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Graphical Abstract 

 

Abstract 

The photoexcited charge carriers trapping is an effective way to generate more number of 

active species like O2
•− and •OH radicals to oxidize organic carcinogens. In this study, the enhanced 

trapping of photoexcited charge carriers were successfully obtained by constructing a novel 

Cu/Bi2Ti2O7/rGO ternary photocatalyst through facile hydrothermal method. In ternary 

Cu/Bi2Ti2O7/rGO composite Cu nanoparticles and rGO sheets acts as charge carrier trappers and 

the suppression of e--h+ pair recombination was confirmed by PL analysis. The photocatalytic 

degradation ability of Cu/Bi2Ti2O7/rGO composite was examined by using Rhodamine B and 

Tetracycline as model carcinogen molecules under visible light irradiation. The Cu/Bi2Ti2O7/rGO 

composite showed ~8.7 times enhanced photocatalytic degradation ability than P25-TiO2. The 

enhancement in photocatalytic ability can be attributed to the synergistic effect between charge 

carrier trappers (Cu nanoparticles and rGO sheets) and Bi2Ti2O7 nanoparticles. The photocatalytic 

properties of Cu/Bi2Ti2O7/rGO composite was also analyzed in different reaction parameters, such 

as pH of reaction solution and initial concentration of both RhB and tetracycline molecules. The 



photoexcited charge transfer mechanism in Cu/Bi2Ti2O7/rGO photocatalyst was discussed in detail 

with the help of UV-Vis DRS and XPS analysis. The active species trapping experiments reveals 

that O2
•− radical plays major role in carcinogen degradation. The recyclability analysis shows that 

the Cu/Bi2Ti2O7/rGO photocatalyst is highly stable even after 5 cycle of carcinogen molecule 

degradation. Therefore, this research designates a promising strategy for higher photoexcited 

charge carrier trapping photocatalyst design for efficient degradation of carcinogen molecules. 

1. Introduction 

Clean and fresh water is a chief requirement for entire living organisms, and its 

obtainability is a predominant problem throughout the habitats. In the near future, availability of 

fresh water is expected to even more decline due to rapid industrialization and growth of human 

population. In specific regions, the rapid growth of dyeing and textile industries have instigated 

serious ecological difficulties 1,2. The improper treatment of dye effluents from these industries 

will contaminate ground water resources and the effluents are directly discharged to other water 

resources like ponds, rivers and lakes, and their use produces many toxic compounds like 

carcinogens that have serious effects on humans and other living organisms3. In addition, the 

extensive use of antibiotics has grabbed an attention because of its possible direct damages to 

living organisms and agriculture4,5. The antibiotics are usually used to treat bacterial diseases in 

humans and it promotes growth in animals, huge amount of antibiotics are produced and consumed 

in day to day life. Among them, tetracycline is the most important antibiotics which is widely used 

in veterinary and human medicines for disease control and growth promotion due to its high 

efficiency6. But, tetracycline can be easily entered into our aqueous environment because of its 

poor absorption, lower metabolism, exploitation and overuse. The tetracycline in aqueous 

environment could cause several direct toxicity effects and potential risks to human health. Over 

the past decades, these antibiotics and dye effluents are rapidly increasing in water environments 

and have attracted much attention4. To eradicate these challenges, many researches were targeted 

to deal with carcinogenic condemned water, like biological degradation, chemical reactions and 

physical absorption. The huge challenges in these methods are their poor efficiency as low 

concentrations and biochemical rate7–9. While compared with these traditional methods, 

photocatalytic technology is considered as promising method of degrading carcinogens in aqueous 



environment due to its very high mineralization ability, very low energy consumption, no 

secondary pollution and simple practical application. 

The photocatalytic process of semiconductors are primarily depends on the absorption of 

photons from sun and the separation of photo-excited charge carriers. Unfortunately, the 

photocatalytic activity of most photocatalyst are still low due to some draw-backs such as the lack 

of active sites, utilization of photons from sun and the limited fast photoinduced charge carrier 

recombination10–12. The catalytic degradation performance of photocatalytic materials can be 

increased by suppressing the charge carrier recombination on the photocatalyst. It is possible to 

trap the charge carriers excited in the photocatalytic materials by using noble metals and rGO 

sheets as charge carrier trappers13–15. However, rGO is a single layer of sp2 hybridized carbon 

atoms arranged in a 2D honey comb structure with high surface area, excellent mechanical, thermal 

and electrical properties. It is an excellent material which excellently supports the metal oxide 

nanoparticals used in wide range of environmental and energy applications. The combination of 

rGO with metal oxide nanoparticles results in the novel functional materials with enhanced 

performance16–18. Hence, rGO based nanocomposites shows huge enhancements in photocatalytic 

activity. The excellent surface properties of rGO sheets supports it to accept electrons which are 

excited on the photocatalytic semiconductors and helps to decline the recombination rate of 

photoinduced electron-hole pairs. In addition, the π-π conjugation between the aromatic regions 

of graphene and dyes allows the adsorption of dye molecules on the rGO surface10,13,19. Among 

several semiconductor photocatalysts, pyroclore bismuth titanate (Bi2Ti2O7) is one of the new 

visible light driven photocatalytic material owing to its moderate band gap energy of about 2.88 

eV20,21. Due to the considerable band edge positions of Bi2Ti2O7 for oxidation and reduction 

process to generate active species like hydroxyl and superoxide radicals, Bi2Ti2O7 has been 

confirmed towards the photocatalytic activity for pollutants removal and water splitting 

applications22,23. However, there are few practical difficulties while using pristine Bi2Ti2O7 

photocatalysts, such as low catalytic activity due to higher recombination rates of photo-excited 

carriers and it results with low quantum efficiency. In general, it is proved that the binary 

Bi2Ti2O7/noble metal and Bi2Ti2O7/rGO can efficiently promote the photo-excited charge carrier 

separation and transfer. A large number of binary semiconductor/noble metal and 

semiconductor/rGO nanocomposites have been synthesized and attained improvement in 

photocatalytic efficiency15,20. However, the quantum efficiency of such photocatalytic materials 



can be enhanced furthermore by introducing trappers like noble metal and rGO on the pristine 

Bi2Ti2O7 structures as ternary nanocomposites24,25. 

In present work, we constructed a novel Cu/Bi2Ti2O7/rGO (CBTG) ternary nanocomposite 

by self-assembly of a 2D rGO sheets with Cu/Bi2Ti2O7 nanocomposite to form ternary 

nanocomposite. In specific, a simple electrostatic approach has been carried out to synergistically 

couple rGO with Cu/Bi2Ti2O7 nanocomposite and the properties of thus obtained ternary 

nanocomposite are examined through several complementary characterization techniques. The 

main objective of current work is to develop high efficient separation and transmission of photo-

induced charge carriers to enhance the reactive species production by photocatalytic materials, and 

it is achieved by using Cu and rGO as trappers for photo-induced charge carriers. The suppression 

of charge carriers recombination rate is analyzed and confirmed by PL analysis. The PL analysis 

of CBTG ternary nanocomposite shows the effective decrement in PL intensity which corresponds 

to the lower recombination rate of charge carriers. The photocatalytic ability of CBTG ternary 

nanocomposite to degrade aqueous carcinogens was investigated in detail by using Rhodamine B 

(RhB) and tetracycline as a target pollutant under visible light irradiation. Furthermore, the 

possible photocatalytic mechanism and possible degradation pathways of tetracycline and RhB 

molecules have been examined and proposed in detail. Not only the degradation of carcinogens 

are enhanced in presence of rGO and Cu as charge carrier trappers in Bi2Ti2O7 photocatalyst, cyclic 

runs indicating higher stability of CBTG composite, highlighting its real time utilization. The novel 

findings reported in this work are anticipated to assist as an effective strategy in the construction 

of such high photo-excited charge carrier trapping photocatalyst to develop the catalytic 

performance towards the degradation of aqueous carcinogens. 

