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ABSTRACT 

 

 

 

EQUINE FECAL MICROBIOTA CHANGES ASSOCIATED WITH ANTHELMINTIC 

ADMINISTRATION 

 

 

 

The equine gastrointestinal tract contains a complex ecosystem comprised of 

microorganisms and intestinal helminth parasites. Increasing evidence suggests that horses rely on 

their gastrointestinal microbial populations for many aspects of metabolic and immune function. 

Furthermore, interactions between the microbes, helminths, and their host may impact these 

functions, which are vital to maintaining gastrointestinal homeostasis. The use of anthelmintic 

drugs is a common practice of intestinal helminth parasite control in domestic horse health 

management. The use of anthelmintic drugs is very effective for controlling the burden of parasitic 

infection and associated clinical signs, however anthelmintic administration has also been 

associated with gastrointestinal disturbances in the horse. The potential effects of anthelmintic 

drug administration on the equine gastrointestinal microbiota and its’ role in homeostasis is not 

yet understood.  

The objective of research presented in this thesis is to investigate the impact of anthelmintic 

administration on the equine gastrointestinal microbiota. This goal was addressed in two main 

studies, which used 16S rRNA amplicon sequencing to identify and describe the microbial 

populations present in equine fecal samples. The first study described is a pilot project which aimed 

to characterize the impact of anthelmintic treatment on the fecal microbiota of horses without an 

observable helminth infection. The results of this study indicated that subtle differences in the 

microbial community composition and structure are detectable between samples collected before 
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and after anthelmintic treatment. A second study was then conducted as a follow-up to the pilot 

which included horses with varying detectable levels of helminth infection as determined by fecal 

egg counts. Results of the second study further demonstrated microbiota changes following 

anthelmintic treatment, while also suggesting that the most notable effects of anthelmintic 

treatment may be observed in fecal samples between 48 and 72 hours post-treatment. The results 

of these studies suggest that anthelmintic treatment may be associated with changes in the equine 

fecal microbiota. 
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CHAPTER I: LITERATURE REVIEW 

 

 

 

The Equine Microbiota 

The term “microbiome” has quickly gained popularity and notoriety with the rise of 

research pertaining to earth’s microscopic life.  This term refers to the combined genetic material 

of all microorganisms within an environment which is often used interchangeably with the term 

“microbiota”, which simply refers to all of the microorganisms in the particular environment (see 

Glossary).  The “host-associated microbiome”, is further defined as a community of 

microorganisms requiring a host organism to sustain their symbiotic form of life [1,2]. The host-

associated microbiome has generated a large amount of interest from researchers focused on 

mammalian health and disease, as it plays many vital roles in the maintenance of homeostasis, 

among other things. The role of microbes in animal health were widely understood and accepted 

as pathogens in the past, however, more recent research has greatly changed this notion and 

recognized the importance of microbial life in the functionality of health, immunity, homeostasis, 

nutrition, and even behavior [3–7]. Early attempts to characterize microbial communities relied on 

culture based techniques which fell short due to the bias known as the “Great Plate Anomaly” [8]. 

The microbes identified by culturing were not only less numerous but also less diverse than those 

directly visualized by microscopy. This led to the idea that some microorganisms were simply 

unable to grow in culture media and that others could not grow in such abundance in a culture as 

they were in their natural environment. The study of microbiomes was revolutionized by the advent 

of next generation sequencing (NGS) technologies. Through the use of 16S rRNA amplicon high-

throughput sequencing, the majority of microorganisms in a sample can now be identified and 

differentiated based on their genetic diversity, rather phenotypic information. This has enabled the 
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identification of multitudes of microbes which were not previously identified due to the limits of 

culture based technology. Furthermore, the use of shotgun metagenomics, transcriptomics, 

metabolomics, and proteomics have significantly enhanced the ability of researchers to identify 

and classify microorganisms based on their metabolic abilities and functions, shedding light on the 

relationships between microbes and their host. 

It has been demonstrated that the gastrointestinal microbiome (GIM) is the most rich and 

diverse microbial community of the many site-specific microbiomes found in and on mammalian 

species [1,3]. Furthermore, the GIM is very unique to not only the host species [9], but also the 

individual host organism due to a multitude of variables including genetics, diet, health status, 

biogeographical environment, and exposure to antimicrobials [1,3,7,9,10]. This is a highly 

sensitive system prone to a variety of disturbances which can have a profound impact on host 

health. This review will focus on this impact specifically in horses, while also determining what 

can be learned from studies in other animal models. The equine gastrointestinal system is home to 

a complex community of microorganisms which have complex interactions with one another and 

their host that play important roles in immunity and metabolic function [11–13]. Interest in the 

equine GIM is quickly gaining popularity, likely due to the importance of the gastrointestinal 

system and its microbiota in equine health and disease. As hindgut fermenters, horses rely on 

digestive processes from their fibrolytic microbial inhabitants to break down the complex plant-

based carbohydrates that make up a large portion of their diet, resulting in short-chain fatty acids 

that can be utilized as a source of energy [11,14,15]. Furthermore, gastrointestinal disease is a 

