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Abstract 

 

The endothelium is involved in many of the processes related to the development of 

atherosclerosis, which is considered an inflammatory disease. Actually, traditional risk factors 

for atherosclerosis predispose to endothelial dysfunction, which is manifested as increase in 

the expression of specific cytokines and adhesion molecules. There is firm evidence 

supporting the beneficial effects of olive oil, as the most genuine component of the 

Mediterranean diet. Although the effects of olive oil and other oleic acid-rich dietary oils on 

atherosclerosis and plasma lipids are well-known, the roles of minor components have been 

less investigated. Minor components constitute only 1-2% of virgin olive oil and are 

comprised of hydrocarbons, polypohenols, tocopherols, sterols, triterpenoids, as well as other 

components usually found in traces. Despite their low concentration, non-fatty acid 

constituents may be of importance, since studies comparing monounsaturated dietary oils 

have reported different effects on cardiovascular disease. Most of these compounds have 

demonstrated antioxidant, anti-inflammatory and hypolipidemic properties. In the present 

review we summarize the current knowledge on the effects of these compounds contained in 

virgin olive oil on vascular dysfunction and the mechanisms by which they modulate 

endothelial activity. Such mechanisms involve the release of nitric oxide (NO), eicosanoids 

(protaglandins and leukotrienes) and adhesion molecules, in most cases by activation of 

nuclear factor κB (NFκB) by reactive oxygen species (ROS). 
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1. Endothelial dysfunction in cardiovascular disease 

 

1.1. Nature of the atherosclerotic process 

 

Atherosclerosis remains as the leading cause of death in the developed countries and is on 

track to become the most common cause of disease-related disability and death by the year 

2020 [1,2]. Although several theories have been proposed for the pathogenesis of 

atherosclerosis, the current trend is to consider it as a response of the vascular wall to a 

variety of agents and mechanisms, which contribute to the development of the atheromatous 

plaque [3]. The vascular endothelium is an active and dynamic monolayer of cells, which 

serves as a semipermeable barrier between blood an tissue [4]. Due to this strategic location it 

is involved in maintaining homeostasis, by sensing changes in hemodynamic forces and 

signals and responding to them by releasing bioactive substances [5,6].  

 

 Traditional risk factors for atherosclerosis, which is considered an inflammatory disease, 

predispose to endothelial dysfunction and activation of the endothelium [7]. This activation is 

manifested as an increase in the expression of specific cytokines and adhesion molecules, 

such as intracellular adhesion molecule (ICAM-1), vascular cell adhesion molecule (VCAM-

1) and E-selectin [8,9]. Circulating monocytes are attracted by these molecules and adhered to 

the endothelium, from which they transmigrate to the subendothelial space. Once within the 

endothelium, monocytes differentiate into macrophages, which scavenge oxidized LDL and 

triglyceride-rich lipoproteins (TRL), becoming foam cells and contributing to the formation of 

the atheroma in the early stages of the atherosclerotic process [7]. 

 

1.2. Function of endothelial cells. 

 

The endothelium has a major function in thrombotic and coagulant activities, synthesizing 

several molecules that are released in response to different stimuli [10]. Heparan sulfate, nitric 

oxide [NO] and prostacyclin are vasodilators, whereas thromboxane A2, prostaglandin H2 and 

endothelin 1 are vasoconstrictors [11, 12]. NO is the primary endothelial-derived relaxing 

factor playing a pivotal role in vascular reactivity [13]. It inhibits platelet aggregation [13], 

alters cell adhesion molecule expression and inhibits proliferation of smooth muscle cells [14]. 

NO is generated in the endothelial cell by NO synthase (eNOS), which converts the 

aminoacid L-arginine to NO and L-citrulline. NO diffuses from the endothelial cell to the 
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vascular smooth muscle and increases cyclic guanosine monophosphate, thereby causing 

relaxation of smooth muscle and dilation of the artery.  

 

Endothelial dysfunction occurs early in the development of atherosclerosis, even before the 

formation of the plaque [15]. Clinical studies have revealed that risk factors for 

atherosclerosis, such as smoking, hypercholesterolemia, hypertension, diabetes and 

hyperhomocysteinemia, predispose to endothelial dysfunction [7]. When dysfunctional, the 

endothelium increases flow disturbances due to improper vasoreactivity. Most importantly, it 

initiates inflammatory responses by releasing proinflammatory cytokines and chemokines. 

Thus, it increases leukocyte activation, promotes monocyte adhesion molecule expression and 

facilitates entry of monocytes and lipoproteins into the subendothelial space [16]. 

 

1.3. Measurement of endothelial function. 

 

Reliable assessment of endothelial function in humans seems to be of major importance 

and can be achieved by different approaches. The determination of soluble endothelial 

markers in blood is the most common and will be discussed later in this review. However, 

direct measurement of endothelial function would be desirable. Vasodilation can be 

measured after intra-arterial pharmacologic stimulation with substances that enhance NO 

release but this method is highly invasive. The most promising non-invasive method is the 

measurement of the flow-mediated dilation (FMD) in the brachial artery by Doppler 

ultrasonography. This technique is based on the endothelium sensitivity to shear stress, 

which elicits NO release and dilation of underlying smooth muscle [17]. Shear stress is 

caused by hyperemia (induced by cuff inflation and then deflation) and, in these conditions, 

FMD appears to be mediated mostly by NO (70%) and prostacyclin (30%) [17,18]. Thus, 

FMD may also serve as an index of NO bioavailability [19]. The endothelial signaling 

cascade responsible to concert mechanic stimuli into the release of vasodilatory molecules is 

nor fully known. Although some mechanisms have been suggested, it is probable that it 

involves phosphorylation of a serine residue of eNOS by shear stress, altering its sensitivity 

to intracellular calcium levels and hence increasing NO formation [20]. 

 

There is ample evidence that FMD is diminished in patients with atherosclerosis and 

coronary risk factors and that it can detect endothelial dysfunction in hyperlipidemia, 

hypertension and diabetes [21-23]. FMD has been shown to be decreased after a single high-
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fat meal and postprandial lipemia [24], however there are very scarce data on the effect of 

olive oil. Vogel et al. [25] found a decrease in FMD after olive oil-rich meals compared with 

canola oil and salmon, which was attributed to oxidative stress because the decrease in FMD 

was reduced by the concomitant administration of vitamins C and E.  However, these results 

should be confirmed with further investigations. 