2. Experimental Section 

2.1 Materials 

Graphite flakes, copper sulphate pentahydrate (CuSO4.5H2O), bismuth nitrate 

pentahydrate (Bi(NO3)3.5H2O), titanium(IV) isopropoxide (Ti[OCH(CH3)2]4, sodium nitrate 

(NaNO3), hydrochloric acid (HCl), potassium permanganate (KMnO4), sulfuric acid (H2SO4), 

nitric acid (HNO3) hydrogen peroxide (H2O2), cetyltrimethyl ammonium bromide (CTAB), 

sodium hydroxide (NaOH), hydrazine hydrate (N2H4.H2O), ethanolamine (C2H7NO), ammonium 

hydroxide (NH4OH), ethanol (C2H5OH), terapthalic acid, benzoquinone (BQ), isopropyl alcohol 



(IPA), triethanolamine (TEOA), tetracycline, rhodamine B and glacial acetic acid (CH3COOH). 

All the above mentioned analytical grade chemicals were purchased from Merck Chemical 

Company and used directly without any further purification. 

2.2. Synthesize of photocatalyst 

2.2.1 Synthesis of graphene oxide (GO)  

GO was prepared by strong oxidation of graphite flakes through modified Hummer’s 

method26,27. In a typical modified hummer’s method, graphite flakes, NaNO3, and concentrated 

H2SO4 were stirred together at low temperature in an ice bath for 30 min. Subsequently, KMnO4 

was slowly added in a controlled manner to it resulting in the formation of a dark green colored 

solution. Due to the addition of H2SO4 and KMnO4 the temperature of the solution will increase 

rapidly but the ice bath was maintained to restrict the temperature as below 20°C. After 5 min of 

constant stirring the ice bath was removed and the temperature of the reaction solution was 

increased up to 40°C under stirring for 30 min. The reaction solution converted in a thick paste 

and then deionized water was added slowly to it. This reaction is exothermic and hence the 

temperature of the solution is increased. The solution was further slowly heated up to 90°C and 

constantly maintained at this temperature for 40 min. At that time, deionized water was added 

followed by dropwise addition of 30% H2O2 solution to reduce the presence of excess KMnO4. 

Now, the color of the reaction solution was changed from dark brown to yellow. The mixture was 

kept under constant stirring for some time and filtered out from the hot acidic solvent. The obtained 

filtered block like material was washed several times with warm water. Then the recovered 

material was well dispersed in cold water by sonication followed by centrifugation several times. 

The separated black colored material was dried and used for further characterization and composite 

preparation. 

2.2.2 Synthesize of pristine Cu 

The Cu nanoparticles were synthesized via typical experimental procedure, 0.01 M of 

CuSO4.5H2O were well dissolved in 50 mL of deionized water and stirred for 30 min to obtain 

homogeneous solution. Then, 0.1 M NaOH aqueous solution was added quickly until pH of the 

solution reaches 10. Finally, 1 ml of M of hydrazine hydrate was added drop wise into the solution 

under constant stirring. The reduction reaction was done in single step under reflux treatment at 



80 °C for 1 h. The shiny brown colored particles was precipitated and it was separated by 

centrifugation and washed using deionized water and anhydrous ethanol several times. The 

obtained final shiny brown product was collected and dried in vacuum at 80 °C for 6 h. 

2.2.3 Synthesize of pristine Bi2Ti2O7 and Binary CBT nanocomposite 

The Pristine Bi2Ti2O7 particles were synthesized through simple co-precipitation method. 

Initially, Titanium isopropoxide and bismuth nitrate stock solutions were prepared for Bi2Ti2O7 

synthesize. To produce stock solution A, 0.1 M of Titanium isopropoxide was hydrolyzed in 

deionized water to form a white precipitate of titanium hydroxide/oxohydroxide. The obtained 

white precipitate was dissolved in concentrated nitric acid with sonication for 10 min in closed 

container followed by the addition of deionized water to maintain an acid concentration at 1 M. 

Bismuth nitrate stock solution was prepared by dissolving 0.1 M of solid bismuth nitrate in nitric 

acid of 1 M concentration and labeled as solution B. Equal volumes of solution A and solution B 

is well mixed by stirring at 400 rpm for 15 min followed by the addition of strong ammonium 

hydroxide solution until the pH of the solution reaches 10. The formation of metal hydroxides in 

the form of precipitated was observed. The obtained precipitated was collected and washed several 

times with deionized water and ethanol and dried in hot air oven at 120 °C. The obtained dried 

material was finely grind using mortar and calcinated at 600 °C for 6 h. The binary CBT 

nanocomposite was prepared by adding 1 M of Cu nanoparticles after the addition of strong 

ammonium hydroxide solution and subsequent washing and heating process was done as same as 

the above reaction process  

2.2.4 Synthesize of ternary CBTG capsules 



 

Scheme. 1: Synthesize of CBTG capsules 

The ternary CBTG capsules was prepared by simple hydrothermal assisted self-assembly 

process (Scheme. 1). The as-prepared CBT nanocomposite was well dispersed in 150 ml of 

deionized water by constant sonication until uniform dispersion occurs. The surface of CBT 

composite was tuned as positive by adding acetic acid (drop wise) and the pH of the suspension is 

maintained at ~3. GO was well dispersed in deionized water by sonication and the pH of GO 

dispersion is maintained at ∼8 using ammonium hydroxide. The basic medium results to the 

deprotonation of the carboxylate groups in GO surface and it becomes negatively charged. Then 

0.5 wt% of GO suspension (with respect to CBT) was added to the surface tuned CBT dispersion. 

The mixing of positive and negative charged suspension causes an instant flocculation due to self-

assembly of oppositely charged components and also results in a transparent supernatant15. The 

obtained flocculated matrix with supernatant was quickly transferred to autoclave and maintained 

at 160 °C for 4 h and after that the reaction mixture was allowed to cool slowly until it attains room 

temperature. The hydrothermally treated flocculated matrix was well centrifuged to separate 

supernatant, followed by drying and annealing of the sample at 120 °C for 6 h and the obtained 

black sample is labeled as CBTG. 

 



2.3 Characterization techniques 

The crystalline phase and structure of as-synthesized photocatalyst was examined by 

powder X-ray diffraction (XRD) powder X-ray diffraction using a (Rigaku Miniflex X-ray 

diffractometer equipped with Cu Kα (λ = 1.54 Å) radiation source operating at 40 kV with 30 mA. 