leading cause of horse mortality worldwide [12]. Therefore, an enhanced understanding of the 

physiologic and pathological dynamics of the gastrointestinal tract and its’ micro-constituents is 

vital to the maintenance and improvement of horse health. Identifying the microbial inhabitants of 
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the equine gastrointestinal tract and their respective ecological roles in this dynamic environment 

has challenged scientists for many years. Over 40 studies of the equine microbiome have been 

published to date and nearly half of these studies have been published within the last 3 years. The 

vast majority of these studies have relied only on 16S rRNA amplicon sequencing to characterize 

the microbial community membership of fecal samples, which serve as a proxy for the GIM. The 

applicable knowledge gained from these studies is limited to speculation, as the microbial 

phylogeny and taxonomy identified by 16S rRNA surveys does not provide specific information 

regarding the metabolic pathways and capabilities of the microbes in the sample [16,17]. 

Additionally, while commonly used in most host associated microbiome studies, fecal samples 

may not be truly representative of the GIM of horses because their gastrointestinal tract is made 

up of several different compartments which each have characteristics that are potentially 

constraining to microbial life and thus host unique microbial populations  [12,13,18–20]. Figure 1 

illustrates the variety of bacterial phyla present in differing gastrointestinal compartments in the 

horse, at both the luminal and mucosal layers [21]. Despite such constraints, these studies have 

greatly enhanced our understanding of the gastrointestinal microbiome’s importance to horse 

health, and the environmental factors that contribute to microbial community development.  
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Figure 1. Relative abundance of phyla in luminal and mucosal equine gut microbiota. Bar 

charts showing relative abundance of phyla detected in luminal contents (A) and mucosa (B) of 

samples collected from dorsal stomach, antral stomach, jejunum, ileum, cecum, ventral colon, 

and dorsal colon of nine healthy adult horses, displayed in the same order in each chart and in 

each GIT region (animal IDs listed below bars). Samples returning fewer than 1000 sequences 

not shown; legend at right. (Ericsson et al., 2016) 

Nutritional influences, such as dietary composition, are a predominant factor of 

microbiome community membership and stability. Studies in mice and humans have suggested 

that diet accounts for more variation in GIT microbial diversity than other individual factors such 

as genetics, geographical distribution, age, gender or body mass index [7,22–25]. As a hindgut 

fermenter, microbial digestion is an essential step in the breakdown and utilization of feed for 

horses [26]. In 2016, the idea that the equine gastrointestinal microbiome may be altered to 

improve digestibility across a variety of diets was reintroduced - in light of the advancements made 

through next-generation sequencing of the microbiome [27]. The impact of diet related alterations 

to the equine GIM community may extend past digestive efficiency and could potentially have 

deleterious health effects associated with an overall shift in the host’s homeostasis. An abrupt 

change from forage-grain diet to strictly pasture diet resulted in a rapid multi-faceted change in the 

fecal bacterial community structure [28]. Dietary induced alterations to the gut microbiota have 
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been demonstrated to result in a significant increase in the frequency of alimentary stress behaviors 

exhibited by horses [29]. Further research is needed to determine if shifts in the microbial 

community composition associated with diet have a causative or correlative relationship with diet 

related gastrointestinal diseases. From an evolutionary stand-point, horses developed their dietary 

preferences and gastrointestinal functionality based on the intake of large amounts of low quality 

forage found in the steppe regions near Mongolia, where the ancestors of the domestic horse 

originated [30]. The evolution of the tooth in the ancestors of modern horses, suggests a shift from 

a frugivorous diet, to “leafy browsing”, ultimately to grass eating or grazing [31]. The most recent 

ancestors of modern domestic horses were evolved to spend a large portion of their day browsing 

for forages in the grasslands, and thus maintaining a flow of low-quality nutrients throughout their 

gastrointestinal tract. Through domestication, horses are subject to habitat constraints as they often 

live in much smaller pastures and stables and therefore often lose the ability to freely graze 

throughout the day [32]. To make up for this loss of nutrient availability, and the increase nutrient 

needs experienced by horses in athletic training or work, domestic horse diets are often 

supplemented with nutrient concentrated feed stuffs. The transition from a low quality forage 

based diet to one predominated by a nutrient rich concentrate feed has been associated with the 

development of a variety of gastrointestinal diseases such as colic, colitis, and laminitis [33]. The 

role of the microbiota and the prevalence of such diseases has become a major focus of equine 

GIM research. A recent study was conducted evaluating the temporal stability, functionality and 

community diversity of the GIM as a response to two diets which differed in nutrient availability 

[34]. The results suggested that diets consisting of lower nutrient availability resulted in a higher 

level of diversity and stability over time compared to the higher nutrient availability diet. Another 

study focused on gastrointestinal disorders associated with the feeding of highly fermentable 
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carbohydrate based concentrate diets [35]. The results of this study suggested that the concentrate 

based diet increased instability of the fecal microbial community when compared to a forage based 

diet demonstrated by increased variability in the microbiota community composition. 

