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Abstract

We present a three-dimensional lattice-gas model with trivial thermodynamics, but non-trivial dynamics. The model is characterized
by each particle having its own random energy landscape. The equilibrium dynamics of the model were investigated by continuous time
Monte Carlo simulations at two different densities at several temperatures. At high densities and low temperatures the model captures the
important characteristics of viscous liquid dynamics. We thus observe non-exponential relaxation in the self part of the density auto-cor-
relation function, and fragility plots of the self-diffusion constant and relaxation times show non-Arrhenius behavior.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A mechanical system of N spherically symmetric parti-
cles is completely characterized by its so-called energy
landscape, the graph of the potential energy function
U(r1, . . . , rN) in 3N + 1 dimensions. As suggested by Gold-
stein in his pioneering 1969 paper [1], the energy landscape
is particularly useful for elucidating the dynamics of highly
viscous liquids. This is because viscous liquid dynamics are
dominated by jumps over barriers much larger than kBT;
most time is spent on vibrations around local energy min-
ima of the landscape. However, it was only after the work
of Stillinger and Weber in the 1980s [2,3] and the enormous
growth in use of computer simulations in the 1990s that the
energy landscape became a dominant paradigm in the
study of viscous liquids [4–11]. For recent reviews see,
e.g., [12,13].

It is difficult to imagine a complex high-dimensional
landscape, but an obvious idea is to assume that there is
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an element of randomness in the landscape. In this philos-
ophy one follows Wolynes, who argued that some phenom-
ena occurring in a specific complex system are typical of
those that occur in most systems chosen randomly out of
an ensemble of possible systems [14].

A possible disordered landscape consists of a high-
dimensional lattice with random, uncorrelated energies
chosen, e.g., according to a Gaussian, with nearest-neigh-
bor Metropolis dynamics. This model, which has trivial
thermodynamics, has been shown to reproduce a number
of observed properties of viscous liquids, and the low-tem-
perature dynamics of the model are understood to be dom-
inated by site percolation [15,16]. However, the model does
not have a meaningful thermodynamic limit; if the distribu-
tion of energies is chosen such that the mean energy is
extensive, the relaxation times are not intensive. The prob-
lem, of course, is that a single nearest neighbor jump on
the lattice changes the energy by an extensive amount,
effectively corresponding to a complete rearrangement of
all molecules. Another problem is how dimensionality
is reflected in the energy landscape. Many condensed mat-
ter systems behave differently in two, three and four
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dimensions. If this applies also for viscous liquids, it must
somehow be reflected in the landscape.

The question we consider here is: Is it possible to con-
struct a sensible ‘generic’ random landscape model? Such
a model should obey the following requirements:

1. It should have a well-defined thermodynamic limit, i.e.,
extensive average energy and intensive relaxation times.

2. It should reflect the dimensionality of space.
3. All sites should be statistically equivalent, thereby ensur-

ing translational invariance on the average.

2. The model

The energy landscape is attractive because it abstracts
from three dimensions. Nevertheless, we would like to
suggest that the simplest way to have a model obeying the
requirements listed above is to return to three dimen-
sions.

Consider a lattice gas in three dimensions. If random
energies are assigned to the lattice sites, the system is
described by Fermi statistics. This corresponds to particles
in an external random potential, thus with no translational
invariance and only the trivial self exclusion particle–parti-
cle interaction. A simple modification turns this model into
a highly non-trivial model, namely to assume that each
particle has its own energy landscape, i.e., the energy of
the system is given by (where ri is the lattice position of
particle i, d is the Dirac d-function, and k is a positive
constant):

E ¼
X

i

�iðriÞ þ k
X
i6¼j

dðri � rjÞ: ð1Þ

The first term is the energetic interaction; for each lattice
site, r, and each particle, i, the energy, �i(r), is chosen ran-
domly from a probability distribution, p(�). �i(r) and �j(r)
are generally different random numbers if i 5 j, i.e., parti-
cles have different energy landscapes. The second term in
Eq. (1) is the self exclusion particle–particle interaction;
no more than one particle is allowed at each lattice site.

In this model all lattice sites are statistically equivalent.
The model allows calculation of pressure and chemical
potential, and has extensive thermodynamics and intensive
relaxation times. In particular we expect that at high den-
sities, there will be a jamming effect slowing down the
dynamics considerably.

