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Abstract 

The structural relaxation dynamics of two molecular glass forming systems have been 

analyzed by means of dielectric spectroscopy, under cooling and compression conditions. The 

relation of the dynamic slowing down with the reduction of the configurational entropy, SC, as 

predicted by Adam and Gibbs (AG), was also investigated. As SC is not directly accessible by 

experiments, it was estimated, following a common procedure in literature, from the excess 

entropy Sexc of the supercooled liquid with respect to the crystal, determined from 

calorimetric and expansivity measurements over the same T-P range of dynamics 

investigation. The AG relation, predicting linear dependence between the logarithmic of 

structural relaxation time and the product of temperature with configurational entropy, was 

successfully tested. Actually, a bilinear relation between Sexc and SC was found, with different 

proportionality factors in isothermal and isobaric conditions. Using such results, we derived 

an equation for predicting the pressure dependence of the glass transition temperature, in good 

accordance with the experimental values in literature.  

PACS codes: 64.70.Pf, 77.22.Gm, 05.70.Ce 
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1.Introduction 

According to the Adam and Gibbs (AG) model the slowing down of α-relaxation time τα in 

glass-forming systems is linked to the the increasing size NCRR of the cooperatively 

rearranging regions (CRR) [1]. AG model postulates that the free energy activation barrier for 

a CRR relaxation is linearly increasing with NCRR, that is reciprocal of configurational entropy 

SC of the system. Thus, on approaching the glass transition by cooling or compressing, the 

reduction of configurational entropy implies a slowing down of structural dynamics, 

according to the equation: 
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where τ0 is the value of τ in the limit of infinite (TSc), and CAG=(sc
*∆µ/R), with R the gas 

constant, sc
*=kBln2 and ∆µ is the free energy activation barrier for an elementary transition, 

i.e. at high temperatures where cooperativity does not take place and NCRR =1. AG model is 

derived for an ensemble in isobaric-isothermal conditions. CAG was assumed as a constant, 

since the increase of pressure and the decrease of temperature are believed to change only 

NCRR∝1/Sc. Of course, for high compression (usually for pressures comparable than the 

isothermal bulk modulus, around some GPa), changes in the structure of the material could 

take to not negligible variations of ∆µ, but this is not the case of most of the experiments 

reported in the literature. For instance, for pressure up to 1 GPa, it has been reported that the 

shape of relaxation peak of a given glass-former is not depending on pressure or temperature, 

but only on the relaxation time [2], indication that the mechanisms of relaxation are not 

altered by the compression.  
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AG model has been criticized from the theoretical point of view, especially concerning its two 

the main assumptions: (a) the barrier height grows like the number of molecules forming a 

CRR and (b) the critical configurational entropy sc* associated to a CRR is fixed and is equal 

to kBln2, independently of the size of the CRR. The first hypothesis implies that even if the 

number of molecules in a CRR is large, the number of configurations they can build is 

constant. So, a finite number of possible rearrangements in a CRR is enough to make the 

system relax, disregarding the volume of the CRR. When the volume is large, however, this 

becomes a heavy requirement that is hard to justify a priori and not obvious at all. Another 

objection to this hypothesis comes from ref.[3], where it is shown that in a number of glass 

formers if sc* is fixed to be kBln2 the extrapolated size of the cooperatively rearranging region 

NCRR is less than one, and if sc* is left as a free parameter, though constant for the whole 

experiment, NCRR remains small. Implying that, in this view the structural cooperative 

relaxation is due to the simultaneous rearrangment of few molecules, contrary to what 

evidenced from experiments [3]. The mosaic model or "random first order transition theory" 

[4] allows for an alternative derivation of a generalized AG law, where a proportionality 

between log(τ) and a power law of (TSc)-1 holds, without resorting to the above mentioned 

assumptions. Along this line, recent publications [4, 5, 6] provide careful and physically 

reasonable revisions of AG model and predictions. In spite of this shortcomings, the Adam-