The X-ray diffraction patterns were recorded for 15 min with continual scanning rate of 4° min-1 

in the wide range of 2θ = 20–80°. The chemical states of as-synthesized photocatalyst was analyzed 

by X-ray photoelectron spectroscopy (XPS) measurement was analyzed by Krotas analytical 

Instrument, Shimadzu Corporation, ESCA 3400, Japan, with Dual Mg/Al anodes and operating 

voltage at 12 kV with 25 mA under ultra-high vacuum condition. The functional groups in catalytic 

materials are analyzed by recording Fourier transform infrared (FTIR) spectra using Brucker 

Tensor 27 spectrophotometer in the range of 4000–400 cm-1 at solid KBr phase. The morphological 

characteristics of as synthesized nanostructures were characterized by field emission scanning 

electron microscope (SEM, Zeiss18 Evaluation) and transmission electron microscopy (Jeol/JEM 

2100). The high resolution transmission electron microscopy (HR-TEM) was performed by LaB6 

electron gun with an acceleration voltage of 200 kV and was analyzed by digital micrograph 

software. The optical characteristics of as-synthesized catalyst was analyzed by UV-Vis diffuse 

reflectance spectrometer (DRS) (SHIMADZU-UV 1800) in the wavelength range of about λ=200–

800 nm. The photoluminescence (PL) properties were examined by with Perkin Elmer LS-45 

fluorescence spectrophotometer at room temperature (excited at λ = 330 nm). 

2.4. Photocatalytic performance analysis and reactive species identification 

The photocatalytic degradation ability of as-synthesized samples were evaluated by the 

photocatalytic degradation of carcinogens like tetracycline and RhB in aqueous solution under 

visible light irradiation. In a typical photodegradation process, 0.5 g of catalyst was added to 100 

mL of 50 mg of pollutant solution. The catalytic reaction mixture was stirred in the dark for 30 

min to attain an adsorption–desorption equilibrium between catalyst particles and pollutant 

molecules before visible light illumination. Then the reaction solution was irradiated by the visible 

light using Xenon lamp with 100 W. The photocatalytic reaction suspension was stirred 

continuously during photocatalytic degradation process. In regular periodic intervals of irradiation, 

about 2.5 mL sample solution was collected, centrifuged and then analyzed through UV-Vis 



spectrometer. In order to find the stability and reusability of photocatalyst the several cycles of 

pollutant degrading were implemented. In addition, the reactive species responsible for 

photocatalytic degradation of pollutants were effectively determined by the trapping experiments. 

Superoxide radicals (O2
•−), hydroxyl radicals (•OH) and holes (h+) were examined by adding BQ 

(O2
•−-suppressor), IPA (•OH-suppressor) and TEOA (h+-suppressor), all the above substances were 

taken in the concentration of 0.1 mmol/100mL11. The procedures of active species trapping 

experiment was similar to the above discussed photocatalytic pollutant degradation process. The 

suppressors were added separately into the aqueous tetracycline and RhB solution before the 

addition of catalyst. 

2.5. Analysis of hydroxyl radical productions  

The production of hydroxyl radicals by synthesized nanostructures were analyzed by 

employing terephthalic acid (TA) as probe molecule. The reaction process between terephthalic 

acid (TA) and hydroxyl radicals occurs to produce 2- hydroxyterephthalic acid (HTA) (a 

fluoresecent molecule)28. In this experiment, 0.1 mM of TA solution is dissolved in 100 ml of 

deionized water. To this, 0.5 g of catalyst was well dispersed by sonication in dark for 30 min. 

Then, the reaction solution was exposed to xenon lamp. The photon-irradiated solution in the 

presence of catalyst was collected and centrifuged to remove the catalyst and the PL spectrum of 

solution was recorded at excitation wavelength of 315 nm. The PL spectrum of solution was 

recorded periodically with regular interval of time. 

  



3. Results and discussion 

3.1 Structural Analysis 
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Fig. 1: XRD spectra of as synthesized pure and composite nanostructures.  

The crystalline phase and structural analysis of as synthesized rGO, Cu, Bi2Ti2O7, CBT and 

CBTG nanostructures were carried out by XRD analysis (Fig. 1). The strong peaks in XRD 

diffractogram of as-synthesized pure and composite nanostructures shows that the obtained 

products are highly crystallized in nature. In Fig. 1, the typical XRD diffractograms of pure Cu 

and Bi2Ti2O7 nanostructures where shown, all diffraction peaks of Bi2Ti2O7 can be represented to 

its pure cubic phase. The characteristic peaks at 2θ = 14.97°, 30.2°, 32.32°, 34.63°, 38.37°, 48.26°, 

52.53°, 58.23° and 62.35° can be indexed to (222), (444), (642), (800), (662), (1042), (1062), 

(1244) and (888) planes of cubic phase of Bi2Ti2O7 (JCPDS no. 32- 0118)4,22,23. The XRD 



diffractogram of Pure Cu nanoparticles shows a typical diffraction peaks at 36.35°, 43.09° and 

50.20° can be indexed to (110), (111) and (200) planes of cubic Cu nanoparticles (JCPDS no. 04-

0836)29–31. The diffractograms of the CBT nanocomposite shows that all the characteristic 

diffraction peaks are in good arrangement with the cubic Cu and cubic Bi2Ti2O7 crystallite phases. 

These results exposed that binary nanocomposite is well composition of Cu and Bi2Ti2O7 

nanoparticles. In Fig. 1, XRD pattern of as synthesized graphite oxide shows a strong diffraction 

peak at 2θ = 10.3°, corresponding to the (001) plane of graphite oxide. In the XRD pattern of RGO 

nanosheets, the peak at 2θ = 10.3° was disappeared that confirms that GO is successfully reduced 

into rGO nanosheets15. The presence of Cu, Bi2Ti2O7 and rGO XRD peaks in nanocomposite 

confirms the well formation of ternary nanocomposite. In CBTG Nanocomposite the characteristic 

peak of rGO was not clearly visible. It is due to the merging of Bi2Ti2O7 peak with characteristic 

peak of rGO and also due to lower mass percentage composition (5%) of rGO in ternary 

nanocomposite. The XRD diffraction peaks on ternary nanocomposite is significantly widened 

this is due to the formation of small sized particles as a composition of ternary nanocomposite. 

The d-spacing of Cu and Bi2Ti2O7 was calculated as 0.21 nm and 0.298 nm for pristine Cu and 

pristine Bi2Ti2O7 from there high intense peak at 2θ= 30.2° and 43.09° respectively by using 

Bragg’s law32,33. The obtained d-spacing values were correlated with HRTEM results of respective 

pristine nanostructures. 