 

2. Factors that influence endothelial function 

 

2.1. Reactive oxygen species impair the activity of nitric oxide 

 

There is ample evidence indicating that increased vascular free oxygen levels are the prime 

mechanism for endothelial dysfunction [6]. ROS may be produced during normal metabolism 

or after oxidative processes and include superoxide anion (O2
-) and hydrogen peroxide (H2O2) 

[26]. The contribution of NO and ROS to the vascular tone is inversely proportional to each 

other and the appearance of one could likely compensate for the absence of the other [27]. 

The formation of ROS is balanced by a range of antioxidant defenses, but the excess, as in 

several cardiovascular risk factors like hypercholesterolemia, hypertriglyceridemia or high 

postprandial triglyceridemia, can overwhelm these systems, leading to oxidative stress.  

 

2.1.1. Effect of hypercholesterolemia on endothelial dysfunction 

 

Hypercholesterolemia [28,29], diabetes mellitus [30] and hypertension [31,32] are related 

to increased production of superoxide anion. This anion reacts rapidly with NO to form 

peroxynitrite (OONO-) thus inactivating NO and leading to endothelial dysfunction. ROS can 

also react with polyunsaturated fatty acids (PUFA) contained in lipoproteins in the vessel wall 

initiating lipid peroxidation. The hydroperoxides formed in this process can in turn react with 

NO to form peroxynitrites, inactivating NO and can directly decrease the endothelial 

synthesis of NO [33]. In addition, altered LDL are not recognized by LDL receptors, which 

are saturable, and instead are taken up by macrophages through scavenger receptors, not 

saturable, eventually becoming foam cells. Antioxidants constitute a diverse group of 

compounds among whose effects includes inhibition of LDL oxidation by both reductions in 

the concentration and reactivity of oxidants and improved resistance of the particle to them 

[34]. The antioxidants that have received the most attention are vitamin C (ascorbic acid), 

vitamin E (α-tocopherol) and phenolic compounds. In contrast to LDL, HDL provides an 
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atheroprotective effect by inhibiting cytokine-induced endothelial cell adhesion molecule 

expression [35] and by enhancing agonist-induced vasodilation in coronary arteries [36]. 

 

2.1.2. Effect of hypertriglyceridemia on endothelial dysfunction 

 

There is evidence that hypertriglcyeridemia-induced endothelial dysfunction plays a 

critical role in this pathology. Traditionally, fasting triglyceride (TG) concentrations have not 

been considered as an indicator of coronary artery disease (CAD). The metabolic relation 

between TRL and HDL, the heterogeneity of TRL and the imprecision by which serum TG 

are determined contribute to the erosion of the relationship between TG and CAD [37,38]. 

However, the serum TG concentration is often more strongly correlated with future CAD 

incidence in multivariate analysis than is serum cholesterol [39]. Considering this evidence 

and that the TG metabolism also determines the fate of some other lipoproteins, such as LDL 

or HDL [40], TG seem to have a central role in the pathogenesis of atherosclerosis. 

 

Disorders in TG metabolism may promote atherogenesis by increasing expression of 

vascular cell adhesion molecules. The concentrations of E-selectine, ICAM-1 and VCAM-1 

are increased in the serum of patients with hypertriglyceridemia, independently of other risk 

factors [41].  

 

2.1.3. Effect of postprandial triglcyeridemia on endothelial dysfunction 

 

Postprandial triglyceridemia is also a good predictor of the presence and progression of 

atherosclerosis [42]. TRL, comprising TG contained in chylomicrons (CM) and VLDL, as 

well as their remnants, can cross the endothelial barrier and enter the arterial wall [43] and can 

be taken up by macrophages without need of further oxidation of the particles [44]. It has 

been suggested that the entry of lipoproteins into the arterial wall is inversely related to the 

size of the particles, and for that reason, it was thought for many years that TRL were not 

atherogenic, since they are too large to penetrate the tissue [45,46]. However, the TRL 

remnants formed after the hydrolytic activity of lipoprotein lipase (LPL) and endothelial 

lipase (EL) can enter the arterial intima and thus, be more atherogenic than their nascent 

precursors [47].  
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In vitro studies of endothelial cells reported that LPL-derived TRL remnants isolated from 

hypretriglyceridemic subjects have the ability of disrupt endothelial integrity [48,49]. It has 

been shown that remnant-like lipoprotein particles (RLPs) have a causative role in endothelial 

vasomotor dysfunction in human coronary arteries and that RLPs directly induced endothelial 

dysfunction in the isolated rabbit aorta [50,51]. In fact, TRL and their remnants stimulate 

endothelial cell plasminogen activator inhibitor-1 [PAI-1] production [52], which is a marker 

of endothelial dysfunction, and cause a profound depression of fibrinolytic activity [53]. TRL 

remnants also promote an enhanced thrombogenic tendency by increasing circulating factor 

VII levels [54].  

 

In addition, it has been reported that monocyte adhesion to endothelial surface is enhanced 

by TRL [55,56]. CM preparations obtained from human plasma 4h after a standard fat-

containing meal, were shown to up-regulate the expression of E-selectin and VCAM-1. 

Interestingly, TRL did not require LPL to promote the expression of adhesion molecules, 

suggesting that these particles may be pro-inflammatory themselves independently of their 

ability to release fatty acids [57]. Doi et al. [56] confirmed the up-regulation of protein and 

mRNA expression of these adhesion molecules when endothelial cells were incubated with 

TRL obtained from hypertriglyceridemic patients and they extended it to ICAM-1 and tissue 

factor (TF).  

 

The oxidative mechanism can at least partially explain the adverse effects of TRL on 

endothelial cell function. TRL accumulation in plasma leads to increased oxidative stress and 

decreased NO availability as it is associated with increase of vascular superoxide anion 

production [58]. In their study, Doi et al. [56] observed increased cellular oxidant levels in the 

endothelial cell incubation medium containing TRL and that co-incubation with α-tocopherol 

decreased the concentrations of ICAM-1 and VCAM-1.  

 

Hydrolytic enzymes, such as LPL and EL may be directly implicated in endothelial 

dysfunction, as their synthesis is up-regulated in early atherosclerosis [59]. Apart from 

smooth muscle cells, LPL is produced by monocytes and macrophages [60-63 ]. There is 

evidence that LPL activity can enhance the retention of LDL and VLDL to the arterial wall 

[64,65], but also it facilitates proteoglycan-mediated monocyte adhesion to the endothelium 

[66]. Actually, inflammatory cytokines, such as TNF-α and IL-1β can up-regulate endothelial 

derived LPL mRNA [67]. In contrast to LPL, EL is synthesized in the endothelium and has a 
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primary phospholipase activity [68]. However, its mRNA expression is also increased in 

endothelial cells by TNF-α and IL-1β [67]. The upregulation of these enzymes is thought to 

be mediated via the nuclear factor κB (NF κB) pathway [69]. NFκB can be activated by a 

number of stimuli, including lipids and ROS. These stimuli cause the phosphorilation of IκB 

and subsequent proteolytic degradation of this inhibitor subunit, allowing NFκB to translocate 

into de nucleus, where it binds to recognition sequences in DNA in order to induce gene 

expression [70].  