Gibbs relation (Eq.1) succeeded quite well in accounting for experimental data and gained a 

considerable popularity. In fact, Eq.(1) has been successfully applied to reproduce the 

dynamics of supercooled liquids above the glass transition in many cases, both in numerical 

simulations [7, 8, 9] and experiments [10, 11, 12, 13, 14, 15 and references therein]. For 

molecular dynamics simulations, the determination of configurational entropy SC is directly 

obtained from the difference of the total entropy and the vibrational entropy of typical basins 

sampled, Svib or by the distribution of energy minima in energy landscape. Anyway, the good 
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agreement found between Eq.(1) and data of molecular dynamics simulations is puzzling, as 

the relaxation is there investigated on a very short timescale (ns-ps) where the cooperativity 

should not be so important. Other doubts can be raised about the correct decomposition 

between vibrational and configurational modes in a liquid at this short time-scale, rather than 

in a solid, as a vibration inside a definite cage cannot be precisely defined for a liquid.  

Concerning experiments, since Svib is not directly accessible, a common approximation for SC 

in literature is to calculate the excess entropy Sexc of the supercooled liquid with respect to the 

crystal. This approximation gave rise to several criticisms [16]. The main one is that the 

vibrational properties of a crystal are different from that of the supercooled liquid at the same 

T-P conditions and so a vibrational excess term is considerably contributing to Sexc [16]. As in 

supercooled liquids a relation log[τ(T,P)]∝[TSexc(T,P)]-1 is usually fulfilled [12, 13, 14, 15], a 

hypotesis about the proportionality Sexc∝SC was proposed, yielding again the relation of Eq. 

(1) [7, 17, 18]. Notwithstanding the above mentioned results appear as convincing tests of the 

AG model, the debate is still open about several issues: (a) the right way of calculating the 

configurational entropy in an experiment [16, 19, 20, 21]; (b) the physical meaning of the size 

of a CRR [21, 22, 23, 24]; (c) the amount of configurational part of Sexc [7, 17, 16, 25, 21, 26, 

27, 28, 18]; (d) the independence from pressure and temperature of the coefficient CAG in Eq. 

(1) [11, 13, 14, 29, 8, 9]. Our previous experimental studies confirmed that AG relation is 

fullfilled also at high pressure [11, 13, 14]: so a proportionality can be postulated between Sexc 

and SC or, better, a bilinear relation, with different proportionality factors gT(P) and gP(T) in 

isobaric and isothermal conditions respectively [30] (see Eq. (2) below). As required by 

general principle of thermodynamic, configurational entropy must be a function of state and 

therefore gT(P) and gP(T) are mutally dependent. In particular, when SC(T,P) is calculated 

along an isobaric path at atmospheric pressure, Patm, from the initial temperature TK till the 
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final temperature T, followed by an isothermal path at T till the final pressure P, the 

configurational entropy is expressed by: 
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where TK is defined as the temperature where Sc(TK,P=0.1 MPa)=0, (∆Cp/T)dT=[(Cp
melt-

Cp
cryst)/T]dT and ∆(∂V/∂T)pdP=-[(∂V/∂T)P

melt-(∂V/∂T)P
cryst]dP, are the excess heat capacity 

and the temperature derivative of the excess volume of the melt with respect to the crystal. 

The derivation of Eq. (2) is valid for systems in thermodynamic equilibrium (i.e. above the 

glass transition) and cannot be used for systems in the glassy state. Further details about such 

derivation and the compatibility with thermodynamic requirements for a function of state can 

be found in ref. [30]. Previous applications of Eq.(2) to represent set of isobaric data in 

molecular and polymeric glass-formers can be found in ref. [30, 32, 33]. The present 

experimental study comprises an extensive study of dynamics under isothermal compression 

of two glass formers: diphenyl-vinylene carbonate and polyphenylglycidylether, already 

partially studied [34, 35, 31, 36]. Moreover, using the above mentioned procedure, Sexc is 

calculated from calorimetric and expansivity measurements over a wide T-P range, allowing a 

direct comparison with the dielectric relaxation times τα and a succesful test of the AG model. 

