46 7.62 

SD of intercepts  
µβSD  -0.47 -0.50 -0.44  -0.55 -0.58 -0.51 

Mean of SDs  σ i  0.69 0.68 0.71  0.65 0.64 0.67 

SD of intercepts  
σ βintercept  1.19 1.13 1.24  1.19 1.13 1.25 

SD of linear  
σ βlinear

 
    0.09 0.08 0.10 

SD of quadratic  
σ βquadratic

 
    0.04 0.03 0.04 

SD of Beta SDs  
σ βSD

 
0.45 0.42 0.48  0.48 0.45 0.51 

SD of SDs  σ i
 

0.34 0.32 0.36  0.34 0.32 0.37 

  
cor(βin tercept ,βSD )

 -0.68 -0.73 -0.62  -0.67 -0.72 -0.62 
Age linear effect θ   0.008810 0.003640 0.013850  0.012490 0.006420 0.018900 
Age quadratic θ   -0.000410 -0.000620 -0.000210  -0.000280 -0.000510 -0.000050 
Age cubic θ   -0.000020 -0.000030 -0.000010   -0.000020 -0.000030 -0.000010 

Note. M, Lower CI, and Upper CI are the mean and lower and 
upper 95% credible intervals of the posterior density estimate of 
parameters. Intercept, linear and quadratic effects refer the random 
effects of time, whereas age effects are fixed effects of age. 
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Table 3 
Parameter Estimates for Probit Transformed, Random Error, No 
Lag Models 

  Intercept    Polynomial 
  M Lower CI Upper CI   M Lower CI Upper CI 

Mean of intercepts  
µβintercept  0.67 0.65 0.69  0.66 0.64 0.69 

SD of intercepts  
µβSD  -1.68 -1.71 -1.65  -1.79 -1.82 -1.75 

Mean of SDs  σ i  0.20 0.20 0.20  0.18 0.18 0.18 

SD of intercepts  
σ βintercept  0.34 0.33 0.36  0.34 0.33 0.36 

SD of linear  
σ βlinear

 
    0.04 0.03 0.04 

SD of quadratic  
σ βquadratic

 
    0.02 0.02 0.02 

SD of Beta SDs  
σ βSD

 
0.36 0.34 0.39  0.39 0.36 0.42 

SD of SDs  σ i
 

0.08 0.07 0.08  0.07 0.07 0.08 

  
cor(βin tercept ,βSD )

 -0.21 -0.29 -0.13  -0.21 -0.30 -0.13 
Age linear effect θ   0.002490 0.000870 0.004080  0.004250 0.002280 0.006180 
Age quadratic θ   -0.000160 -0.000230 -0.000100  -0.000120 -0.000200 -0.000040 
Age cubic θ   -0.000010 -0.000010 0.000000   -0.000010 -0.000010 0.000000 

 
Note. M, Lower CI, and Upper CI are the mean and lower and 
upper 95% credible intervals of the posterior density estimate of 
parameters. Intercept, linear and quadratic effects refer the random 
effects of time, whereas age effects are fixed effects of age. 
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Table 4 
Posterior Predictive Checks for Models: Untransformed Data 

      No Lag   Lag 
   Intercept  Polynomial  Intercept  Polynomial 
Statistic Dataset  FE RE   FE RE   FE RE   FE RE 
Mean(meani) 7.50  7.50 7.50  7.51 7.51  7.50 7.51  7.51 7.50 
SD(meani) 1.25  1.27 1.22  1.26 1.23  1.26 1.21  1.26 1.21 
Skew(meani) -0.94  -0.01 -0.11  0.00 -0.10  0.00 -0.18  0.00 -0.14 
Mean(SDi) 0.66  0.73 0.66  0.73 0.67  0.72 0.66  0.73 0.67 
SD(SDi) 0.39  0.23 0.38  0.23 0.38  0.23 0.38  0.23 0.38 
Mean(AR1i) -0.06  -0.15 -0.15  -0.09 -0.08  -0.06 -0.04  -0.06 -0.04 
Mean(skewi) -0.17  0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00 
Mean(outlieri) 1.08  1.16 1.05  1.17 1.07  1.15 1.06  1.16 1.06 
SD(outlieri) 0.72  0.40 0.64  0.43 0.64  0.41 0.64  0.42 0.64 
SD(beta_agei) 0.22  0.18 0.18  0.20 0.19  0.20 0.21  0.20 0.20 
Cor(meani, SDi) -0.48  0.00 -0.50   0.00 -0.48   0.00 -0.51   0.00 -0.49 