Studies have also demonstrated that the equine GIM composition undergoes significant 

alterations during disease states. In 2012, one of the first attempts was made to apply Next-

Generation Sequencing (NGS) technology to study the equine microbiome [36]. This project 

compared the fecal microbiome between a cohort of healthy horses versus a cohort of horses with 

undifferentiated colitis. This study found that in healthy horses, the dominant bacterial phylum 

was Firmicutes and there were a high prevalence of Clostridia and related organisms in the samples 

from this cohort. In comparison, samples from the horses with undifferentiated colitis were 

dominated by the Bacteroidetes phylum and there was also an increased prevalence of Fusobacteria 

(see figure 2) [36]. It should be noted in the previously described study, that the horses with colitis 

were all in a hospital setting during the time of sample collection, while the healthy animals came 

from a variety of different local farms. A project focused on equine grass sickness also utilized 

NGS to investigate the dysbiosis associated with the onset of this disease. The results of this study 

suggested that horses with equine grass sickness also had a significant increase in Bacteroidetes 

and a decrease in Firmicutes, in addition to multiple significant changes in taxonomic abundance 

at the genus level [37]. Colic is a major concern of horse owners due to its’ high prevalence in all 

breeds and ages of horses. One study observed numerous changes in the fecal microbiome of mares 

preceding the onset of post-partum colic, which the authors hypothesized, could one day be used 

to predict and prevent colic episodes [38]. However, in that particular study, the mares that 

developed post-partum colic (n=13) experienced 6 different types of colic cases, and significant 

microbial differences were not described between different colic types. While this study provides 
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some suggestive data about changes in the microbiota before colic onset, in order to realistically 

predict or prevent colic episodes, far more extensive research will be required to investigate the 

physiological and mechanistic roles that the microbiota may have in specific types of colics. 

Furthermore, the horses used in this study came from 3 different farms and had access to different 

diets, but were all given access to pasture after foaling. These variations and changes in diet also 

could play a role in the onset of colic, and should be accounted for when considering the external 

variables that can impact the microbiota and gastrointestinal health [28,38].   

More recent research has focused on evaluating associations between horse husbandry and 

the equine GIM. In addition to the biological impact of domestication, the intensive management 

practices utilized in the horse industry may in some ways be associated with the development of 

gastrointestinal disease and merit further evaluation [39]. Some researchers investigated the impact 

of acute exercise and aerobic conditioning on the fecal microbiota, as these activities are regularly 

experienced by equine athletes as part of a normal training program [40]. The results of this study 

indicated that both the composition and structure of the fecal microbial community was impacted 

by exercise. Furthermore, this study found that the use of performance enhancing supplements 

(chromium or L-carnitine) induced moderate changes in the fecal microbiota of the sample 

population, but these changes were not significantly different from the horses that did not receive 

supplementation. Another group has demonstrated that transportation of horses, dietary fasting and 

the use of anesthesia were all variables that had a significant impact on the fecal microbial 

community composition and structure of healthy horses [41].  

Research has also been conducted which focuses on the management of horse health. For 

instance, the use of systemic antibiotics has been a common practice in the livestock industry for 

treating and preventing bacterial infections, although the impact of antibiotic use on the equine 
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GIM is not yet fully understood. One study aimed to investigate this by characterizing the changes 

in the fecal microbiome when a cohort of healthy horses was given different types of antimicrobial 

drugs. The most profound effects were observed on day 5 of the trial, which was immediately after 

treatment. By day 30, the microbiota of the fecal samples had returned to a community composition 

structure more reflective of the baseline samples taken prior to treatment, than the samples taken 

at earlier time points following treatment. From a taxonomic standpoint, the results of this study 

suggested that microbial members of the Verrucomicrobia phylum were the most affected by the 

antimicrobial treatment. The results of this study indicated that the use of systemic antimicrobial 

drugs leads to changes in the intestinal microbiota but the changes differed based on the specific 

drug administered [42]. 

 

Figure 2. Fecal bacterial population. Overall percentages of bacterial populations at the phylum 

level (Fig. A) and intra-phylum variation (Fig. B) present in the feces of healthy horses and 

horses affected by colitis. (Costa et al., 2012) 

The equine microbiota is a vital component of horse health, especially the microbial 

populations specific to the gastrointestinal tract. This dynamic microbial community is very 

sensitive and quick to respond to changes, which may impact the health of the host horse and vice 

versa. Research pertaining to the microbiota is quickly evolving and adapting to utilize new 

technologies that will enable researchers to better understand these microscopic communities.  
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Equine Parasitic Helminths 

Domestic horses are regularly exposed to a variety of parasitic helminths that can inhabit 

and cause infection within the gastrointestinal tract. Internal parasites are known to cause a variety 

of gastrointestinal disorders in horses [43,44]. Parasitology has been a focus of equine science for 

many years and the interactions between GI parasites and their horse hosts are well understood 

[43]. Essentially all horses are host to some population of parasites, especially those with access 

with pasture or that eat hay directly from the ground, as these activities provide a direct route of 

helminth egg ingestion [43]. For the most part, the equine host and its’ internal parasites are able 

to coexist without any negative effects at the organism level, although there is pathologic evidence 

of parasite damage to various organs and tissues [43,45]. The majority of helminth infections do 

not result in clinical signs. A heavy burden of certain parasitic worms, however, can lead to a 

variety of deleterious physical effects including digestive inefficiency, decreased body condition, 

ulceration, anemia, recurrent colic, and even fatality without proper intervention.  Due to higher 

stocking densities in domestic horse operations, parasite accumulations are typically much higher 

compared to natural occurrences in the wild. Therefore, parasite management practices  are 

frequently implemented to avoid high helminth infection levels [43]. The following review will 

describe the common equine helminths and usage of anthelmintic drugs for parasite control.   