In particular we show that log[τ(T,P)] is proportional to [TSc(T,P)]-1 and the proportional 

coefficient is constant for low-pressure values. Moreover, from our procedure, we derive a 

general expression for predicting from configurational entropy the values for the pressure 

dependence of the glass transition temperature in the limit of low pressure. 

 

2. Experimental procedures 

Diphenyl-vinylene carbonate (DPVC) and polyphenylglycidylether (PPGE) were obtained 

from Aldrich. Their molecular weight is 348.15 g mol-1 (DPVC) and 345 g mol-1 (PPGE). The 
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glass transtion temperature Tg, obtained by DSC (onset), is 251 K for DPVC and 258 K for 

PPGE. Dielectric measurements, both at atmospheric and at high pressure, were carried out 

using a Novocontrol Alpha-Analyzer (ν=10-3-107 Hz). For atmospheric pressure 

measurements, a parallel plate capacitor separated by a quartz spacer (geometric capacitance 

~ 90 pF) and filled by the sample was placed in the nitrogen flow Quatro cryostat. For high 

pressure measurements, a sample-holder multi-layer capacitor (geometric capacitance ~ 30pF) 

was isolated from the pressurizing fluid (silicon oil) by a Teflon membrane. The dielectric 

cell was then placed in a Cu-Be alloy high pressure chamber, provided by UNIPRESS, 

connected to a manually operated pump with a pressure intensifier able to reach 700 MPa. 

The high pressure chamber was surrounded by a metallic jacket, whose temperature was 

varied in the interval 200–360 K and controlled within 0.1 K by means of a thermally 

conditioned liquid flow. Dielectric measurements were performed after equilibrating 

temperature and pressure for enough time to have data in thermodynamic equilibrium (at least 

30 minutes or more, up to 4 times the relaxation time τ, on approaching the glass transition). 

PVT data were obtained by GNOMIX high pressure dilatometer, while absolute density 

measurements, at ambient temperature, were made using a helium pycnometer. Calorimetric 

data were obtained using a Mettler 30 Differential Scanning Calorimeter. 

 

3. Results 

The relaxation map of structural relaxation time of DPVC in isobaric and isothermal 

conditions is shown in Fig.1(a)-(b), respectively. The Vogel-Fulcher-Tamman (VFT) function 

fitting the data at 0.1 MPa has the parameters: log10(τ0/s)=-18.6±0.4, B=1200±50 K and the 

Vogel temperature T0=193±5 K. The dielectric glass transition, defined as the temperature at 

which log10(τ/s)=2, is 251 K and the steepness index m=d[log10(τ)]/d[Tg/T]⎜Tg=89. The 

isothermal scans show the linear relation log10(τ)∝(P∆V#)/RT, where ∆V# is the so-called 
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activation volume, that is decreasing with temperature:  ∆V#= 240±15 cm3mol-1 at T=271 K 

and ∆V#= 170±10 cm3mol-1 at T=306 K. From the extrapolation of the linear behavior it is 

possible to estimate the value Tg(P). It is increasing with pressure as a second order 

polynomial, but at low pressure it has a slope dTg(P)/dP= 190 K GPa-1. 

Similar considerations are valid also for data of PPGE shown in Fig.2-(a)-(b). The VFT 

function fitting parameters can be found in refs.[13, 35, 36]. Fit of data at 0.1 MPa have the 

parameters: log(τ0/s)=-15.1±0.2, B=708±10 K and the Vogel temperature T0=217±2 K. At 

times shorter than 0.1 µs times deviates from the VFT behavior, according to a crossover 

behavior often reported in literature [12]. The dielectric glass transition is 256 K and the 

steepness index m=107. The isothermal scans show a non-linear relation between logarithm 

of times and pressure, of the kind log(τ)∝B/(P0-P). A deviation from the linear behavior is 

expected for a wide pressure range, but the pressure value at which the non-linearity takes 

place is material dependent. Usually the non linearity shows up at lower pressure for systems 

with higher m index. From the extrapolation of the non-linear behavior of log10(τ/s) to 2 it is 

possible to estimate the value Tg(P). It is increasing with pressure as a second order 

polynomial, but at low pressure it has a slope dTg(P)/dP= 154 K GPa-1. 