 

2.2. Beneficial and adverse effects of dietary fatty acids. 

 

It has been postulated that as energy needs are increased during acute inflammation, 

lipolytic enzymes are up-regulated as a way of generating free fatty acids from circulating 

lipoproteins to be used by the tissues, including the endothelium. The increase in free fatty 

acid concentrations in the endothelium has been shown to decrease endothelial NO bioactivity, 

due to both superoxide generation and reduction in eNOS activity [71,72]. In vitro studies 

suggest that PUFA are more pro-inflammatory than monounsaturated (MUFA) and saturated 

(SFA) fatty acids [73]. In fact, linoleic acid (18:2, n-6) has greater capacity to induce 

oxidative and inflammatory stress than other fatty acids. Incubation of this fatty acid with 

endothelial cells promotes NFκB activation and transcriptional activity, being this effect is 

attenuated by vitamin E [74]. Additionally, exposure of endothelial cells to linoleic acid can 

lead to production of cytokines, such as IL-6 and IL-8 [75], which are involved in the 

initiation and progression of atherosclerosis [76,77].  

 

Conversely, n-3 PUFA are believed to exert an endothelial protective effect. Particularly, 

docosahexaenoic acid (22:6, n-3; DHA) decreases expression of VCAM-1 on the vascular 

endothelium and monocyte adhesion [78-80] and eicosapentaenoic acid (20:4, n-3; EPA) 

increases NO production. Although these results from in vitro studies are promising, in vivo 

studies were more controversial. Abe et al. [41] found no reduction in soluble adhesion 

molecules after 6 weeks in patients receiving n-3 fatty acids but did find reductions in ICAM-

1 and E-selectin after 7 months. Seljeflot et al. [81] supplemented male smokers with n-3 fatty 

acids for 6 weeks finding reductions in pro-thrombogenic von Wilebrand factor but increase 

in VCAM-1 and E-selectin. Their results were corroborated by Johansen et al. [82].  
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Among the key inflammatory mediators released by the endothelium are the eicosanoids 

derived from the n-6 PUFA arachidonic acid (20:4, n-6; AA). Prostaglandin E2 (PGE2) can 

cause pain and vasodilation and leukotriene B4 (LTB4) is a chemoatractant and activator of 

neutrophils. They are formed from AA via the cyclooxygenase (COX) and 5-lipooxygenase 

(LOX) pathways, respectively. However, EPA is also a potential COX substrate and can 

compete with AA for this enzyme leading to formation of PGE3, which is synthesized with 

very low efficiency [83]. EPA is also substrate for LOX forming LTB 5, with less 

inflammatory activity compared to LTB4 [84,85]. Thus, increasing the n-3 content in the diet, 

the balance of the eicosanoids produced can be shifted to a less inflammatory mixture.  

 

3. Evidences of the benefits of olive oil on cardiovascular disease 

 
A number of epidemiological studies developed in different countries constitute a firm and 

reliable experimental base supporting the beneficial effects of the Mediterranean diet, rich in 

olive oil, in regard to the reduction of CAD [86].  

 

The Seven Countries Study, initiated by Ancel Keys in 1970 [87], was designed to investigate 

relationships between diet and CAD comparing different populations. The results of this study 

showed that the population of the Mediterranean island of Crete had the lowest rates of CAD 

and cancer, concluding that the cause might be the low saturated fat and high oleic acid 

intake, in terms of olive oil, of the Mediterranean diet. Subsequently, the Lyon Diet Heart 

Study [88] developed on patients recovering from a myocardial infarction, was the first 

clinical evidence in support of the health benefits of a Mediterranean-style diet, similar to that 

of Crete. The protective effects were ascribed to higher intakes of oleic acid and α-linolenic 

acid (18:3, n-3) and lower intakes of saturated fatty acids and linoleic acid (18:2, n-6). 

Trichopoulou et al. [89], demonstrated that the adherence to a Mediterranean diet reduced 

mortality from cancer and coronary heart disease in a Greek population of more than 22,000 

individuals. These results were more recently confirmed in subjects diagnosed of CHD [90].  

 
Cumulative evidence suggests that MUFA may be key components in the protective role of 

the Mediterranean Diet [91]. In fact, MUFA are believed to be as effective as n-6 PUFA at 

lowering total and LDL-cholesterol when replacing saturated fatty acids, as supported by two 

meta-analyses [92,93]. In addition, it has been reported that a controlled olive oil-based diet 
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can even lower plasma triacylglycerol levels [94], although there is some controversy in this 

regard [95,98].  

 

It is probable that arterial hypertension resulted to be “quantitatively” the most important risk 

factor for CHD, due to its repercussion on cardiovascular mortality [99]. Diets enriched in n-3 

PUFA are known to reduce blood pressure in humans [100,101] and in Spontaneously 

Hypertensive Rats (SHR) [102], which has been related to increased synthesis of series n-3 

eicosanoids, with a stronger vasodilator effect than their series n-6 homologous [103]. 

However, there is increasing evidence showing that olive oil reduces systolic and diastolic 

blood pressure in normotensive [14,105] and hypertensive individuals [106]. Recently, 

another study including participants that had never received a diagnosis of hypertension 

confirmed these results. It concluded that the Mediterranean diet is inversely associated with 

arterial blood pressure and that olive oil intake, per se, is inversely associated with both 

systolic and diastolic blood pressure [107]. The modification in blood pressure by dietary 

olive oil has been related to changes in the fatty acid composition of cell membrane, which 

affects its functionality [106,108].  

 

Oxidative modification of LDL is an important determinant in the development of 

atherosclerosis, as it accelerates the uptake of LDL by macrophages, which is the beginning 

of formation of a fatty streak. LDL may be protected against attacks of free radicals by 

antioxidants in plasma and in the particle itself. Lipoproteins rich in MUFA after long-term 

consumption of olive oil have been shown to be less susceptible to oxidation compared to 

particles enriched in PUFA [109-113].  