  



3.2 FT-IR Analysis 
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Fig. 2: FT-IR spectrographs of as-synthesized nanostructures 

The chemistry of all the functional groups and surface characteristics of as-prepared 

pristine Cu, Pristine Bi2Ti2O7, CBT and CBTG, were further investigated and clarified using FT-

IR spectroscopy and the obtained results were shown in Fig. 2. The catalytic oxidation of organic 

dyes and reagents are highly governed by the functional groups presented on the surface of 

catalytic materials. The surface behavior and surface characteristics of the catalytic materials are 

highly affected by the carboxyl functional groups12.  The FT-IR spectrum of Pristine Bi2Ti2O7 

shows the strong absorption peak between 450 cm-1 and 750 cm-1, it confirms the formation of 

metal-oxygen bonding such as Bi-O-Bi and Ti-O-Ti. The stretching peak of -OH bond vibration, 

stretching vibration peaks (1000–800 cm−1) of C-O and C-O-C bonds as well as the symmetric 

stretching vibration peak (1384 cm−1) of O-C-O still can be observed34,35. The FTIR spectrograph 



of Cu nanoparticles and all other as synthesized nanostructures shows the wider absorption peak 

at 3400 to 3800 cm-1, it corresponds to the N-H stretching vibration of amino groups and the 

hydroxyl stretching vibrations of water molecules absorbed on the surface of nanoparticles10. 

Besides, no peak of Cu nanoparticles are observed in FTIR analysis because Cu is inactive for 

infrared spectra. In the case of CBTG ternary nanocomposite, the peaks at 939 and 811 cm-1 are 

observed with less intense than the pristine nanostructures it is due to the binding of pristine 

nanoparticles with the surface of rGO11. The bands at 1632 cm-1 is developed due to the metal-O-

C vibration of Bi and Ti atoms, they are suggesting the effective atomic interaction between Bi 

and Ti with carbon atoms of rGO15. In addition, the absorption peak signals in the range between 

450 and 700 cm-1 can be attributed to the metal-oxygen bonding such as Ti-O-Ti and Bi-O-Bi 

bonding resulting on the surface of rGO15. The most of the oxidized functional groups are 

disappeared in CBTG nanocomposites and the presence of metal-oxygen bonding groups shows 

the successful incorporation of both Bi2Ti2O7 and Cu nanoparticles on the surface of rGO sheets. 

 

3.3 Morphological characterization and elemental analysis 



 

Fig. 3: SEM micro graphs of (a-b) rGO, (c-d) Pristine Bi2Ti2O7, (e-f) Pristine Cu, (g-h) CBT 

 



 

 

Fig. 4: HR-TEM images of (a,b) rGO, (c,d) Pristine Bi2Ti2O7, (e,f) CBT 



 

 

 

Fig. 5: HRTEM images of CBTG capsules 

  



 

Fig. 6: EDX analysis graph of (a) Pristine Cu, (b) Pristine Bi2Ti2O7, (c) binary CBT and (d) 

ternary CBTG capsules 

 

The detailed morphological properties of as prepared pristine Cu, Bi2Ti2O7, CBT and 

CBTG capsules were revealed by using SEM and High resolution TEM (HR-TEM) 

characterisation techniques. The formation of crumpled sheet like rGO with folding and wrinkles 

on its surface were obtained in both SEM and HR-TEM images as seen in Fig. 3 and Fig. 4. The 

SEM images of the pristine Bi2Ti2O7 as presented in Fig. 3c and 3d reveals the formation of 

spherical shaped nanoparticles with uniform size and homogeneus agglomeration. The pristine Cu 

nanoparticles shown in Fig. 3e and 3f are found to have a spherical structure with freely dispersed 

with each other this freely dispersing ability of Cu nanoparticles will results with the well 

attachment of Cu nanoparticles with Bi2Ti2O7 nanostructures and shown in fig. 3(g,h) .The SEM 

and TEM of CBTG capsules, as shown in Fig 3i and 3j respectively revealed the formation of well 

agglomerated spherical and ellipsoidal shaped CBTG capsules with size of about  ̴150 nm. 

Formation of such inorganic oxide with graphene or graphene-like material has been also reported 
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in similar studies.13,15. The difference between the TEM images of Cu and Bi2Ti2O7 nanoparticles 

with CBTG capsules are presented in Fig. 4 and Fig. 5. The size of CBTG capsules is 

comparatively larger than the pristine Cu and Bi2Ti2O7 particles due to the binding between the 

Cu and Bi2Ti2O7 nanostructures with the rGO sheets. Furthermore, the results showed that the Cu 

nanoparticles and the pyrochlore Bi2Ti2O7 nanostructures are well encapsulated in the rGO 

nanosheets. Such a tight contact between the surface of Cu and Bi2Ti2O7 nanostructures with the 

rGO sheets is desired for the reasons introduced and is expected to support the photocatalysis 

process. The encapsulation of the nanoparticles is mainly due to the electrostatic interaction 

between the nanoparticles and rGO sheets36. The surface contact between nanoparticles and rGO 

sheets was highly increased due to the enrichment of surface charges of pristine nanoparticles and 

rGO sheets during the synthesis. This obtained results indicated that electrostatic self-assembly 

approach assisted the encapsulation of Cu and Bi2Ti2O7 nanostructures with rGO sheets. During 

the electrostatic self-assembly process, the wrapping of the rGO sheets can be expected to continue 

until the attainment of charge neutralization between the positively charged CBT surface and the 

negatively charged rGO surface15,37. If the rGO loading is higher, the excess rGO sheets are 

expected to remain in the reaction solution without wrapping around the nanostructures, due to the 

lack of positively charged CBT surface. From the HRTEM images of pristine Bi2Ti2O7, CBT and 

CBTG capsules the presence of Cu and Bi2Ti2O7 nanoparticles can be clearly identified from the 

respective lattice fringes. The fringe lines with spacing of about 0.298 nm is due to the formation 

of cubic Bi2Ti2O7 particles and that of 0.21 nm corresponds to the Cu nanoparticles. The purity of 

as-prepared pristine nanomaterials and nanocomposites were further confirmed by energy 

dispersive X-ray analysis (EDX) and the results shows that the materials were highly pure in 

nature. The presence of Cu and Bi2Ti2O7 particles in CBTG capsules were confirmed by using 

EDX analysis as presented in Fig. 6. 

3.4 Chemical state analysis 
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Fig. 7: XPS spectra of CBTG: (a) survey spectra, (b) Bi-4f, (c) Ti-2p, (d) Cu-2p, (e) O-1s, (f) C-

1s. 

In order to understand the valence state and the surface chemical composition of the CBTG 

capsules, XPS  technique is used and the survey spectrum of CBTG sample was displayed at Fig. 

7a. The survey spectra introduce the presence of Cu, Bi, Ti, O and C elements. The high-resolution 

XPS analysis of the Cu-2P, Bi-4f, Ti-2p, O-1s and C-1s for this CBTG capsule was also studied 

and is represented  inFig. 7(b-f). The high resolution XPS spectra of Bi-4f region shown in Fig. 