PVT data and thermograms of DPVC and PPGE are not reported for lack of space and a 

detailed description about this procedure will be published elsewhere [53]. Anyway, 

expansivity and calorimetry data of PPGE are reported partially in refs. [34, 35, 36].  

For PPGE the specific heat was measured in both liquid and crystalline state. On the other 

hand, the temperature derivative of the volume of the crystal of PPGE was not available, and  

it was obtained from that of the glassy state. In fact, the data of the few systems reported in 

literature [50] suggest that the temperature derivative of specific volume in the glassy state is 

not more than 15% higher than in the crystalline one. Since in the supercooled liquid 

( )TV ∂∂  is nearly 3 times higher than that in the crystal phase at the same temperature, the 
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error in estimating the excess expansion (and then the term ( )isothexcS∆ ) using the glassy value 

instead of the crystalline one is negligible (less than 5%). For DPVC all the thermodynamic 

data used in the present paper are obtained directly from the comparison of supercooled and 

crystalline state in the same range of the dielectric measurements. In this case, no fitting 

procedure was applied: isothermal and isobaric reduction of excess entropy (the two terms in 

Eq.(2)) were obtained by interpolating and integrating the data. Excess entropy of DPVC is 

well represented by the function Sexc=S∞(1-TK/T), with S∞=130±1 J K-1 mol-1 and 

TK=198.7±0.8 K. Specific volume of DPVC is well represented by Tait equation V=V0(1-

0.094ln(1+P/B(T))), where V0=1.0023+6.16⋅10-4(T(°C))+4.22⋅10-7(T(°C))2 cm3/g and 

B=229⋅exp(-3.95⋅10-3 (T(°C)) MPa. The temperature derivative of the volume of the crystal 

was estimated to be (∂V/∂T)P
cryst=1.79⋅10-4 cm3g-1 K-1, only slightly changing with P 

(∂ ln[(∂V/∂T)P
cryst]/∂P∼0.6 GPa-1). Using these data the isothermal reduction of entropy 
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 can be calculated according to Eq.(2). If Eq.(1) is valid at any 

pressure, and CAG does not change with pressure as postulated in section 1, it is possible to 

obtain an expression for the “dynamic” configurational entropy, SC
DYN, i.e. the value of 

configurational entropy fulfilling AG relation:  

( )0),(ln ττ PTT
CS AGDYN

C =         (3) 

where τ0 and CAG are fixed to the values obtained at P=0.1 MPa. The test on isothermal data is 

indeed a direct check of Eq.(2). This test is shown in Fig.3-(a)-(b) for DPVC and PPGE 

respectively. Dynamic data are corresponding to those in Fig.1-(b) and Fig.2-(b).  

A proportionality between SC
DYN and ∆(Sexc)isoth is found, as expected when the bilinear 

relation of Eq.(2) is valid. The slope is equal to the ratio gP(T)/gT(Patm). From these data, it 

results that gP(T) changes negligibly with T. Moreover the ratio R=gP(T)/gT(Patm) is always 
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bigger than 1. R is 1.44±0.04 for DPVC and 1.35±0.15 for PPGE. The two functions gT(P) 

and gP(T) are expected to be different because isobaric changes include configurational, 

harmonic, and anharmonic terms of the potential energy, whereas isothermal ones, depending 

on the expansivity, have no contribution from the harmonic term of the potential energy [37, 

32]. If R was 1, the expression in Eq. (2) would reduce to that originally proposed by AG or 

to that proposed by Angell and Borick [17] for gT=gP=const different from unity. In our case 

we have that gT(Patm)/gP(T)=0.70±0.02 for DPVC and 0.74±0.08 for PPGE, that seems to 

suggest that isothermal reduction of excess entropy is much more effective in term of 

reduction of configurational entropy. Similar values of gT(Patm)/gP(T)≈0.7 have been found for 

the glass-forming van der Waals molecular liquids OTP and TPCM [30]. It is to be pointed 

out that our procedure estimates only the ratio of these two quantities and it is not possible to 

claim what is the fraction of the excess entropy that is configurational, differently from what 

stated in ref. [25]. 