  

An increasing number of studies point out that the content of oleic acid alone can not fully 

explain the impact on health of olive oil. This conclusion has been drawn from studies 

comparing the effects of diets enriched in different monounsaturated oils [114], among which 

VOO and high oleic sunflower oil (HOSO) have been most widely used.  

 

Unlike VOO, HOSO was not able to reduce the blood pressure, in hypertensive patients 

[106]. Further studies in humans revealed that this differential effect was related to the 

composition and functionality of the cell membrane of hypertensive patients [106,115]. In 

SHR, VOO and HOSO yield to different liver, adipose tissue and myocardium lipid 

composition [116-118] and vascular reactivity [119]. These differences may be consequence 
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of a differential incorporation of the components of VOO and HOSO into TRL [120-122]. 

Actually, postprandial lipoproteins obtained after ingestion of VOO or HOSO are 

differentially incorporated into vascular cells [123], from which release of eicosanoid 

substances is also affected [124]. Furthermore, it has been reported that LDL from olive oil-

fed rats were more resistant to oxidation in vitro than those isolated from plasma of triolein-

fed rats [125]. The differential effects of different oleic acid-rich oils on LDL oxidation were 

confirmed in ten normolipidemic subjects by Nicolaiew et al., [126] after administration of 

VOO or HOSO. These data support the idea that the protective effects of olive oil against 

CAD must not be attributed exclusively to oleic acid, but to some other components of the oil. 

 

Among the differential characteristics of VOO, the quantitatively most important is the TG 

molecular species composition. Compared to HOSO, which contains mainly triolein, VOO 

contains also important amounts of dioleoy-palmitoyl-glycerol. In much lower concentrations, 

but with growing evidence of important biological effects, minor components of olive oil can 

be also used to differentiate this oil from others.  

 

4. Chemical composition of olive oil 

 

In contrast to most dietary oils, which are obtained from the seeds of the plants by means of 

solvent extraction, and refined before being edible, olive oil is obtained from the whole fruit 

of Olea Europaea L, only by physical pressure. This procedure makes olive oil unique, since 

some compounds that cannot be found in other dietary oils are transferred from the leaves and 

skin of the fruit to the oil.  

Olive oil can be classified into two fractions from a quantitative point of view. The major 

fraction constitutes 98-99% of the oil and it is mainly composed of saponifiable glyceridic 

compounds as triacylglycerols (TG). The abundance of oleic acid is peculiar to olive oil and 

ranges from 60-84% of total fatty acids in TG, while linoleic acid, the major essential fatty 

acid and the most abundant polyunsaturated acid in our diet, is present in concentrations 

between 3-21%.  

 

Minor compounds account for the rest 1-2%, comprising unsaponifiable compounds, 

phenolics and waxes, and despite of being a little proportion, they confer important biologic 

activities. The minor compounds of VOO, classified in growing order of polarity after 

developed by thin-layer chromatography are: hydrocarbons, tocopherols, fatty alcohols, 4-
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methylesterols, sterols, triterpenic dialcohols, polar-coloured pigments and phenolic 

compounds [127].   

 

One of the greatest differences between VOO and the rest of edible oils is the composition in 

hydrocarbons [128]. Among them, the most important is squalene [129], a polyunsaturated 

triterpene that appears at high concentration and makes up 60-75% of the unsaponifiable 

fraction of the olive oil [130], and it is a precursor in the biosynthesis of cholesterol and 

steroid hormones. β-carotene is also found within this group, a triterpenic polyunsaturated 

hydrocarbon which plays an important role as precursor of vitamin A and, along with 

lycopene, conferring the yellowish colour to the oil. The analysis of the sterol fraction is of 

importance because it helps to the characterisation of the species from which the oil has been 

extracted [131]. The main sterol found in virgin olive oil is β-sitosterol [95%] but 

campesterol, ∆-7 stigmastenol, stigmasterol, spinasterol and avenasterol are also present. 

VOO contains α, β, γ and ∆-tocopherols, but α-tocopherol typically accounts for more than 

85% of total tocopherols. Triterpenic dialcohols and acids, from the skin of the fruit and from 

the leaves are incorporated in second pressing oil and the final concentration is higher than in 

VOO. The main dialcohol is known as erythrodiol, which in some cases, is accompanied by 

another triterpenic-tetracyclic diol identified as uvaol. Among acids, oleanolic and maslinic 

have recently revealed some pharmacological properties, which will be discussed below. 

 

Phenolic compounds are rarely determined in routine analysis because of their solubility in 

water and diluted bleach, what explains their absence from both unsaponifiable and glyceridic 

fractions. These substances constitute the ‘polar fraction’ in VOO and underlay its 

exceptional thermal stability [132-134], contribute to its characteristic flavour and taste, and 

prevent its autooxidation, contributing to the resistance of VOO to oxidative rancidity [135]. 

Phenolic compounds have emerged as potent antioxidants present in VOO. Among these 

compounds, oleuropein itself and its derivatives, tyrosol and hydroxytyrosol, have been 

reported to have a protective role against LDL oxidation in vitro, equivalent to vitamin E 

[136]. Although it has been demonstrated that VOO phenolics are dose-dependently absorbed 

in humans [137], in plasma they are mostly present as conjugates of glucuronic acid. The in 

vivo antioxidant effect of VOO phenolics and the antioxidant capacity of the glucuronidates 

are scarce and controversial. However, interventional studies administrating increasing doses 
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of phenolic compounds in VOO have reported reduced oxidative status in healthy [138,139] 

and dyslipemic subjects [140].  

 
 
5. Effects of the components of olive oil on the endothelial function 

 

Very few studies have addressed the effects of long-term olive oil consumption on the 

endothelial function. Mediterranean diet, rich in olive oil, has been shown to improve 

endothelial function in diabetic [141] and hypercholesterolemic patients [142], as assessed by 

measuring endothelium-dependent vasoreactivity. Fuentes et al., [142] also observed a 

reduction in the plasma levels of P-selectin. In a randomized crossover trial, Ros et al. [143] 

confirmed the improvement on endothelial function in 22 hypercholesterolemic subjects 

receiving a Mediterranean diet. However, the results were more evident when part of the 

dietary olive oil was replaced with walnuts. Sondergaard et al., [144] observed a greater 

improvement in flow-mediated vasodilation (FMD) in patients receiving fluvastatin when 

they were advised of following a Mediterranean diet. Esposito et al. [145] carried out a 

randomized trial among 180 subjects with metabolic syndrome, who were instructed to follow 

a Mediterranean-style diet, including olive oil. After two year follow-up, they observed 

improved endothelial function as a measure of blood pressure and platelet aggregation 

response to L-arginine, the natural precursor of nitric oxide. They also reported a significant 

reduction of markers of systemic vascular inflammation, such as C-reactive protein and 

interleukins 6 (IL-6), 7 (IL-7) and 18 (IL-18), apart from total and LDL-cholesterol. However, 

the mechanisms by which dietary olive oil elicits these effects and which are the actual 

components of the oil responsible for the effects are poorly elucidated. Below, we show the 

current knowledge on the effects of the components of olive oil on endothelial activation. A 

graphic summary of the mechanisms is depicted on Figure 1. 