7b is dominated by Bi-4f7/2 and Bi-4f5/2 components with the peaks observed at 157.02 and 158.08 

eV for Bi-4f7/2 whereas, 162.4 and 164.4 eV for Bi-4f5/2
38,39. The peaks at 158.8 and 164.4 eV with 

little peak shift of about 1 eV from the previously reported XPS analysis of pure Bi2Ti2O7, can be 

attributed to the interaction between pyrochlore bismuth titanate and rGO sheets. The binding 

energy of the Bi-4f7/2 component 157.02 and 158.08 eV has an intermediate value between bismuth 

metal (156.85 eV) and typical Bi(III) oxides (159.0 eV to 159.8 eV)4. InFig. 7, two peaks were 

observed at the binding energies of about 459.2, 464.8 eV, which are attributed to the Ti-2p1/2 and 

Ti-2p3/2 states40,41. A characteristic Ti-2p spin-orbit splitting of 5.6 eV ascribes to a normal state 

of Ti4+ in CBTG capsules. The peak at 464.8 eV is also due to the partially overlapped Ti-2p1/2 and 

Bi-4d3/2 peaks. The XPS spectra of Cu-2p is illustrated in Fig. 7d with two peaks at 933.4 eV and 

953.1 eV for Cu-2p3/2 and Cu-2p1/2, respectively, with the splitting of about 20 ev, which evidence 

towards the production of metallic Cu by reducing CuSO4 during hydrothermal process. The high 

resolution O-1s spectra of CBTG capsules is presented in Fig. 7e. The two peaks identified at 

530.5 eV and 531.68 eV are attributed to Bi-O lattice oxygen and Ti-O lattice oxygen bonds, 

respectively. More specifically, the existence of the peak at 531.05 eV is credited to the surface 

adsorbed -OH group and chemisorbed oxygen-containing species andmay be in favor of the 

enhancement in photocatalytic properties15,42. The interface between CBT and rGO was further 

probed by high resolution XPS analysis of element C1s and is presented  in Fig. 7f. The 

deconvolution of the obtained C-1s XPS spectra shows two peaks at 284.4 eV and 287.5 eV 

corresponding to graphitic −C−C and –O–C=O functionalities respectively. The –O–C=O 

functionalities are formed during the strong oxidation of the graphene sheets using modified 

hummers method37. The deconvoluted peak presented between 286 eV to 289 eV is comparatively 

less intense than that of GO. The significant decrement in oxygenated carbon species in CBTG 

capsules are due to the reduction of GO in to rGO during the hydrothermal reaction. This results 
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revealed that the GO is considerably reduced after the hydrothermal reaction process to form rGO 

and it’s composite with CBT. The existence of –O–C=O shows the formation of metal oxygen 

binding as Ti-O-C=O through the reduction of Ti-OH in Bi2Ti2O7 and COOH groups at surface of 

the graphene15. 

3.5 Valence band analysis 
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Fig. 8: XPS valence band spectra of CBTG capsules 

The energy band edge positioning is the predominant parameter for developing excellent 

photocatalytic materials. The adjustment of the band edges towards the desired potential levels 

will effectively enhance the light harvesting efficiency and will promote the utilization of charge 

carriers for oxidation and reduction cycles during photocatalytic activity10. The band edge 

adjustments can be greatly succeeded by introducing new energy levels and narrowing the band 

gap energy during nanocomposite formation43. The introduction of metal nanoparticles and 

graphene sheets can effectively bend the band edges of materials due to their band energy 

levels44,45. The band edges of the materials can be effectively determined by using XPS analysis 

and the XPS valance band spectra of CBTG capsules were shown in Fig. 8. The extrapolated 

dominant edge of the valence band spectra can provide the valence band value of material and it 
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was found to be 1.75 eV for the CBTG capsules. In previous research studies, the valence band 

edge of Bi2Ti2O7 was found to be 1.92 eV which is 0.17 eV higher than our CBTG capsules. The 

obtained valence band potential of the CBTG capsules is higher than the redox potential of O2/H2O 

(1.23 eV) and hence CBTG capsules can effectively splits H2O molecules to generate active 

species12. The shifting of the valence band towards conduction band could decreases the band 

separation energy thereby it results with the improved production of active species during 

photocatalytic process. 

3.6 Optical Investigation 
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Fig. 9: (a) UV-Vis DRS graph (b) Tauc plot of as synthesized nanostructures 

The photon absorbing ability of a semiconductor is inseparably linked to its electronic 

structure and it is considered as the predominant factor responsible for its photocatalytic activity14. 

The optical properties of the as-synthesized Cu, Bi2Ti2O7, CBT and CBTG nanostructures were 

characterized by UV-Vis DRS spectroscopy and is presented in Fig. 9. From Fig. 9a, it is extracted 

that all the as prepared nanostructures show strong absorbance in the visible light region. 

Predominantly, the absorption spectra of CBT and CBTG capsules shows distinctly improved 

visible-light absorption compared to other photocatalysts. While comparing with pristine Bi2Ti2O7 

ternary nanocomposite showed a shift towards the red on photon absorption edge at 460 nm. The 

photon absorption band edges of Bi2Ti2O7 and CBT were found to be 452 and 470 nm respectively. 

The characteristics absorption peaks of Cu nanoparticles were observed around 570 nm, this could 

be attributed to the surface plasmon resonance occurred in the conduction bands of Cu 
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nanoparticles. The surface plasmon resonance effect is due to the generation of strong 

electromagnetic fields at the surface of metal particles when a wavelength of incident light 

coincident with surface plasmonic optical absorption. In previous research endeavors, the surface 

plasmon resonance of Cu nanoparticles was in the absorption range between 550-590 nm because 

free electrons present in the conduction bands were persuaded and oscillated by photons46. In 

addition to that, another optical absorption peak at 500 nm was observed for the prepared Cu 

nanoparticles. This variation of optical absorption can be ascribed due to the negligible difference 

in geometry from particles to sheets and it will affect the scattering of photons to diverse extent47. 

When Cu nanoparticles composites with the metal oxides it enhances the absorption of photons in 

visible region due to surface plasmon resonance. The improvement in photon absorption ability of 

CBT is due to either improvement in charge transfer from electrons excited from plasmon 

resonance in Cu to conduction band of Bi2Ti2O7 or due to the enhancement of the local electric 

field, where electron-hole pair generation rate becomes much faster48. When the Cu and Bi2Ti2O7 

nanostructures were encapsulated with rGO, the absorption spectra of CBTG capsules shows very 

close absorption edge with CBT nanocomposite. The encapsulation of pristine Cu and Bi2Ti2O7 

nanostructures slightly decreases the light absorption ability, this may be due to the complete 

encapsulation of nanostructures within the rGO sheets36. But the composition of CBT and the 

encapsulation of these nanostructures with rGO shows better photonic absorption than the pristine 

Bi2Ti2O7. According to the above observation, it can extracted that the CBTG capsules can absorb 

visible light on a more effective way. In general, the photon absorption ability of photocatalyst is 

often associated with its band gap energy. The band gap energy of the as-prepared nanostructures 

can be determined by using Tauc plot11. The plots of (αhν)2 vs hν of as prepared samples are 

presented in Fig. 9b. The intercepts of extrapolated linear line of the curves at x-axis allow the 

calculation of the band gap energies of Bi2Ti2O7, CBT and CBTG photocatalysts. The band gap 

energies of pristine Bi2Ti2O7, CBT and CBTG was found to be 2.88, 2.75 and 2.79 eV, respectively, 

suggesting that the CBT and CBTG photocatalysis does not have huge difference in photon 

absorption ability but decrement in recombination rate of (e- - h+) will effectively increase the 

photocatalytic ability and it is discussed in next section. 
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3.7 PL analysis 

 

Fig. 10: Photoluminescence spectra of as-synthesized Bi2Ti2O7, CBT nanoparticles and CBTG 

nanocapusles. 