Note. FE = Fixed error (within person SD); RE = Random error 
(within person SD). Values indicate mean statistic for samples 
generated from posterior density estimates. Dataset is the statistic 
for the sample data. Mean, SD, Skew and Cor are functions of 
participant-level statistics. Arguments in parentheses with 
subscript i indicate that it is a property of the individual (e.g., mean 
SWB score for ith individual). See method for details. 



BAYESIAN WELLBEING  

 

35 

Table 5 
Posterior Predictive Checks for Models: Probit Transformed Data 

      No Lag   Lag 
   Intercept  Polynomial  Intercept  Polynomial 
Statistic Dataset  FE RE   FE RE   FE RE   FE RE 
Mean(meani) 7.50  7.48 7.49  7.48 7.49  7.48 7.50  7.48 7.49 
SD(meani) 1.25  1.22 1.22  1.23 1.23  1.22 1.21  1.23 1.22 
Skew(meani) -0.94  -0.54 -0.56  -0.54 -0.55  -0.54 -0.57  -0.55 -0.56 
Mean(SDi) 0.66  0.70 0.66  0.73 0.70  0.69 0.66  0.73 0.69 
SD(SDi) 0.39  0.26 0.37  0.29 0.37  0.26 0.37  0.29 0.37 
Mean(AR1i) -0.06  -0.15 -0.15  -0.05 -0.03  -0.06 -0.05  -0.04 -0.01 
Mean(skewi) -0.17  -0.12 -0.10  -0.12 -0.11  -0.12 -0.10  -0.12 -0.11 
Mean(outlieri) 1.08  1.11 1.05  1.18 1.12  1.10 1.04  1.17 1.11 
SD(outlieri) 0.72  0.45 0.61  0.54 0.64  0.46 0.61  0.53 0.63 
SD(beta_agei) 0.22  0.17 0.17  0.21 0.20  0.20 0.20  0.21 0.20 
Cor(meani, SDi) -0.48   -0.52 -0.48   -0.49 -0.49   -0.51 -0.48   -0.49 -0.49 

Note. FE = Fixed error (within person SD); RE = Random error 
(within person SD). Values indicate mean statistic for samples 
generated from posterior density estimates. Dataset is the statistic 
for the sample data. Mean, SD, Skew and Cor are functions of 
participant-level statistics. Arguments in parentheses with 
subscript i indcate that it is a property of the individual (e.g., mean 
SWB score for ith individual). See method for details. 
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Figure 1. Histograms showing the distribution for 
observations, person-level means, and deviation of 
observations from person-level means, and standarized  (Z) 
deviations from person-level means for both raw and probit 
transformed SWB.  
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Figure 2. The relationship between age and Subjective Well-
Being. Points are raw data after a small amount of random 
noise has been applied to reduce the overlap of points and 
better highlight the density of the data. Line of best fit and 
error band represents predictions and 95% credible intervals 
for estimates of group-level age effect based on probit 
transformed, polynomial, no lag, random error model. 
Predictions are truncated to only show data with at least 100 
data points above or below the given age. 
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Figure 3. Relationship between measurement occasion and 
SWB for a random sample of participants who provided data 
for all 10 measurement occasions. Each cell is one participant 
where participant ID is shown above. The same participants 
are used in both Figure 3 (a) and 3 (b). These two models 
represent the two best fitting models. In each cell the dark line 
indicates the expected value and the shaded area is the 95% 
credible interval for the given participant on the given 
measurement occasion based on the probit transformed, no 
lag, random error model with either (a) only a random-
intercept or (b) random polynomial (i.e., random intercept, 
linear, and quadratic terms).  
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(a) Random Intercept
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(b) Random Intercept, Linear, and Quadratic