 
 

5.1. Effects of major components of olive oil on endothelial function 

 

5.1.1. Effects of oleic acid 

 

Oleic acid, the main fatty acid contained in olive oil, accounts for about 29% of the daily 

caloric intake in some Mediterranean countries. Recent studies testing the role of different 

unsaturated fatty acids in endothelial cell activation and injury, suggest that oleic acid does 
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not activate endothelial cells confirming its benefits on early events in atherosclerosis 

compared with other unsaturated fatty acids [146]. Carluccio et al. [147] reported that plasma 

concentration of oleate under conditions of high olive oil consumption are likely to be fully in 

the range of concentrations exerting biological effects in our system, likely between 10 and 

100 µmol/L.  

 

Tsimikas et al. [148] assessed the proinflammatory potential of LDL isolated from Greek 

subjects consuming a diet naturally rich in olive oil. Oleic acid content in LDL was 

significantly higher in the Greek compared Americans and was inversely correlated with the 

extent of in vitro LDL oxidation and the induction of monocyte adhesion by mildly oxidized 

LDL. To confirm that dietary fatty acids influence the proinflammatory properties of mildly 

oxidized LDL, native LDL were also isolated from American subjects after consumption of a 

liquid diet supplemented with either oleic or linoleic acid. The oleic acid-supplemented group 

had higher oleic and lower linoleic acid content in LDL than the linoleate-supplemented 

group. When exposed to oxidative stress, the LDL enriched in oleic acid promoted less 

monocyte chemotaxis and reduced monocyte adhesion, showing a strong negative correlation 

between oleic acid LDL content and monocyte adhesion. This study demonstrated that the 

level of dietary enrichment with oleic acid necessary to obtain these benefits is realistic and 

readily achieved by using diets currently in use in Mediterranean countries. Also, this study 

suggested that LDL enriched with oleic acid and reduced in PUFA may be less easily 

converted to a proinflammatory, minimally modified LDL, which has the ability to enhance 

monocyte chemotaxis and adhesion.  

 

The main challenge after these results is to discover which are the underlying mechanisms 

implicated in oleic acid beneficial effects. Initially, Tsimikas et al. [148] explained the 

mechanism by which oleic-acid enriched diets decreased lipoprotein susceptibility to 

oxidation, presumably, as a result of the decreased linoleic acid content within lipoprotein. 

However, previous experiments with liposomes progressively enriched in oleic acid but with 

constant amounts of linoleic acid, showed that particles with higher oleic acid concentration 

were less susceptible to oxidation, and monocyte chemotaxis and adhesion were nearly 

completed inhibited when exposed to mild oxidative stress, suggesting that oleic acid may 

have an additional independent mechanism of action [149]. 
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Studies on endothelial cells in vitro have shown that the main dietary PUFA and oleic acid 

may prevent endothelium activation either by inhibiting the expression of adhesion molecules 

or by improving the NO production [150]. Supplementation of endothelial cells with oleic 

acid in vitro reduces endothelial cell sensitivity to oxidants, creating a reduced prooxidant 

environment as a consequence of reduced intracellular ROS [151,152]. In this environment, 

oleate reduces the activation and mRNA expression of NF-κB and AP-1, thereby interfering 

with the endothelial expression of adhesion molecules for circulating monocytes and 

contributing to a direct vascular atheroprotective effect [153-156]. Additionally, cellular 

treatment with this fatty acid protects endothelial cells against cytokine-induced VCAM-1, 

ICAM-1, or E-selectin overexpression [147]. 

 

This condition might occur by two mechanisms: reduced enzymatic production of ROS or 

increased scavenging after their production. It has been suggested that the inhibitory potency 

of unsaturated fatty acids is directly proportional to their number of double bonds [153, 156]. 

According to this, DHA, with 6 double bonds would be 6 times more potent than oleic acid. 

However, addition to oleic acid to the culture medium significantly increases the unsaturation 

index [147], probably through selective displacement of SFA, but not PUFA, in cell 

membrane phospholipids, with a consequent modulation of gene expression for molecules 

involved in monocyte recruitment [153]. Actually, the kinetics of VCAM-1 inhibition by oleic 

acid resembles that of DHA. Similarly to what has been previously shown for DHA, the effect 

is totally independent of the stimulus used: cytokines acting on totally different receptors, 

such as IL-1, TNF-α, IL-4, or LPS, and inducing different responses [157].  

 

Oxidation of fatty acids might help scavenging of ROS, thus reducing the formation of 

superoxides that can be dismutated to hydrogen peroxide, which is in turn responsible for NF-

κB activation [158,159]. Therefore, an alteration of hydrogen peroxide metabolism in 

vascular cells may contribute to the ability of fatty acids to modulate cellular oxidant 

susceptibility [160]. 

 

Experiments with porcine artery endothelial cells (PAEC) supplemented with oleic acid and 

exposed to oxidant conditions by means of hydrogen peroxide treatment showed an attenuated 

increase in intracellular hydrogen peroxide [161]. The consequence was an increase in 

resistance to derangements caused by oxidized LDL and a reduction in oxidant mediated 
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dysfunction [160,162].  Massaro et al. [163] showed that incubating of oleate with cytokine-

stimulated endothelial cells, prevents the depletion of glutathione (GSH) and partially 

prevents stimuli-induced increase of intracellular ROS. This occurred without any change in 

the activity of GSH-related antioxidant enzymes, superoxide dismutase and catalase. These 

authors suggested that oleate may exert direct vascular atheroprotective effects by inhibiting 

endothelial activation through quenching of ROS. In contrast, incubation with linoleic and 

stearic acids reduces GHS levels and increases NFκB [146,155]. Additionally, coincubation 

of linoleic acid with TNFα doubled the production of IL-6 compared with TNFα alone. This 

was concomitant to an increment in the content of arachidonic acid in membrane 

phosphatidylethanolamine. 