The photocatalytic performance of nanostructures was closely associated to the separation 

and recombination dynamics of photo-induced electrons and holes. The PL spectra of the as-

prepared nanostructures as well as the CBTG capsules can provide the information about their 

photo-induced electron-hole (e--h+) pair separation efficiency12. The (e--h+) pair recombination rate 

can be directly measured by the intensity of the PL spectrum of the respective materials. If the PL 

spectrum of the nanostructure is more intense, then the recombination of (e--h+) pair is expected 

to be higher. Otherwise, the lower PL intensity indicates that the more photoexcited electrons were 

trapped and firmly transferred through the interface of catalyst10. As presented in Fig. 10, a strong 

and wide emission band was observed at 478 nm in the PL spectra of Bi2Ti2O7 it is correspond to 

the bound excitons4. When the Cu nanoparticles are incorporated with pristine Bi2Ti2O7, the PL 

intensity was highly decreased. It is due to the existence of Schottky barriers at Bi2Ti2O7 and Cu 

interface, the Cu nanoparticles will acts as electron trap to preventing recombination of (e--h+) 

pairs13,49. The PL intensity was decreased further when rGO is introduced with the binary 

composite. The reason for the decrement in PL intensity is due to the rapid delocalization of photo-

excited electrons to the rGO sheets and reducing the (e--h+) pair recombination probability16. In 

addition, little red-shifts were observed in the PL spectra, after incorporating rGO with the CBT 

nanocomposite. It may be attributed to molecular conjugation between Bi2Ti2O7 with Cu 

nanoparticles and rGO sheets. These results clearly state that the as-prepared CBTG capsules not 

only enhances the light absorption ability, but also constrains the photo induced (e--h+) pair 

recombination which is more responsible for enhancing its photocatalytic performance. 

3.8 Photocatalytic examination and degradation kinetics of carcinogens 
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Fig. 11: Photocatalytic degradation rate curves: (a) Tetracycline and (c) RhB, and degradation 

spectral changes of carcinogens: (b) Tetracycline and (d) RhB with CBTG photocatalyst and The 



pseudo first order kinetics plot: (e) Tetracycline and (f) RhB (reaction condition: catalyst dosage 

= 100 mg, carcinogen concentration = 50 mg/L, pH = 7 and reaction time = 90 min). 

The photocatalytic carcinogen degradation potential of the as-synthesized materials were 

examined by using tetracycline and RhB as a target model carcinogen under visible light 

irradiation for 90 min. The temporal concentration of tetracycline and RhB molecules were found 

by UV-Vis analysis with difference in their peak intensities in regular periodic time intervals and 

the degradation rates of tetracycline and RhB was shown in Fig. 11. The figure shows that the 

photocatalytic degradation rate of both tetracycline and RhB was higher when using CBTG ternary 

nanocomposite than the pristine Bi2Ti2O7 and binary nanostructure as photocatalyst. The self-

stability of tetracycline and RhB molecules were tested by dissolving them in deionized water and 

the results reviled that the tetracycline and RhB molecules were highly stable in the aqueous 

solution, it is due to self photodegradation of tetracycline and RhB molecules are very slow. The 

photodegradation tetracycline was found to be 49%, 74% and 92% and in the case of RhB, the 

photodegradation rate was found to be 45%, 69% and 90%% in presence of pristine Bi2Ti2O7, CBT 

and CBTG, respectively. To analyze the self-degradation property of carcinogens, the 

photocatalytic degradation examination was performed in absence of a photocatalyst. The catalytic 

ability of CBTG was also analyzed in absence of visible light irradiation. In both tetracycline and 

RhB degradation, it is observed that the photocatalytic ability of CBTG is much higher than the 

pristine and binary nanocomposite. Additionally, to examine the practical assessment of CBTG, 

the comparative photocatalytic experiment with P25-TiO2 was also carried out. The results showed 

that the photocatalytic activity of P25-TiO2 is much lower than that of CBTG composite. From the 

obtained results it was found that the composition of rGO with CBT was able to enhance the 

photocatalytic performance and the due to the presence of oxygen containing groups like ketonic 

(C=O) groups with several zig-zag edges in rGO, it is catalytically active towards organic element 

degradation. More specifically, these zig-zag ketonic groups are highly active due to the presence 

of surplus amount of electrons and this behaviour results to the great ability towards co-ordination 

of redox reaction process13,37. Consequently, the addition of rGO to the CBT enhances the 

synergetic effect in the photocatalytic activity and the reactive species generation. The 

enhancement in chemical reactions at active sites and relative mass transfer rates is analogous to 

some other photocatalytic systems like TiO2-rGO45, MnFe2O4-rGO50, CoFe2O4/rGO51, and Co3O4-

rGO36. Furthermore, the photocatalytic degradation kinetics of tetracycline and RhB carcinogens 
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were studied in presence of as-synthesized photocatalysts and P25-TiO2 photocatalyst. The results 

suggests that the degradation of tetracycline and RhB follows the pseudo first order kinetics as 

follow: ln (
𝐶𝑡

𝐶𝑜
) = 𝑘𝑎𝑝𝑝 𝑡 ,where Ct and C0 are temeporal concentration at time t and initial 

concentration of carcinogens respectively and kapp is the apparent first order photoreaction rate 

constant per minute12. From Fig. 11e and 11f it can be extracted that CBTG shows enhanced 

photocatalytic degradation ability than CBT, P25-TiO2 and Pristine Bi2Ti2O7 nanostructures 

towards both tetracycline and RhB degradation. The photocatalytic degradation rate constant of 

CBTG is kapp= 3.08×10-2 and 2.68×10-2 for tetracycline and RhB degradation respectively. The 

degradation rate constant of CBTG is 7.7 times greater than P25-TiO2 and 1.8 times greater than 

CBT towards tetracycline degradation and 8.9 times greater than P25-TiO2 and 1.9 times greater 

than CBT towards RhB degradation. These obtained results suggests that photocatalytic 

degradation ability is highly improved when rGO and Cu is composited with Pristine Bi2Ti2O7. 

3.9 Effect of operational parameters 

3.9.1 Effect due to Initial pH of solution 
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Fig. 12: Effect of pH value on degradation of (a) Tetracycline and (b) RhB (reaction condition: 

catalyst dosage = 100 mg, carcinogen concentration = 50 mg/L and reaction time = 45 min). 