 

Equine Gastrointestinal Parasites 

The Strongylidae order, of the Nematoda phylum, contain two of the most well-known of 

the equine gastrointestinal parasites: the large strongyles (S. vulgaris, S. edentates, S. equinus) and 

the small strongyles (40+ species exist and are collectively referred to as cyathostomins). In the 

past, large strongyles were the most prevalent and pathogenic helminths in horses, although wide-
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spread parasite control practices have greatly reduced their populations, resulting in small 

strongyles being the more prevalent and concerning of the strongyles today. This shift in strongyle 

prevalence is further described in this review (see Equine Internal Parasite Control section below). 

Both large and small strongyles cause the greatest risk of symptomatic disease to their host during 

their larval life stage. S. vulgaris larvae are known to migrate throughout the branches of the cranial 

mesenteric artery and can cause parasitic thrombosis and arteritis and result in colic, gangrenous 

enteritis, intestinal stasis, intussusception or even intestinal rupture [46]. Larvae of the other two 

large strongyle species, S. edentates and S. equinus both migrate to the liver, and S. equinus can 

also migrate to the pancreas [47]. The migration of S. edentates and S. equinus through 

hemorrhagic tracts can result in hepatic parenchyma and fibrous scaring. Clinical signs of large 

strongyle infection include anemia, decreased thriftiness, diminished coat quality, weight loss, 

poor performance, intestinal rupture, and death [47]. Unlike large strongyles, the small strongyle 

species do not migrate out of the intestine and their early development is confined to the intestinal 

walls, where they will eventually emerge from and feed on mucosa and cause damage to the 

intestinal wall, although this damage is typically less detrimental than that caused by large 

strongyles [46]. Larval cyathostomiasis is a specific condition caused when the infective 

cyathostomins larvae become encysted in the lining of the large intestine [48]. Clinical disease 

resulting from this condition occurs when a large number of these encysted larvae erupt, potentially 

causing severe damage to the intestinal mucosa, inflammation, hypoproteinemia, colic, weight loss 

and edema. This condition can be fatal in up to 50% of cases [49].  

Parascaris spp. (Roundworms, Ascarids) are of highest concern in young horses (typically 

under 2 years of age) and typically do not impact older horses as immunity to this group is acquired 

with age [43,50]. Ascarid eggs are ingested and larvae begin development in the intestinal tract, 
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then moving into the liver via the hepatic vein, larvae cause some damage in the liver but due to 

this organ’s regeneration, permanent damage is rarely observed. The larvae then migrate to the 

lungs where significant and permanent damage can occur. The immune response to larvae in the 

lungs can result in alveoli damage and scarring. Furthermore, when ascarid larvae reach the trachea 

they cause irritation that can result in a cough which causes them to be re-swallowed into the 

gastrointestinal system in their adult stage, where they then can deplete their host of nutrients 

[46,50–52].  Heavy levels of infection in foals can cause poor growth, ill-thrift, respiratory system 

inflammation, cough, and nasal discharge [51].  Infection with Parascaris spp. pose a risk of 

intestinal impact for the host animal due to the large physical size of the parasite. In an animal with 

a high level of infection, anthelmintic use causing paralysis of the parasites can result in acute 

small intestinal impaction, as the large volume of paralyzed worms result in a physical blockage 

within the intestine [43].   

A few other helminths impact equids, although not as common and concerning to horse 

owners as those previously described. Strongyloides westeri are another type of parasite which 

mainly are found in the small intestine of foals, although health impacts are not common [43]. 

Anoplocephala perfoliata (tapeworms) are the most prevalent cestodes found in horses, typically 

at the ileocecal junction, in the cecum and ileum. High levels of infection has been associated with 

GI inflammation and colic  from intussusception [45]. These conditions result from the 

pathological reaction at the tapeworm attachment site that can be characterized by hyperemia, 

mucosal thickening and necrotic ulcers [53]. Gasterophilus spp. (horse bots) are the larvae of bot 

flies, and can infest the stomachs of horses, and physically hook onto the stomach wall causing 

ulceration and erosions at the attachment site [46]. Pinworms (Oxyuris equi) can be found in the 

large intestine of horses, but are not known to directly cause any significant impact to 
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gastrointestinal health. However, O. equi lay their eggs near the anus which often causes localized 

irritation leading to scratching that can the result in secondary infections due to broken skin in this 

area [54]. Horses that are co-housed with ruminants such as cattle may also be exposed to 

Trichostrongylus axei (hairworms) which can cause gastritis and ulceration, although these 

helminths are not of significant concern to horse owners [46,55].  