 

In contrast with these results, other authors have suggested negative effects of circulating non-

esterified fatty acids like oleic acid in diabetic patients. Experiments with cultured rat aortic 

smooth cells maintained in media containing oleic acid concentrations similar to those in 

diabetic patients showed a significant increase in endothelin-1 receptor amount suggesting 

that it may contribute to the acceleration of atherosclerosis in diabetic patients. [164,165]. 

 

5.2 Effects of minor components of olive oil on endothelial function 

 

5.2.1 Effects of olive oil phenolic compounds  

 

The major phenolic compounds in olive oil, oleuropein, hydroxytyrosol and tyrosol; are 

strong antioxidants and radical scavengers [166], which can help to revert the imbalance 

between increased oxidative stress and impaired antioxidant defence that affects endothelial 

function, and therefore contributes to atherosclerotic disease progression.  

 

Associations between oxidative stress and impaired endothelial function have been 

demonstrated in experimental animal models of atherosclerosis, hypertension, 

hypercholesterolemia and diabetes [167-169]. Reduced bioavailability of NO in a setting of 

increased superoxide anion levels seems to be constant biological changes that occur in the 

vessel wall under these conditions [170]. In fact, it has been described that endothelial 

vasomotor dysfunction could be reversed in these kind of patients by the administration of 

agents capable to scavenging ROS [171-174].  
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A number of papers have reported in vitro experiments evaluating and confirming the 

antioxidant activities and the scavenging potencies of olive oil and its isolated constituents 

[175-179].  

 

The low unsaturation of olive oil fatty acids, in addition to water soluble antioxidant 

protection in the form of phenolic compounds favourably influences a reduced susceptibility 

to oxidation of olive oil-derived lipoproteins [180]. Recently, it has been reported that an 

olive oil intake of 25 mL in a single dose does not promote exacerbated hypertriglyceridemia 

or hyperglycemia, which are linked to postprandial oxidative stress. These authors found a 

postprandial increase of both tyrosol and hydroxytyrosol, two phenolic compounds frequently 

used as markers of olive oil intake. The increased concentration of these phenols in plasma 

may be related to the reduced oxidative stress, since their increase was concomitant to a 

postprandial decrease in plasma oxidized LDL.  

 

Oleuropein and hydroxytyrosol are potent scavengers of ROS and superoxide anion in 

neutrophils [177,179]. Saija et al. [175] hypothesized that whereas hydroxytyrosol can serve 

as scavenger of aqueous peroxyl radicals near the membrane surface, oleuropein acts also as 

scavenger of chain-propagating lipid peroxyl radicals within the membranes. Additionally, 

oleuropein has been shown to increase NO production from LPS-stimulated mouse 

macrophages [181] and to possess a tonic effect toward the inducible form of NO synthase 

(iNOS). Tuck et al. [166], reported that these two phenolic compounds, as well as caffeic acid 

but not tyrosol, can scavenge free radical NO (NO) and peroxynitrite in a concentration 

dependant fashion. Altogether, these features of oleuropein and hydroxytyrsol might 

contribute to increase of NO levels and to prevent formation of the powerful oxidant 

peroxinitrite [182].  

 

Besides the antioxidant properties of the phenolic compounds from extra VOO, anti-

inflammatory effects have been demonstrated in several cell types. De la Puerta et al. [183] 

studied a range of VOO phenolics in rat peritoneal leukocytes, finding inhibition of LTB4 

production by oleuropein glycosyde, caffeic acid and tyrosol. This had already been described 

in human platelets and leukocytes [184,185]. Hydroxytyrosol has also demonstrated 

inhibitory effects on LOX [185] in leukocytes, presumably by penetrating in cell membranes 

[186]. The inhibition of LTB4 production from arachidonic acid may lead to reduced platelet 

aggregation [184,187].  
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It has been described that some phenolic compounds may inhibit cytokine and eicosanoid 

production by inhibiting the IL-1β mRNA and protein expression, and the activity and 

transcription of COX-2 [183,185,188], which may contribute to the antiatherogenic properties 

ascribed to extra VOO. Miles et al., [188] showed a very strong effect of oleuropein glycoside 

but none of the phenolic compounds from olive oil studied was able to affect the production 

of IL-6 or TNF-α. However, these authors did not use oleuropein aglycone or hydroxytyrosol 

in their experiments.  

 

Monocyte adhesion to endothelial cells can also been modulated by VOO phenolic 

compounds. Carluccio et al. [189] incubated oleuropein, hydroxytyrosol and tyrosol with LPS 

or cytokine-stimulated HUVECs and observed inhibition of the expression of VCAM-1, I-

CAM-1 and E-selectin and the adhesion of monocytes. The oleuropein aglycone and 

hydroxytyrosol were the most potent phenolic compounds, which is consistent with their 

higher antioxidant activity. In contrast, to the study of Miles et al., [188] the oleuropein 

glycoside showed a low activity on adhesion molecule expression, which was attributed to its 

lower lipophilicity, and the consequent lower incorporation into membranes and interaction 

with lipids. mRNA expression for VCAM-1 was also affected, indicating a pretranscriptional 

action of the phenolic compounds. These authors observed a repression of the transcription 

factors NFκB and AP-1, the interaction of which are known to amplify VCAM-1 promoter 

activation [190]. Very recently, Turner et al. [191] also reported increased VCAM-1 and 

ICAM-1 production by VOO phenolics (namely oleuropein, hydroxytyrosol, tyrosol and 

homovanillic alcohol) but no influence on NO production or platelet aggregation. Activation 

of NF- κB involves complex signal transduction pathways that ultimately result in the 

activation of a specific IκB kinase (IKK) and translocation of NF-κB from cytoplasm to the 

nucleus. In an attempt of elucidating the mechanisms by which phenolic compounds inhibit 

NFκB, Ma et al. [192] showed that these compounds do not inhibit activation of IKK activity, 

degradation of IκBα, a component of the cytoplasmic NFκB complex, or translocation of 

activated NFκB to the nucleus, but they block the formation of NF κB/DNA binding 

complexes. These authors suggested that this blockade involves the antioxidant property of 

the phenolic compounds. 
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5.2.2 Effects of the unsaponifiable fraction 

 

The unsaponifiable fraction of VOO is also rich in other minor components with antioxidant 

and anti-inflammatory properties, such as tocopherols, sterols or terpenic compounds [193-

195].  