The organic carcinogenic molecules usually have a widespread range of pH value and 

hence pH of the reaction will play an important role in the characteristics of carcinogen molecules 

and also it influences on the surface charge properties of photocatalyst, the charge of carcinogen 

molecules, the size of catalytic aggregate formation, adsorption of carcinogenic molecules onto 

catalytic surface and the concentration of hydroxyl radicals (•OH)37. The photocatalytic efficiency 

of CBTG for degradation of tetracycline and RhB in different initial pH of the reaction 

solutionvaries from acidic to alkaline condition by using CBTG as photocatalytic material is 

presented in Fig. 12. From the obtained results it is found that the photodegradation of RhB and 

tetracycline molecules depends on the pH levels of the reaction solution. The results showed that 

an increase in the pH level of the reaction solution from 3 to, the photocatalytic degradation 

efficiency is also parallel  for both tetracycline and RhB. The photocatalytic degradation of both 

tetracycline and RhB molecules were gradually decreasing when the pH of the reaction solution 

increased above 10. But the degradation rate of both the carcinogens is slightly similar at pH values 

of 7-10. From the obtained results it was found that the optimum pH for efficient photocatalytic 

degradation of tetracycline and RhB molecules by CBTG photocatalyst is 7. The photocatalytic 

degradation efficiency of the catalyst depends on the adsorption ability  of the carcinogen 
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molecules. The adsorption of carcinogen molecules is influenced by the ionic nature of 

carcinogens and the surface ionic nature of photocatalyst. The tetracycline and RhB molecules are 

highly cationic nature and hence they will exists as positive ions at neutral pH and the surface 

charge of photocatalyst can be easily modified by changing the pH of reaction solution11. The 

photocatalytic surface will become more anionic if the pH of reaction solution is increased above 

7. The electrostatic force of attraction between negatively charged CBTG photocatalyst and 

positively charged carcinogen molecules may lead to sturdy adsorption of carcinogen molecules 

on the surface of CBTG photocatalyst. The higher adsorption of carcinogen molecules on the 

photocatalytic surface leads to the higher photocatalytic degradation. 

3.9.2 Effect due to Initial concentration of dye 
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Fig. 13: Effect of carcinogen concentration on degradation of (a) Tetracycline and (b) RhB 

(reaction condition: catalyst dosage = 100 mg, pH = 7 and reaction time = 45 min). 

The effect of the initial concentration upon the photocatalytic degradation of tetracycline 

and RhB by CBTG photocatalyst is illustarted in Fig. 13. The photocatalytic degradation of both 

tetracycline and RhB was examined in their various initial concentration (25, 50, 75, 100 and 125 

mg/L) while all the rest parameters were maintained as explained in typical photodegradation 

reaction. The obtain results from Fig. 13 shows that the photocatalytic degradation rates of both 

tetracycline and RhB were slowly decreased when increasing the carcinogen concentration. The 

decrement in photocatalytic degradation of carcinogen molecules at higher initial concentration is 

due to the insufficient amount of reactive species generation by the photocatalytic materials to 

degrade such higher amount of carcinogen molecules37. The photon penetration ability through the 

reaction solution also plays a major role in the activation of photocatalyst to generate the reactive 

species results in the degradation of carcinogens52–55. But in higher initial concentration of 

carcinogens, the incident light gets screened by the carcinogen molecules and thus screening effect 

decreases the possibility of light to reach the photocatalyst and results to the shrinkage of 

photocatalytic performance. 
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3.10 Hydroxyl radical production analysis 
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Fig. 14: PL spectrograph of 2-hydroxyterephthalic acid that formed upon the reaction between 

the •OH radicals produced by CBTG photocatalyst. 

The production of •OH radicals from the as-synthesized CBTG photocatalyst under visible 

light irradiation was analyzed by terephthalic acid (TA) as a probe molecule as described in the 

experimental section. The absence of any absorbance peak in PL graphs represents no emissions 

from the TA solution. When CBTG photocatalyst was added to the TA solution, the broad peaks 

with emission at 425 nm represents the formation of 2-hydroxyterepthalic acid (HTA)28. The HTA 

molecules are formed by the reaction of hydroxyl radicals with TA molecules which are generated 



by the CBTG photocatalyst and it is confirmed by PL spectrographs as shown in Fig. 14. The 

increasing peak intensity with the visible light irradiation in presence of photocatalyst indicates 

the formation of a larger number of HTA molecules and it results from the increase in production 

rate of the •OH radicals in the solution. The obtained results showed that the CBTG photocatalyst 

can produce •OH radicals in a more efficient way. In the general pathway of the photocatalytic 

reaction, when the photocatalytic material is irradiated by photons with appropriate wavelength 

excites the electrons from the valance band (VB) to conduction band (CB) and leaving the 

equivalent holes in valence band (VB). When this electron charge separation is continued in 

photocatalytic material, the carcinogen molecules either oxidized or reduced through the 

acceptance or donation of electrons. The redox reaction is the key aspect of photocatalytic process 

and they are mainly determined by the band edge position of photocatalytic materials35. In the case 

of CBTG photocatalyst, the electrons excited from VB to CB of Bi2Ti2O7 are trapped by the Cu 

nanoparticles and the graphene sheets. Thus the trapping of electrons will restrict the 

recombination of e--h+ pairs and in parallel the redox process will occur rapidly. The reaction of 

holes with OH‾ ions leads to the generation of •OH radicals. When the electrons are trapped by Cu 

and rGO sheets, more amount of holes will react with OH‾ ions to produce a higher amount of •OH 

radicals. In addition, these •OH radicals react with the carcinogen molecules and lead to the 

effective degradation of carcinogen molecules. In addition, the holes have a capability to react 

directly with carcinogen molecules and degrade the molecules11. Hence, the observed net 

enhancement in photocatalytic degradation efficiency of CBTG photocatalyst is attributed to the 

effective charge carrier separation which is achieved by trapping excited electrons in 

photocatalyst56. The delocalization of electrons in CB restricts their recombination with holes. So, 

these trapped electrons and separated holes were effectively reacted with surrounding medium and 

results to the effective photocatalytic degradation of carcinogen molecules. 
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3.11 Stability and recyclability Analysis 
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Fig. 15: Recyclable photodegradation performance of CBTG photocatalyst upon degrading (a) 

tetracycline and (b) RhB, and (c) XRD pattern of CBTG photocatalyst after 5th cycle of tetracycline 

and RhB degradation. 

The catalytic stability is a significant parameter that describes the effectiveness of a 

photocatalytic material and can leadto a significant cost reduction of the carcinogen removal 

treatment if it is used for longer time slots. The reusability and stability of CBTC composite can 

be verified by performing a series of cycling experiments performed with optimal CBTG and the 

curves for 5 cycles of photocatalytic degradation of tetracycline and RhB are shown in Fig. 15a 

and 15b. This stability verification experiment was carried out for a protracted period of time (460 

min) under typical photocatalytic reaction conditions. From the recycling experiments very small 

reduction in photocatalytic performance of CBTG was observed after 5 cycles of photocatalytic 

carcinogen degradation. This reduction of ~4% and ~3% in tetracycline and RhB degradation 

respectively after 5 cycles of photocatalytic degradation revealed that the as-synthesized CBTG 

composite can present high stability for practical photocatalytic applications. Furthermore, the 

XRD analysis of CBTG was also carried out after 5 cycles of tetracycline and RhB degradation 



and the obtained spectrographs didn’t show any phase change in CBTG photocatalyst (Fig. 15c). 

That reveals that the CBTG is stable even after 5 cycles of carcinogen degradation. 

3.12 Photocatalytic mechanism 

 

Fig. 16: Trapping experiment of active species during the photocatalytic degradation of 

tetracycline by CBTG (reaction condition: catalyst dosage = 100 mg, carcinogen concentration = 

50 mg/L and reaction time = 90 min, pH=7). 