 

4. Discussion 

Following our approach, Eq.(2) can be represented in this case as a bilinear equation, where 

the parameter gP(T)/gT(Patm) is constant, determined by the plot of isothermal data in Fig.3. In 

this way, taking into account the relative reduction of configurational entropy under pressure, 

it is possible to determine a “corrected” excess entropy, Sexc
C, i.e. a quantity that is always 

proportional to the true configurational entropy: 

( ) ),(),( PTSPgPTS C
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Eq.(1) can be expressed by using the new quantities as: 
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in the case gP(T)/gT(Patm) ≈1 configurational entropy can be replaced by excess entropy. 

Sexc
C was calculated for DPVC and PPGE, by using the respective values for gP(T)/gT(Patm) 

obtained from isothermal data. Fig.4 shows the test of Eq.(5) for data in isobaric (for PPGE) 

and isothermal (for DPVC) conditions. The data of the two systems collapse in two master-

curves, showing the linear behavior predicted by Eq.(1). We postulated the invariance of τ0 

and CAG on pressure, so it is true that such result is partially expected but the master-plot of 

Fig.4 is possible only because the bilinear relation between configurational entropy and 

excess entropy of the melt with respect to the crystal expressed by Eq.(2) holds. Moreover, for 

each system, the data measured in different isobaric conditions fall into one single master 

curve: that is resulting from the fact that the ratio gP(T)/gT(Patm) assumes a single value 

independent of temperature. 

The independence on pressure of CAG and τ0 is consistent to data in Fig.4. In previous 

analyses these two parameters were usually assumed as pressure-independent (for example 

Refs. [12, 13, 14, 15, 30]), but never checked. It is to be reminded that in AG model the 

energy barrier CAG should be not dependent on pressure, as long as the effective barrier for a 

CRR is increasing as CAG/SC, while configurational entropy is reducing.  

Starting from this speculation recently the assumption of CAG=const. was questioned and the 

test of the AG were retained misleading [29]. In the present work we clearly demonstrate that 

at least in the low-pressure regime, i.e. for P<300 MPa in the case of DPVC and PPGE, this 

dependence is negligible. In fact, for each system the slope of the curve log[1/τ(T,P)] vs 

1/(TSexc
C) for different isobaric condition is the same, meaning that CAG is the same. 

Noteworthy, our finding agrees with previous results obtained by numerical simulations 
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reporting a negligible variation of CAG with pressure for density changes up to the order of 

20% [8, 9] (the larger density variations in our measurements are of the order of 5-8%).   

It is important to note that sometimes an incorrect evaluation of Sc(T,P) can led to an incorrect 

evaluation of the behaviour of CAG, as well as of τ0. For example, if we consider 

Sc(T,P)∝Sexc(T,P) (gT=gP=constant) and log[1/τ(T,P)] is plotted as a function (TSexc)-1, we can 

find again a linear behaviour, but we do not find a master curve describing the data in 

different isobaric conditions (an example for PPGE is in Fig.5). From a least squares linear fit 

of the data of PPGE at different isobaric conditions from 0.1 to 240 MPa, we obtain log(τ0/s)≈ 

-15.7 and CAG/gT(Patm) changing from 45 to 56 kJ mol-1 (see inset Fig.5). This approach gives 

fitting curves completely consistent to the data, but the energy barrier is found to change too 

much (more than 25%) for density changes around 5%. Similar density effects should be 

relevant already even for cooling at ambient pressure. Summarizing, fitting the relation 

log[1/τ(T,P)] versus (TSexc)-1 with a CAG dependent on pressure is possible, but the results are 

not in agreement with the physical meaning of the quantities involed in AG model. On the 

other hand, assuming a negligible dependence of logτ0 and CAG on pressure, at least for very 

low pressure, is quite natural. Moreover, by estimating the ratio between excess and 

configurational entropy under isothermal reduction, a straightforward method to calculate 

Sexc
C allows the construction of the master-curve predicted by Eq.(1). 