When comparing the simulation results of this model to
results from molecular dynamics (MD) simulations, one
should keep in mind that the model does not include the
high frequency vibrations associated with ‘cage-rattling’.
The dynamics that are modeled here are the ‘inherent
dynamics’ [11], i.e., the result of mapping the true dynamics
onto a series of inherent structures (local minima in the
3N � 1 dimensional energy landscape).

We make the simplest possible choice for the probability
distribution p(�): the Box distribution [p(�) = 1, 0 6 � < 1].
In this case the mean system energy per particle is easily
found to be (b � 1/kBT):

hEi
N
¼ 1

b
� 1

expðbÞ � 1
: ð2Þ

At low temperatures we thus get hEi = NkBT.
3. Simulation details

The model was simulated on a three-dimensional
L · L · L cubic lattice using the N-fold way kinetic Monte
Carlo method [17,18] with continuous time. We use
Metropolis transition rates with local Monte Carlo moves;
if a particle jumping to a nearest-neighbor site brings the
system from state i to state j, the associated transition rate
is given by

Cði! jÞ ¼ min½C0;C0 expð�bðEj � EiÞÞ�: ð3Þ

Our length and time units are defined by setting the lattice
unit a � 1 and the fastest transition rate C0 � 1.

Since each particle has its own energy landscape, the
number of different site energies are given by N · L3 =
q · L6 (q � N/L3). Storing these numbers in memory
would put a severe constraint on how large systems we
could simulate. Instead we utilize the ‘ran4’ random num-
ber generator [19] in the following way: each particle is
assigned a ‘particle-seed’, and when needed this is used
together with the appropriate site-index as input to
‘ran4’, which performs a series of bit operations to produce
a uniform random deviate in the range 0.0–1.0.

The simulations are carried out with two sets of periodic
boundary conditions, one for each term in Eq. (1). We
denote by L the lattice length associated with the parti-
cle–particle interactions. The usage of ‘ran4’ makes it pos-
sible to use much larger energy landscapes: the lattice site
index used as input to ‘ran4’ is a 32-bit integer, and for
the energy landscapes we can therefore use a side-length
of approximately 1000 (we use L times an integer), i.e.,
for all practical purposes each particle has an energy land-
scape that is infinite.

As mentioned above, we impose locality on the Monte
Carlo moves; particles can only jump to (vacant) nearest-
neighbor sites. Relaxing this requirement (letting a Monte
Carlo move consist of a random particle interchange with
a random particle/hole) gives us an efficient way to equili-
brate the model: for all the state points investigated here
the characteristic time for equilibration was found to be
less than 5 time units. Equilibration runs were done for a
time period of 1000 time units.
4. Simulation results

Two densities were simulated, each at a range of b-val-
ues, see Table 1. Our simulations agree with the analytical
expression for the mean energy (Eq. (2)). Reported results
are averages over eight independent simulations (eight



Table 1
Parameters used in simulations

q qh � 1 � q b-Values L

0.992 8 · 10�3 0,2,4, . . . , 16 10
0.999 1 · 10�3 0,1,2, . . . , 13 20

q � N/L3, qh is the density of holes (unoccupied sites). b � 1/kBT.
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different energy landscapes), and error-bars are estimated
from fluctuations between these eight simulations.
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4.1. Mean-square displacement