 

Equine Internal Parasite Control 

While parasites have long been recognized as a cause of disease in domesticated horses, 

the control and treatment of parasite infection have been relatively recent advancements in the 

health industry. Since their advent in the 1960s, the use of benzimidazole anthelmintic substances 

for parasite control in horses was widely recommended [56,57]. An anthelmintic is defined as a 

substance capable of destroying or eliminating parasitic worms [58]. Initially, the use of these 

substances were based on the recommendation of administration every 8 weeks [56] and were then 

updated to incorporate rotational use of additional novel anthelmintic drug classes to counteract 

more types of parasitic helminths throughout their varying life cycles and to limit the potential 

development of anthelmintic resistance. [43,57,59]. Today, throughout the equine industry, the use 

of anthelmintic drugs is one of the most common and utilized practices of treating and preventing 

helminth infections [43,59]. It is recommended that horses begin receiving anthelmintic treatments 

at 2-3 months of age, followed by a minimum of 3 more treatments throughout their first year of 

life. After this, treatments should be administered on an as-needed basis [59]. Anthelmintic 

substances which are most commonly used in domestic horses are summarized below (see table 

1).  
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Table 1. Common anthelmintic drugs used in horses [43,46,59] 

Class Active Ingredients Mode of Action Parasites 

Affected 

Benzimidazoles fenbendazole, 

oxibendazole, 

thiabendazole 

Bind to beta tubulin and 

prevent microtubule 

polymerization  

ascarids, 

strongyles, 

pinworms  

Tetrahydropyrimidines 

(pyrimidines) 

pyrantel pamoate, 

pyrantel tartrate 

Selective acetlycholine 

agonists (only effective 

against luminal stages) 

ascarids, 

strongyles, 

pinworms 

Heterocyclic 

Compounds* 

(piperazines) 

piperzine* GABA receptor 

agonists  

roundworms 

Macrocyclic Lactones 

(avermectins) 

ivermectin, 

Moxidectin,  

Increase chloride ion 

permeability; GluCl- 

potentiators  

bots, ascarids, 

strongyles, 

pinworms 

Isoquinoline-Pyrozines praziquantel** Enhances Ca++ 

permeability  

tapeworms 

*Piperzine used infrequently in horses, no formulation currently approved for equine usage in the US. One product 

approved in Canada.  

**Praziquantel is sole member of Isoquinoline-pyrozines class used in horses. In North America, it is only marketed 

in formulation compounds combined with Macrocyclic Lactones.  

 

Current parasite control guidelines and strategies are focused on targeting the most 

prevalent and most potentially pathogenic parasites [59]. The goal of these guidelines have 

recently undergone a major shift as they were originally developed when large strongyles 

(Strongylus vulgaris) were the most important parasite affecting horses [56]. The original 

guidelines were very successful in controlling S. vulgaris, and their prevalence and infection rate 

in the equine population has now rapidly decreased. The most recent recommendations developed 

by the American Association of Equine Practitioners’ Parasite Control Subcommittee, focus on 
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the control of small strongyles and tapeworms in adult horses and Parascaris spp. in young horses. 

These updated recommendations also address the issue of anthelmintic resistance.  

The AAEP guidelines utilize the following definition of anthelmintic resistance as 

published by N.C. Sangster in 1999:  

“Resistance is the ability of worms in a population to survive treatments that are generally 

effective against the same species and stage of infection. Anthelmintic resistance is an 

inherited trait. The development of resistance first requires that resistance genes are 

present. The rate of development of resistance is determined by selection pressure and the 

extent to which worms surviving treatment pass their genes on to the next generation. With 

continued selection and reproduction of resistant worms, the frequency of resistance genes 

in the local worm population increases to the point where treatment fails. Once resistance 

is present, the population of resistant parasites do not appear to revert to susceptibility, so 

the aims of resistance control are to prevent the first steps in the development of resistance 

and then to delay the accumulation of resistance genes.” [59,60] 

 

Initially, the use of rotational anthelmintic treatment was recommended due to the lack of 

broad-spectrum anthelmintics in addition to the varying seasonal life cycles and infection risk 

status of helminth species. These recommendations were then continued in an attempt to address 

the rise of anthelmintic resistance [51]. Due to the history of frequent anthelmintic use targeting 

S. vulgaris, an unintended selection pressure was exerted on populations of cyathostomins and 

Parascaris spp. resulting in high levels of anthelmintic drug resistance in these populations [61]. 

According to the 2015 AHP Equine Industry Survey sponsored by Zoetis, 80% of participants 

indicated that parasite drug resistance is a cause for concern among horse owners [62]. 

Cyathostomins, however, are very mild pathogens and only cause clinical disease in very high 

infection levels; so, they do require the frequent anthelmintic treatment patterns that increase 

anthelmintic resistance. Parasite control strategies for adult horses should instead focus on only 

using specific effective anthelmintic drugs administered on an as-needed basis [43,59]. As 

previously stated, horses naturally harbor a parasite population without clinical illness effects, 

therefore the objective of parasite control should be to limit these populations to a level that allows 
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the host to stay healthy, rather than attempting to fully eradicate the internal parasite population. 