 

The investigation of the effects of the unsaponifiable fraction of olive oil as a whole is almost 

an unexplored field. Ochoa et al., [196] investigated the influence of VOO and HOSO, with 

different unsaponifiable fractions on the fatty acid composition and lipid peroxidation of LDL 

in rabbits. The main outcome of the study was the lower susceptibility of LDL oxidation and 

higher antioxidant content in LDL of animals fed the diet enriched in VOO, which was 

attributed to the higher phenolic content in this oil. Unfortunately, as stated above, the 

phenolic compounds of olive oil are not included in the unsaponifiable fraction.  

 

We recently incubated endothelial cells with postprandial TRL derived from the intake by 

healthy subjects of meals containing VOO, HOSO and VOO enriched in its unsaponifiable 

fraction (EVO) to a final concentration of 2.4% [124]. The unsaponifiable fraction of VOO 

was richer in squalene, terpenic compounds and waxes (long-chain fatty alcohols), whereas 

HOSO presented a higher concentration in tocopherols. The total concentration in sterols was 

similar between VOO and HOSO but in EVO, was almost double. We found a reduction in 

the production of PGE2 and TXB2 after the incubation with EVO-TRL, compared with VOO 

and HOSO (Figure 2), but no effect on NO production. These results suggest that minor 

components from VOO that are transported postprandially in TRL may have favourable 

effects on endothelial function by improving the balance between vasoprotective and 

prothrombotic factors released by endothelial cells. Despite the beneficial effects attributed to 

phenolic compounds it is very unlikely that they were responsible for the effects observed in 

this study: firstly, because its concentration in VOO and EVO was very similar, secondly, 

because due to their hydrophilic nature they are readily transported into plasma and not to 

TRL and thirdly because they appear not to affect COX activity [183]. Therefore we 

suggested that tocopherols, sterols or terpenoids might be responsible for the effects observed. 

 

Vitamin E, comprising tocopherols, tocotrienols and some of their derivatives, has a 

protective role against the attacks of free radicals, by acting as lipid based radical chain 

breaking molecules [197]. More recently, non-antioxidant functions of vitamin E have been 
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proposed, in particular as gene regulator, which seems to be unrelated to its radical chain 

breaking potential [198].  

 

Apart from protecting LDL from lipid peroxidation [199-202], α-tocopherol has an inhibitory 

effect on LDL- and cytokine-induced production and expression of adhesion molecules [203-

205] and adhesion of monocytes to endothelial cells, probably by inhibition of ICAM-1 

expression [204,206]. In cells stimulated with IL-1-β, α-tocopherol reduces the upregulation 

of ICAM-1, VCAM-1 [207] and E-selectin [206], but more importantly, it can also regulate 

the production of IL-1-β by down-regulating its gene expression [208]. However, the effect 

on adhesion molecules seems not be mediated by NFκB mobilisation [159,206]. 

 

Vitamin E can also modulate eicosanoid metabolism in endothelial cells. Actually, PGI2 

synthesis in impaired in vitamin E-deficient mice [209-210] and it can restore reduced PGI2 

synthesis in endothelial cells [211,212]. In addition, there are data indicating that α-

tocopherol inhibits 5-LOX [213] and COX-2 [214]. In a series of studies carried out by 

Meidani et al. [215-217] these authors demonstrated that α-tocopherol can eliminate the 

increase in PGE2, TXA 2 and TXB 2 by reducing the activity of COX in LPS-stimulated 

macrophages from aged-mice. This effect was found not to be due to regulation of COX 

transcription or translation, but to the effect of α-tocopherol scavenging hydroperoxydes and 

NO , which leads to lower production of peroxynitrites. There is data suggesting that 

peroxinitrites may modulate COX activation via Ca2+-dependent PLA2 activity and AA 

release [218]. 

 

Finally, pretreatment of endothelial cells with vitamin E, prevents alterations in the plasma 

membrane by hydrogen peroxide [219] and decreases oxidized LDL-mediated degradation of 

I-κB and apoptosis [220]. 

 

However not all tocopherols have same effects: α-tocopherol, but not β-tocopherol can 

regulate AP-1 [221] and integrin [222] gene expression. Inhibition of the induction of 

VCAM-1 and E-selectine by IL-1-β was time and dose-dependent for α-tocopheryl succinate, 

but not for IL-1- β [223]. In fact, α-tocopheryl succinate can inhibit cytokine-induced 

mobilisation of NFκB [223], by activating caspase-3 and caspase-6, which cleave the p65 

subunit of the transcription factor [224,225]. According to Christen et al. [226] γ-tocopherol 
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can inhibit peroxynitrite-induced peroxidation more effectively than α-tocopherol. Hence, α-

tocopherol isomers might inhibit COX activity more effectively than α-tocopherol itself 

[214]. Nevertheless, there is controversy regarding the in vivo and long-term effects of 

vitamin E and it is not clear what amounts or combinations may be beneficial in preventing 

chronic diseases [197].   

 

There are studies in humans and animals evidencing that plant sterol supplementation, 

including the most abundant in VOO, β-sitosterol, can cause a decrease in serum cholesterol 

concentration [227, 228]. One of the principal mechanisms by which this effect has been 

explained is through inhibition of the absorption of cholesterol [229]. Despite of this, a recent 

study carried out by Ho et al. [230] suggests that the mechanisms also involve decreased 

production of the apoB-containing lipoproteins from the liver and intestine. However, very 

little is known about their effect on vascular function. De Jongh et al, [231] administrated a 

mixture of phytosterols (β-sitosterol, campesterol, stigmasterol and others) to 41 children with 

familial hypercholesterolemia, finding a reduction in LDL-cholesterol but no effect on 

endothelial dysfunction as measured by FMD. However, de la Puerta et al. [194] had reported 

that β-sitosterol has antiinflamatory effects as it can reduce the auricular edema induced by 

TPA in mice. The effect was as high as that of hydroxytyrosol or oleuropein. Moreno [232] 

incubated phorbol ester (PMA)-stimulated RAW 264.7 macrophages with β-sitosterol, which 

was responsible for a reduction in ROS production and arachidonic acid release. ROS 

modulation may regulate the release of arachidonic acid by phospholipase A2, as well as the 

induction of COX-2 through NFκB activation. By this mechanism β-sitosterol might reduce 

PGE2 and LTB 4 production by macrophages, as observed in this study. Subsequently, this 

author reported that β-sitosterol can regulate the GSH redox cycle, enhancing GSH 

peroxidase and superoxide dismutase activities, hence decreasing superoxide anion levels 

although no ROS scavenger activity was found.  