Fig. 1 shows the mean-square displacement, hr2(t)i, in a
log–log plot. These results look similar to what is found in
MD simulations of viscous liquids (see e.g., [20]): At long
times the dynamics are diffusive (hr2(t)i / t), and this diffu-
sive regime is preceded by a plateau that develops as the
system is cooled. In MD simulations this developing
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Fig. 1. Mean-square displacement, hr2(t)i, for qh = 1 · 10�3 (upper panel)
and qh = 8 · 10�3 (lower panel). See Table 1 for further details. Data
points are connected by straight lines. Error-bars indicate 95% confidence
interval in hr2(t)i estimated from fluctuations between eight independent
samples (uncertainties only discernible at short times).
plateau is attributed to ‘cage rattling’: particles vibrating
in a cage consisting of the nearest neighbors. In this regime
particles move considerably less than the inter-particle dis-
tance. This ‘MD scenario’ is obviously not what happens in
this model; as discussed above the vibrations on length
scales shorter than the inter-particle distance are not
included in the model. Here the developing of a plateau
means that after a particle has jumped to a nearest-neigh-
bor site, the probability for jumping back to where it came
from is (on average) larger than the probability for jumping
to a new lattice site. This leads to a slowing down of the
dynamics compared to diffusion dynamics, as allways seen
in disordered systems [31]. Only when particles have
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Fig. 2. Diffusion coefficients extracted from the mean square displace-
ments in Fig. 1. For reference the diffusion coefficient in the q = 0 limit
(non-interacting particles) is included. Lower panel: same data as upper
panel. Y-axis scaled by D0 � D(b = 0). X-axis scaled by bg to make the
data collapse at b/bg = 1. At the density qh = 1 · 10�3 we define bg = 13.
For qh = 8 · 10�3 and qh = 1 empirical scaling was used to find bg = 13.95
and bg = 30.9, respectively. For q = 0 a straight line was fitted to the data.
For the high densities data points are connected with straight lines.
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jumped several times is this correlation between jumps lost
whereupon the dynamics become diffusive. At short times
(t < 1) a regime with hr2(t)i / t is also seen – this is simply
a consequence of the time scale being so short that particles
never jump more than once.

In Fig. 2(a) we report the diffusion coefficients extracted
from Fig. 1. For reference we show here also results for the
q = 0 limit, i.e., simulations with non-interacting particles
(in this limit the model is obviously not a good model of
a liquid). In the q = 0 limit we find Arrhenius behavior
[D = D0exp(�bDE)], as expected from percolation argu-
ments [21]. In contrast, the higher densities show distinctive
non-Arrhenius behavior; the model exhibits ‘fragile’ behav-
ior. To facilitate comparison with Angell’s fragility plot
[22], we show in Fig. 2(b) the diffusion coefficients scaled
in the following way: the y-axis is scaled with the diffusion
coefficient at infinite temperature, D0 � D(b = 0) (which
scales with qh [23]), and the x-axis is scaled with an ‘inverse
glass temperature’, bg, which is here defined by the scaled
diffusion coefficients being identical at b/bg = 1 (and
bg � 13 for qh = 1 · 10�3). The degree of fragility is
observed to increase with increasing density (decreasing qh).

Fig. 3 shows the apparent activation energy, obtained by
regarding DE in the Arrhenius expression as being temper-
ature dependent:

DE ¼ �b�1 log
D
D0

� �
: ð4Þ

In the q = 0 limit DE as expected approaches the theoreti-
cal value, Ec = 0.31 [24]. At high densities, DE keeps
increasing above this value, reflecting the non-Arrhenius
behavior. There is an indication (particularly for qh =
8 · 10�3) that DE level off to a constant, indicating that
there might be a crossover from non-Arrhenius to Arrhe-
nius behavior, as seen e.g., in simulations of viscous silica
[25]. The observed indication of a crossover to Arrhenius
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Fig. 3. Apparent activation energies calculated from Eq. (4). Squares:
qh = 1 · 10�3. Triangles: qh = 8 · 10�3. Circles: qh! 1 (i.e., q = 0 limit,
non-interacting particles). Data points are connected with straight lines.
behavior might be related to ‘hitting the bottom’ of
the energy landscape, but this point deserves further
investigations.
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Fig. 4. Upper and middle panel: self part of the density–density
correlation, Gs(0, t) for qh = 1 · 10�3 and qh = 8 · 10�3, respectively. Full
lines are straight lines connecting data points. Error-bars indicate 95%
confidence interval in Gs(0, t) estimated from fluctuations between eight
independent samples. Dashed lines are fits to stretched exponentials,
exp(�(t/s)c). Fits were done for Gs(0, t) < 0.8. Lower panel: 1 � Gs(0, t) for
qh = 8 · 10�3.
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4.2. Density–density correlation (self part)