Additionally, most anthelmintic drugs are only effective against adult worms, which have passed 

the larval stage in which they pose the highest risk of disease to their host. Control of adult worms 

is still essential to limiting the reproduction of, and environmental contamination with, parasite 

eggs. this emphasizes the need to administer specific dewormer drugs during time periods that are 

most effective at limiting the shedding of eggs and larval development. In summary, the goals of 

parasite control programs as outlined by the AAEP guidelines are as follows:  

1. To minimize the risk of parasitic disease. 

2. To control parasite egg shedding. 

3. To maintain efficacious drugs and avoid further development of anthelmintic resistance as 

much as possible. 

 

To effectively meet these goals, a large effort has been made to inform horse owners about 

anthelmintic use and encourage the use of parasite infection diagnostic methods prior to 

anthelmintic administration. The use of fecal egg counts (FECs) is widely accepted and 

encouraged as a means of monitoring an individual horse’s worm burden, egg shedding potential 

and to monitor the effectiveness of anthelmintic administration [43]. FECs require minimal 

equipment and training and are readily available through most veterinary practices. More 

information regarding the use of FECs, recommended protocols, and the interpretation of their 

results can be found in the full AAEP parasite control guidelines 

(https://aaep.org/sites/default/files/Guidelines/AAEPParasiteControlGuidelines_0.pdf).  

Despite the updated literature and publically available guidelines, horses are frequently 

dosed with anthelmintic drugs as part of a standardized rotational deworming schedule, without 

regard to the actual parasitic burden of the individual animal or a medical need for anthelmintic 

treatment [57]. The 2015 AHP Equine Industry Survey sponsored by Zoetis, reported many 

informative statistics about the relevance and importance of parasite infection to horse owners, in 

https://aaep.org/sites/default/files/Guidelines/AAEPParasiteControlGuidelines_0.pdf)
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addition to the utilization of anthelmintic drugs and their implementation strategies. The results of 

this study revealed that the vast majority (88.6%) of respondents that deworm their horses, choose 

to do so themselves. According to the survey, 55.3% of respondents indicated that they stick to a 

rotational deworming schedule, and nearly half of the respondents deworm their horses four to six 

times per year. The AAEP has recently recommended that horse owners should base their 

anthelmintic usage on veterinarian recommendations and the results of regularly conducted fecal 

egg counts [59]. About 38.2% of participants in the 2015 AHP survey said that they follow these 

recommendations by the AAEP and 48% of respondents said that their veterinarian is involved in 

the development of deworming strategies for their horse, which is a significant increase from past 

results. Surprisingly, only 47.5% of the survey participants reported that their veterinarians 

recommended the use of fecal egg counts [62]. Interestingly, many countries in Europe have now 

established policies which limit anthelmintic drug availability to a prescription-only basis and thus 

require a veterinary approved helminth infection diagnosis via routine FECs [57]. While not 

universally required, the use of fecal egg counts for helminth infection surveillance are undeniably 

an important step in the development of parasite control programs. As previously mentioned, some 

level of helminth infection in horses and other grazing animals is expected and typically does not 

result in adverse health impacts [43,63]. Although, in the U.S. the acceptable level of helminth 

infection as identified by FECs and the threshold for anthelmintic treatment recommendations 

remain undecided [59]. Commonly used thresholds for treatment are 200-500 EPG for individual 

horses [64], however clear universal threshold levels still need to be developed.  

In conclusion, the health concerns of equine helminth infections, and management of such 

infections are a constantly evolving subject that will require continuous research as new problems 

and solutions continue to develop. Additionally, the potential negative effects of anthelmintic use 
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are not limited to the issue of anthelmintic resistance. Anthelmintic treatment has been identified 

as is a colic risk factor, although the physiological mechanisms associated with this risk are poorly 

understood in many cases other than impaction colic, which can result from a massive die-off of 

adult parasites [43,65]. A common anthelmintic drug, Moxidectin, has also been associated with a 

subtle inflammatory response in equine intestinal tissues [66]. Recent investigations have 

suggested that helminths, and anthelmintics, also directly interact with the gastrointestinal 

microbiota and can influence the health and performance of their host. The findings of these studies 

and their potential implications for the field of equine parasitology, and horse health in general, 

will be further described below.  

 

Microbiota and Helminths 

As previously described, the mammalian gastrointestinal tract is a complex ecosystem 

consisting of a diverse population of microbial organisms and in some instances, parasitic 

helminths. The focus of this section is on the presence of, and interactions between, microbes and 

helminths in the gastrointestinal tract. Over time, these organisms have co-habituated a unique 

niche environment and co-evolved along with their host [63,67]. Studies in human and model 

organisms have demonstrated a multitude of complex interactions that occur between gut microbes 

and helminth parasites and the impact of these interactions on hosts’ metabolic capabilities and 

immunological function [63,67–70]. In order to better understand the impact of the gastrointestinal 

ecosystem dynamics on the host, the multidirectional interactions between helminths and 

microbiota require further investigation. Furthermore, considering the prevalence and economic 

impact of helminth infection within the livestock industry, in addition to the importance of 
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microbiota stability in gastrointestinal health, deciphering the complexities of helminth-microbiota 

associations are key to improving animal health and productivity [63,71,72].  