During a photocatalytic process, redox reactions occur on the surface of the photocatalyst 

which successively produces reactive species such as O2
•−, •OH and h+, which are involved in the 

photodegradation process of organic molecules. The study on contribution of these oxidative 

species is important to elucidate the photocatalytic mechanism of CBTG photocatalyst. Hence, 

trapping experiments of the active species  O2
•−, •OH and h+

 were carried out under visible light 

irradiation in presence of their respective trapping agents (as explained in section: 2.4). As shown 

in Fig. 16, the photocatalytic degradation efficiency of CBTG photocatalyst was effectively 

decreased and the degradation efficiency was found to be 23% while adding BQ (O2
•− radical 

suppressor). When adding TEOA (h+ suppressor) and IPA (•OH radical suppressor) the 

photocatalytic degradation efficiency of CBTG was affected up to 39% and 65% respectively. 

These results indicate that the O2
•− radicals have the highest contribution than •OH and h+ species 

during the photocatalytic degradation of organic molecules. 
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The possible photocatalytic mechanism of CBTG composite is proposed in Fig. 17, based 

on the previous experimental results. In general, the photo-excited electrons from valence band 

(VB) to conduction band (CB) are expended by the oxygen molecules adsorbed on the 

photocatalytic surface to generate superoxide radicals (O2
•−), at the same time holes generated in 

the valance band of photocatalytic material are scavenged by the hydroxyl groups to generate 

hydroxyl radicals (•OH)10,57. On the other hand, holes generated on the VB of photocatalyst can 

directly oxidize the organic carcinogen molecules. These generated radicals are utilized for 

degrading organic carcinogens. The photocatalytic degradation rate primarily depends on the 

concentration of photo-excited e--h+ pair remains without recombination19. In case of CBTG 

photocatalyst, the photoexcited electrons from VB of CBTG are trapped by the Cu nanoparticles 

and the rGO sheets which subsequently decreases the e--h+ pairs recombination and it results to the 

enhanced generation of reactive species like O2
•−and •OH radicals. In order to understand the 

electron charge transfer between pristine Bi2Ti2O7 and electron trappers, such as Cu nanoparticles 

and rGO sheets, the VB and CB band edge positions of pristine Bi2Ti2O7 were calculated using 

following equations, ECB = χ − EC − 0.5 Eg and EVB =  ECB + Egwhere χ is the electronegativity 

of the semiconductor, EC is the energy of free electrons on the hydrogen scale of 4.5 eV, Eg is the 

band gap of semiconductor, EVB and ECB are valance band and conduction band energy11. The 

electronegativity (χ) of Bi2Ti2O7 can be expressed as an arithmetic mean of electron affinity 

between individual atoms (Bi-0.942362 eV, Ti-0.079 eV, O-1.4611134 eV) and there first 

ionization energy of atoms (Bi-7.2856 eV, Ti-6.8281 eV, O-13.6181 eV)58. Based on the above 

values the VB and CB of Bi2Ti2O7 is found to be 2.36 eV vs NHE and -0.52 eV vs NHE, 

respectively. When the Cu nanoparticles and rGO sheets are loaded with Bi2Ti2O7 nanostructures 

the photo excited CB electrons of Bi2Ti2O7 will transfer to these Cu nanoparticles and rGO sheets 

which causes e--h+ pair separation. The excited electrons of Bi2Ti2O7 can be easily trapped by the 

Cu metal particles to prolong their lifetime due to their lower redox potential of Cu (+0.35 eV vs 

NHE) than the CB of Bi2Ti2O7 (-0.52 eV vs NHE)59. At the same time due to the lower fermi level 

of rGO (-0.08 eV vs NHE) than the CB of Bi2Ti2O7 (-0.52 eV vs NHE), the CB electrons of 

Bi2Ti2O7 will be successfully trapped by the rGO and it will decline the e--h+ pair recombination 

enormously by delocalizing photo-excited electrons on Bi2Ti2O7. The enhanced 

trapping/delocalization of electrons by Cu nanoparticles and rGO sheets will effectively reduce 

the recombination rate of charge carriers and it willll effectively lead to a higher generation of 



reactive species for the degradation of carcinogens. Finally, the catalytic reaction of reactive 

species with organic carcinogens will mineralize the carcinogen molecules into CO2, H2O, and 

other organic ions. The possible photoexcited charge carrier delocalization and transportation path 

way on CBTG photocatalyst will occur as the following equations (1) to (9) 

Cu/Bi2Ti2O7/rGO + hν → Bi2Ti2O7 (e
- + h+)     (1) 

e- + Cu → e- (trapped in Cu)       (2) 

e- + rGO → e- (trapped in rGO)      (3) 

e- (trapped in Cu) + dissolved O2 → O2
•−     (4) 

e- (trapped in rGO) + dissolved O2 → O2
•−     (5) 

h+ + H2O→ •OH + H+        (6) 

•OH + Organic carcinogens → CO2 + H2O + Mineral acids    (7) 

O2
•− + Organic carcinogens → CO2 + H2O + Mineral acids   (8) 

h+ + Organic carcinogens → CO2 + H2O + Mineral acids   (9) 

The above discussed photocatalytic mechanism clearly shows that the both Cu nanoparticles and 

rGO sheets are acting as an excellent electron tappers to decrease recombination of e-- h+ pairs and 

it facilitates generation of large amount of O2
•− radicals with successive degradation of organic 

molecules.  



 

Fig. 17: Proposed photocatalytic mechanism of CBTG 

4. Conclusion 

In the current work, a novel Cu/Bi2Ti2O7/rGO hybrid photocatalyst was successfully 

synthesized by following a simple hydrothermal method. The presence of both Cu nanoparticles 

and rGO sheets on Bi2Ti2O7 was clearly observed byXRD analysis. The UV-Vis DRS analysis 

revealed that the Cu/Bi2Ti2O7/rGO ternary nanocomposite is highly active within the visible 

region. The deposition of Cu nanoparticles on Bi2Ti2O7 nanoparticles were analyzed and 

confirmed by HR-TEM analysis. The PL analysis revealed that the presence of Cu nanoparticles 

and rGO sheets on the Bi2Ti2O7 photocatalyst is effectively decreasing the e--h+ pair 

recombination. The photocatalytic degradation ability of as-synthesized pristine, binary and 

ternary nanocomposite was investigated in detail by using RhB and tetracycline as reference 

carcinogen molecules. The photocatalytic degradation results revealed that Cu/Bi2Ti2O7/rGO 

photocatalyst is highly efficient than other as-prepared nanostructures. The photocatalytic 

degradation pathways of both RhB and tetracycline molecules were clearly illustrated and 

discussed. The analysis of the obtained results suggested that the Cu nanoparticles and the rGO 

sheets are playing major role in the photocatalytic ability of Cu/Bi2Ti2O7/rGO photocatalyst. From 



trapping experiments, it was found that O2
•− radicals can be massivelygenerated by 

Cu/Bi2Ti2O7/rGO photocatalyst. The passage of the photoexcited electrons and its trapping on Cu 

nanoparticles and rGO sheets were clearly explained in the photocatalytic mechanism. In addition, 

the Cu/Bi2Ti2O7/rGO photocatalyst showed higher stability and recyclability even after five cycles 

of carcinogen degradation. The strategy of using CB electron trappers on photocatalytic materials 

are expected to inspire future development of high efficient photocatalytic materials for organic 

carcinogen molecule degradation. 
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