In Fig. 4 we show the self part of the density auto-cor-
relation, Gs(0, t) [26], i.e., the probability that a particle at
time t is at the same site as it was at time t = 0. Full lines
are straight lines connecting data points. Dashed lines are
fits to stretched exponentials:

f ðtÞ ¼ expð�ðt=sÞcÞ: ð5Þ

The fits are not perfect, but they capture the main charac-
teristics of the data. The fitting parameters are shown in
Fig. 5. As for the diffusion constant (Fig. 2), the relaxation
time s exhibits non-Arrhenius behavior with an indication
of a crossover to Arrhenius behavior at the lowest temper-
atures. The stretching exponent c decreases with b, indicat-
ing an increasing degree of non-exponential relaxation.
Except for the lowest temperature at each density, the
stretching exponent c seems to approach a constant close
to 0.5. A constant stretching exponent indicates time–tem-
perature superposition (TTS), i.e., that the shape of the
relaxation function is independent of temperature. We note
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Fig. 5. Fitting parameters from fitting stretched exponentials to the return
probability, Gs(0, t) (Fig. 4). Upper panel: relaxation time s. Lower panel:
stretching exponent c. Data points are connected by straight lines.
that this behavior is consistent with experiments indicating
that TTS is correlated to c = 0.5 [27]. Here we find at the
very lowest temperatures an indication that the stretching
exponent starts to increase again, which might be related
to the apparent cross-over from non-Arrhenius to Arrhe-
nius behavior discussed earlier. Simulations at lower tem-
peratures are needed to investigate this question further.

Comparing Figs. 1–4(a) and (b), one might ask: ‘why
does a plateau develop in hr2(t)i and not in Gs(0, t)?’. The
answer is, that there is indeed a plateau developing in
Gs(0, t) – this can be seen in Fig. 4(c), where we have plotted
1 � Gs(0, t) (i.e., the fraction of particles that are contribut-
ing to hr2(t)i) in a log–log plot. In fact, at short times where
no particle jumps more than once hr2(t)i = 1 � Gs(0, t). At
the lowest temperature in Fig. 4(c) this relation holds to
within 10% for t 6 100.

We note that in the q = 0 limit at low temperatures
Gs(0, t) looks quantitatively different from what is seen in
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Fig. 6. Displacement vectors, at a time where hr2i � 2, for b = 0 and 14,
respectively (q = 0.992, see Table 2 for details). The initial position of
particles that moved to a new lattice site during the time interval is
indicated by a filled circle, and the displacement vectors are shown as
straight lines.



Table 2
Parameters describing the two different sets of displacement vectors in
Fig. 6

b hr2(t)i t Gs(0, t)

0 2.02 6.2 · 101 18.6%
14 2.06 2.0 · 105 54.1%

Note: Averages are here only over particles, not ensemble/time averages.
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Fig. 4: there is a strong initial relaxation (related to jumps
with DE < 0), a stronger stretching (c � 0.3), and a final
pronounced power law regime that starts at Gs(0, t) � 0.1.
This limit (which we again stress is not a good model for
a liquid) is investigated in a separate paper [28].

4.3. Dynamical heterogeneity

It is well established that viscous liquids contain dynam-
ical heterogeneities, i.e., if subsets of particles are defined by
their dynamical properties, these tend to be correlated in
time and/or space [29,30]. Fig. 6 indicates in a qualitative
way that the model exhibits dynamical heterogeneity to
an increasing degree as temperature is lowered. In Fig. 6
we show the displacement of particles at a time where
hr2(t)i � 2 for b = 0 and b = 14 (qh = 8 · 10�3). It is evident
from the figure that the fraction of particles contributing to
the mean square displacement (i.e., 1 � Gs(0, t)) is smaller at
the low temperature (see also Table 2), and that the posi-
tions of contributing particles are correlated in space.

5. Conclusion

A novel lattice-gas model of viscous liquids with extensive
average energy and intensive relaxation times and diffusion
coefficients has been proposed. The first results from simula-
tions of the model have been presented. At high densities the
model exhibits the two non’s characterizing viscous liquids,
non-exponential relaxation and non-Arrhenius temperature
dependence of relaxation times and diffusion coefficients.
The fragility increases with density. Finally, indications of
a number of interesting features was found; (i) non-Arrhe-
nius to Arrhenius transition, (ii) time–temperature super-
position, (iii) dynamical heterogeneities.
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