However the present study shows how, from the experimental point of view, the AG equation 

could represent very well the data with CAG(P) strongly changing with pressure or, 

alternatively, with a bilinear relation between excess and configurational entropy. Choosing 

one option rather than the other is just a matter of belief and of general considerations and it 

cannnot come unequivocally from the present experimental data. We prefer the bilinear 

approach since it gives a master-curve of the data (Fig.4). Moreover, there is a physical reason 

to rationalise the result, since a different proportionality between the reduction of excess and 
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configurational entropy is expected if such reduction is performed isothermally or 

isobarically. In fact, the vibrational contribution of the excess entropy should change less 

under isothermal compression than under isobaric cooling. On the other hand, this does not 

exclude the other possibility. 

From Eq.(1) it is possible to calculate the pressure dependence of the glass transition 

temperature, Tg, defined such as the isochronal locus where τ(P,Tg(P))=100 sec. According to 

the AG model, T-P couples of values corresponding to the condition τ(P,Tg(P))=100 sec are 

those satisfying the condition (TSc)=const. Solving the equation d(TSc)Tg=0 with Eq.(2) we 

obtain that in the low P limit the pressure dependence of the glass transition temperature can 

be described by: 
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where Vg is the specific volume of the glass, ∆α the excess expansivity, and ∆Cp excess heat 

capacity calculated at the glass transition at ambient pressure. 

In Fig.6 experimental values of dTg/dP at ambient pressure, dTg/dP|P=atm for DPVC and PPGE, 

are compared with those predicted by the theory (Eq. (6)), using the values of gP(T)/gT(Patm) 

found from the analysis of relaxation time data. A good agreement is obtained. Moreover, the 

value of dTg/dP|P=atm is reported in literature for many systems, and the comparison between 

the experimental value and that calculated through Eq.(6) can be another way to test AG 

model. Actually such comparison was considered in literature to test the validity of different 

theories of the glass transition [38, 39, 40, 41, 42]. Also the AG theory was tested with this 

procedure, but considering that Sc(T,P)∝Sexc(T,P). As the ratio gP(T)/gT(Patm) is different than 

1, this assumption led to an incorrect evaluation of dTg/dP|P=atm and consequently to 

sometimes incorrect conclusion [38, 39]. In Fig.6 the experimental values of dTg/dP|P=atm of 
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several glass-formers are plotted versus the quantity X, obtained from thermodynamic data 

from literature [42, 43, 44]. There is a fairly good agreement, with the two quantities roughly 

proportional, and a  proportionality constant in the range where usually gP(T)/gT(Patm) is 

found. This further result confirm that AG model, despite many weak points, is able to 

describe experimental data of glass formers. The introduction of Eqs. (4) for the calculation of 

configurational entropy makes possible a fully consistent analysis of the relaxation behavior.  

 

5. Conclusion 

In this paper we proposed a straightforward test of the AG model for the glass 

transition. The analysis was performed on two molecular glass-formers, DPVC and PPGE. 

These systems are suitable for this type of analysis since we know their thermodynamic and 

dynamic data in the same (T,P) interval, so that Sc(T,P) can be calculated in the same interval 

of τ(T,P) without the necessity of any extrapolation procedure. First, we compared the 

isothermal reduction of excess entropy (Fig.3) to what should be expected from AG model for 

τ(T,P) . The quantity ( )0),(ln ττ PTTCS AG
DYN
C =  should shift linearly with the isothermal 

reduction of excess entropy only if AG model is valid and we found directly such 

proportionality for a wide range of pressures and temperatures and for both systems. So AG 

prediction, i.e. the inverse of logarithm of relaxation time proportional to 1/(TSexc), was found 

valid. On the other hand, our test evidenced that the slope was not 1, as expected, but higher: 

the proportionality constant is therefore different if the entropy is reduced isothermally rather 

than isobarically. As a second approach, we followed the suggestion of ref. [29], that, 

criticizing AG test to pressure data, postulated a variation of the proportionality constant CAG 

with pressure. Surpisingly we found (Fig.6) a linear behaviour between log[1/τ(T,P)] and 