Studies in human and animal models have demonstrated the effect of parasitic helminth 

infection on the GIM richness and evenness. Richness is a measure of the number of different 

species present in a sample or an environment, while evenness refers to the distribution of the 

different species in the population. Richness and evenness are often considered in their 

contribution to alpha diversity (see Glossary). These studies have focused on a broad range of 

model organisms, helminth species and experimental designs, and their varying results reflect this 

range of variables [63]. For instance, helminth colonization has been associated with an increase 

in microbiota diversity in terms of species richness and number of observed operational taxonomic 

units (OTUs) in some studies [73,74]. Conversely, other studies have demonstrated a marked 

decrease in alpha diversity associated with helminth infection [75,76]. These contrasting results 

may be the due to an observable decrease in alpha diversity associated with gastrointestinal 

inflammation following helminth infection, followed by an increase or return to baseline in 

microbial diversity following the initial adjustment period during states of chronic helminth 

infection [63]. Furthermore, certain parts of the gastrointestinal tract may respond differently to 

helminth infection. In sheep, infection with Haemonchus contortus resulted in a significant 

increase in the abundance of bacteria in the abomasum and a decrease in the rumen [77]. 

Other studies have reported changes in the microbiota composition and structure when the 

host GI is challenged by helminth infection. In a study using a rat model, animals infected with 

Hymenolepis diminuta had a significantly different microbial community composition than the 

control animals, as represented by beta-diversity [78]. Fecal samples from a group of children in 

Taiwan with pinworm (Enterobius vermicularis) infections revealed many significantly different 
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relative abundances of bacteria at the genus level when compared to a similar cohort of children 

without pinworm infection [79]. Samples collected from a cohort of goats infected with 

Haemonchus contortus had significantly different abundances of multiple bacterial species 

compared to a control cohort. Additionally, this study reported that 8 KEGG pathways were 

predicted to be significantly impacted by infection [80]. These studies demonstrate just a fraction 

of changes observed in microbiota diversity and composition associated with helminth infection. 

Further investigations have evaluated the potential functional impact of helminth associated 

alterations to the gastrointestinal microbiota [68,69,76,80].  

Changes in GIM composition associated with helminth infection have the potential to alter 

the host’s ability to extract and utilize nutrients from their diet [68]. The microbiota relies on 

nutrients from their hosts’ diet and in turn increase the metabolic capabilities of their host [3]. 

Parasites compete for dietary nutrients with microbes, without providing any direct nutritional 

benefit to the host [76]. In 2012, a study in pigs infected with Trichuris suis revealed a significant 

reduction in the abundance of Ruminococcus and Fibrobacter following infection which suggested 

a change in the ability to break down fiber [81]. In addition to changes in relative bacterial 

abundances, this study focused on changes in bacterial genes associated with metabolism and 

found a significant reduction in the genes associated with carbohydrate metabolism and the 

biosynthesis of amino acids following T. suis infection [81].  The results of this study are in 

agreement with other investigations that have demonstrated changes in specific taxonomic groups 

and metabolic biomarkers which are associated with the metabolism of fiber, carbohydrates and 

proteins in animal models challenged with GI helminth infection [63,81–83]. A temporal study 

which followed microbiota changes in mice during and after Trichuris muris infection, 

demonstrated that helminth associated changes to the microbiota and subsequent metabolic 
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function may be long term and persist once the helminth infection has been cleared [83]. The 

complex relationships between microbiota alterations, helminth infection, and changes in 

metabolic capabilities are not yet well defined. Understanding the direction and mechanisms that 

drive these changes will have important implications for managing the host response to helminth 

infections [63,76].    

 

Figure 3. Potential interactions between the gut microbiota and helminth infection (Glendinning 

et al., 2014) 

Interestingly, a review of factors impacting digestive capacities in older horses suggested 

that the reported reduction in digestion of protein, fiber and phosphorous in geriatric horses may 

be associated with intestinal damage resulting from a chronic history of S. vulgaris infection in the 

animals studied, as these early investigations occurred before widespread anthelmintic 

administration [84]. Although this review and previous studies did not evaluate the microbiota’s 
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role in the observed decreased digestive ability, it would be worthwhile to investigate the impact 

of chronic helminth infection on the GIM and the long-term effects of digestive efficiency in the 

host animal.   