 

The potential therapeutic importance of olive oil triterpenoids, encompassed of acids and 

alcohols, has not been extensively studied. Although their presence in VOO is very low, in 

olive pomace oil is very significant, as it can be as high as 120 mg/kg. For that reason, the 

concentration of triterpenic alcohols is used as a parameter of purity for the presence of 

pomace oil in VOO [233].  
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Oleanolic acid has been identified in multitude of medicinal plants [234] and has been 

reported to possess a number of biological pharmacological activities, including some 

affecting inflammation [235]. Oleanolic acid inhibits LOX and COX-2 activities [236,237], 

therefore reducing the production of PGE2 and LTB 4. Additionally, it has been shown that 

oleanolic acid can inhibit the generation of the superoxide anion by human neutrophils, which 

might occur through the protein-kinase independent pathway [238]. Although it has been 

attributed anti-inflammatory activities to the triterpenic alcohol erythrodiol, its mechanism of 

action is still unknown. Erythrodiol is able to reduce the edema caused by TPA, with a 

possible action on PLA2 [194]. 

 

We recently developed a study to evaluate the properties as vasodilator agents of oleanolic 

acid and erythrodiol and to determine their mechanism of action [195]. The vasorelaxant 

effect induced by these triterpenoids was studied in isolated thoracic rat aorta. Results from 

this work introduced the first in vitro evidence that oleanolic acid and erythrodiol evoke an 

endothelium-dependent vasorelaxation in rat aorta, and suggested that the mechanism of 

relaxation is mainly mediated by the endothelial production of NO (Figure 3). According with 

the pharmacological effects obtained, it was concluded that oleanolic acid and erythrodiol 

may have interesting therapeutic potential as new vasodilator drugs, being able to protect the 

cardiovascular system. 

 

6. Conclusion 

 

It is becoming clear that the content of oleic acid alone can not fully explain the impact on 

health of olive oil and that being VOO an unique fruit-derived oil it is rich in a number of 

minor compounds with relevant physiological and pharmacological functions. Among these 

compounds, tocopherols and phenolic compounds have demonstrated antioxidant properties, 

which may improve the endothelial function by reducing levels of ROS in the endothelium 

and, consequently, the production of eicosanoids and adhesion molecules. However, there are 

other less studied compounds that have been proved to exert important effects on the 

endothelial function. Phytosterols and triterpenoids have anti-inflammatory and vasorelaxant 

effects, respectively but their roles in the endothelium need to be further studied. The 

increasing investigations on the properties of these minor compounds are not only helping to 

explain some of the classical beneficial effects of the Mediterranean diet and VOO itself but 
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also to the emergence of other olive-derived oils, such as pomace olive oil, which being more 

enriched in these minor components, might be helpful for the prevention of CVD. 
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Table 1. Minor Component Composition of Virgin Olive Oil. 
 
 

Sub-fraction Component Concentration 
(mg/kg) 

UNSAPONIFIABLE   

 
Squalene 

 
200-7500 

β-Carotene 0.3-0.7 

    
    Hydrocarbons 

Polycyclic aromatic hydrocarbons 
 

Traces 

β-Sytosterol 1800-2600 
Campesterol <4.0% of total sterols 
∆7-Stigmasterol <0.5% of total sterols 

    Sterols 

Brassicasterol 
 

<0.1% of total sterols 

    Terpenic Dialcohols Erythrodyol + Uvaol 
 

6-10 + 18 

α-Tocopherol 60-200 
β+γ-Tocopherol 3% of total tocopherols 

    Tocopherols 

∆-Tocopherol 
 

<2% of total tocopherols 

Tyrosol  
Hydroxytyrosol  
Caffeic acid 50-800 (total phenols) 

PHENOLIC   
COMPOUNDS 

Oleuropein 
 

 

Flavour components Traces OTHERS 
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Figure 1. Proposed model for the action mechanisms of the oleic acid and minor compounds 
from olive oil based on the literature gathered for the present review. Despite the number of 
studies contributing to this model several gaps are still present, which should be filled with 
further investigations. The main mechanism by which the components of olive oil influence 
endothelial activation involves inhibition and/or scavenging of reactive oxygen species (ROS). 
Oleic acid and β-sitosterol may reduce intracellular ROS by creating a less oxidant 
environment through inhibition of intracellular ROS production. β-sitosterol may also 
enhance superoxide dismutase (SOD) activity, hence decreasing superoxide anion (O2

-) levels. 
This reduction has also been observed for the terpenoid oleanolic acid, although the 
mechanism is not presently known. Tocopherols and phenolic compounds are potent 
antioxidants that may help to reduce lipid peroxidation and to scavenge intracellular ROS and 
free radical nitric oxide (NO), reducing the formation of peroxynitrite (OONO-). ROS can 
activate the nuclear factor κB (NFκB), which is then translocated into the nucleus, where it 
binds to recognition sequences in DNA in order to induce gene expression. This mobilisation 
of NFκB is blocked by α-tocopheryl succinate but not by α-tocopherol. In contrast, phenolic 
compounds have been proposed to act blocking the formation of NFκB/DNA binding 
complexes. NFκB modulates the expression of cytokines, 5-lipooxygenase (LOX) and 
cyclooxygenase (COX), thereby affecting the levels of adhesion molecules and eicosanoids. 
However, some of the minor compounds of olive oil may act directly on these enzymes and 
cytokines. LOX and COX activities are inhibited at different points by phenolics and 
triterpenoids and IL-1β expression by phenolics and tocopherols, contributing to protect the 
endothelium against vasoconstriction, platelet aggregation and monocyte adhesion. 
Vasodilation is also suggested to be enhanced by oleuropein and oleanolic acid through 
increase of the production of nitric oxide (NO). 
 

Figure 2. Effect of the unsaponifiable fraction of olive oil in TRLs on eicosanoid production. 
HUVEC were incubated for (24 h) with TRL obtained 2 h after the ingestion of high-oleic 
sunflower (HOSO), virgin olive (VOO) or enriched-virgin olive (EVO) oils. Eicosanoid 
released to the medium were determined by EIAs. Results corresponding to PGE2, TXB 2 and 
6-keto-PGF1α are shown in panels A, B and C respectively. a: p<0.05, vs. Control; b: p<0.05, 
vs. HOSO; c: p<0.05, vs. VOO. 
 

Figure 3. Relaxant effect of oleanolic acid (A) and erythrodiol (B) in phenylephrine (10-6M) 
precontracted rat aortic rings. Addition of the NO-synthase inhibitor L-NAME (3x10-4M) 
produced a significant reduction of the endothelium-dependent relaxation to both triterpenic 
compounds (circles) compared to control (squares). ***: p<0.001, vs. Control. 
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