(TSexc)-1, but with a slope CAG/gT(Patm) strongly pressure dependent. Such a variation, at least 

for moderate pressure, would be in contrast with the assumption of original AG model, where 
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the activation energy was assumed to increase with the CRR size and the free energy barrier 

∆µ was taken as constant. Of course, such assumption may be contradict by the present 

results. Summarising, the AG model - in conjunction with the conventional assumption that 

excess and configurational entropy are identical or strictly proportional- is disproved by the 

present paper. On the other hand, a linear behavior can still be found between log[1/τ] and 

(TSexc)-1 along isobaric or isothermal path variations, but with different proportionality 

constants. The AG model can be so preserved only if a bilinear relation between excess and 

configurational entropy is considered or if a strong pressure dependence of activation barrier 

CAG is allowed even for small density variations. This last condition is at odds with the 

assumptions of the original AG model [1] and with the results of recent numerical simulations 

[8, 9]. Moreover, by using the bilinear approach and the calculation of Sc by Eqs. (4), from the 

AG equation we can calculate values of dTg/dP|P=atm in agreement with the experimental ones. 

Summarizing, a careful comparison of the pressure dependence of relaxation time with the 

isothermal reduction of excess entropy allows a direct check of the AG model. The procedure 

shown here can be extended to any other systems where thermodynamic and dynamic data are 

obtained in the same range close to the glass transition at different pressures and 

temperatures. 
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Figure Captions 

Fig.1 Logarithm of relaxation time as a function of (a) the inverse of temperature or (b) 

pressure for DPVC (solid and open symbols respectively). Lines are VFT fit for (a) and linear 

regression for (b). 

 

Fig.2 Logarithm of relaxation time as a function of (a) the inverse of temperature or (b) 

pressure for PPGE (solid and open symbols respectively). Lines are VFT fits. 

 

Fig.3. (a) Plot of SC
DYN (Eq.3) versus ∆(Sexc)isoth (Eq.2) for isothermal data of DPVC (solid 

symbols). Continuous lines are from linear regressions.  Dotted line shows the slope=1.  (b) 

Plot of SC
DYN (Eq.3) versus ∆(Sexc)isoth (Eq.2) for isothermal data of PPGE (open symbols). 

Continuous lines are from linear regressions.  Dotted line shows the slope=1. 

 

Fig.4 Logarithm of relaxation time as a function of the inverse of the product between 

temperature and “corrected” excess entropy, (TSexc
C)-1 from Eq.(4b). From left to right: black 

close symbols are isobaric data of PPGE (the same as in Fig.2(b)) and coloured close symbols 

are isothermal data of DPVC (the same as in Fig.1(b)). Lines are from linear regressions.  

 

Fig.5 Logarithm of relaxation time (symbols) as a function of the inverse of the product 

between temperature and excess entropy, (TSexc)-1. Solid symbols correspond to data at 

different isobaric conditions (indicated). The lines are fitting curves obtained with a least 

squares procedure. Inset: activation energy CAG/gT(Patm) (stars) plotted versus pressure, 

dashed line is from a linear regression. 
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Fig.6 Pressure derivative of the glass transition temperature plotted versus the quantity X of 

Eq.6. Star symbols indicate the systems studied in this paper. Circles are from literature data: 

glycerol (GLY) [45], propanol (n-PROH) [12, 46, 47], selenium (Se) [42], polyisoprene 

(1,4PiS) [48], B2O3 [39, 42, 36], salol (SAL) [12, 49], polyvinylacetate (PVAc) [48, 38, 42], 

polyisobutene (PiBUTE) [48, 42], OTP and TCPM [12, 30, 50, 51, 52, 42], PDE and KDE 

[53, 54], polystyrene [48]. Additional values for pressure derivatives of Tg are from ref. [55]. 

Dasehd, continuous and dotted lines are the predictions for gT(Patm)/gP(T)=0.6, 0.7, 0.8 

respectively. 
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