The intestinal microbiota is vital to the development and function of the mammalian 

immune system and serves as a barrier against pathogens [2,85]. Interactions between the host 

immune system and the GIM are driven by the host’s necessity to harbor a complex microbiota 

and to protect the host from potential opportunistic pathogens [4]. Helminths also have many 

associations with host immunity, with infections promoting immune and regulatory responses that 

disrupt immune homeostasis [67].  For example, in mice with a schistosome (Schistosoma 

mansoni) infection, it has been demonstrated that depleting the gut microbiota led to altered 

schistosome-specific immune responses and a decrease in fecal egg counts; demonstrating the 

impact of microbiota on the host immune response to helminth infection [86].  Both helminths and 

microbes must deceive the immune system of their host to some extent to allow their survival, and 

do so through the activation of suppressive regulatory T cells (Tregs) [67]. This 

immunomodulation is a key factor in the complexities of the three-way relationship between host, 

helminth, and microbiota. For instance, administration of the microbe L. taiwanensis in mice 

increases the frequency of regulatory T cells and helminth infection establishment rates. This 

finding demonstrates the promotion of helminth infection due to the presence of commensal 

bacteria associated regulatory T cells [85].  An additional study in mice demonstrated that chronic 

helminth infection resulted in an increase in inflammatory cells, following a significant shift in the 

balance between Tregs and inflammatory T cells in the intestinal adaptive immune system [75]. 

Some of the proposed mechanisms of host immunomodulation associated with the GIM and 

intestinal helminth infection are summarized in figure 4 below [85]. The physical impact of 
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helminth infection including alterations to the intestinal epithelial wall and mucosal production 

can also alter the environmental conditions necessary for certain microbial species ability to 

colonize [43,67,81]. Furthermore, the actual establishment of helminth infections may be 

dependent upon the presence and abundance of microbes within the host gastrointestinal tract [87]. 

 

Figure 4. Proposed mechanisms by which intestinal helminths and bacterial microbiota bi-

directionally influence persistence in the mammalian host. It has recently become clear that 

intestinal helminth parasites and members of the bacterial microbiota influence one another’s 

ability to persist in the mammalian intestinal tract. The mechanisms by which they do so are 

likely multifactorial, site, and context dependent, and likely include direct as well as indirect 

effects on each other. (Reynolds et al., 2015)  

In horses, there has recently been an increased interest in the host-microbiota-helminth 

interactions. However, helminth-microbiota interactions specific to the equine GIM have not yet 

been thoroughly investigated, therefore the physiological impact of these potential interactions on 

the health of the host remains undetermined. The few studies pertaining to the equine microbiota 

and helminth infection which have been conducted thus far have produced some interesting results. 

A recent study by Peachy et al. [88] demonstrated that the equine fecal microbial population, 

investigated via 16S rRNA sequencing characterization of the microbiota community composition, 

was significantly associated with the number of cyathostomin eggs identified via FEC. Samples 

from horses with lower egg counts had comparatively higher abundances of Methanomicrobia and 

Dehalobacterium than horses with high egg counts. Other researchers observed differing 

microbiota and biomarker responses to cyathostomin infection between two cohorts of horses, one 
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of which was resistant to parasite infection, and the other was susceptible. This study demonstrated 

the potential for relationships between the GIM and helminth infection susceptibility and the 

resulting host immune response [89]. The findings of these studies indicate the need for further 

horse-specific research pertaining to host-helminth-microbiota relationships. Furthermore, 

understanding these relationships may provide new perspectives for the field of equine 

parasitology and research and influence the development of helminth control approaches.   

 

Anthelmintic Use and the Microbiota 

Finally, it is important to tie together the previously described topics and consider the 

impact of anthelmintic drugs use on the host associated gastrointestinal microbiota. Anthelmintic 

drugs are widely used in humans and domesticated species to treat helminth infection. As 

previously described, intestinal parasites are a major point of concern and interest in horses which 

has driven widespread use of anthelmintic drugs for parasite control. The recent advances and 

enhanced understanding of the importance of the microbiota, in addition to microbiota-helminth 

associations, have raised the questions regarding anthelmintic drug use and the potential of 

previously overlooked implications for the host-associated microbiota. Anthelmintics have the 

potential to impact the microbiota in a variety of ways; the biological activity of some anthelmintic 

ingredients may directly inhibit the growth or survival of host-associated microbes and also impact 

their metabolic process which other members of the microbiota depend upon. Conversely, the 

successful removal of helminths from the GI tract following anthelmintic administration may 

result in the removal of helminth associated microbial symbionts. Attempts must be made to 

differentiate between these potential sources of change when alterations to the host-microbiota are 

observed following anthelmintic use.     
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Multiple studies in humans have demonstrated shifts in the gut microbiota in response to 

anthelmintic treatment in cohorts of people infected with various intestinal parasitic species 

[79,90]. For instance, a study demonstrated that mebendazole deworming treatment in children 

infected with Enterobius vermucluaris (pinworms) may have an impact on the microbiota 

community composition, due to a significant decrease observed in the relative abundance of 

Fusobacteria and an increase of Actinobacteria [79]. Interestingly, the use of salicylanilide 

anthelmintics have been proposed as an alternative to antibiotics, due to their bactericidal 

properties. The antimicrobial mechanisms of these substances are varied and still being 

investigated, but have been described as inhibiting the enzymes which participate in protein 

production and cell wall synthesis [91,92]. This potential was successfully demonstrated in vitro 

by inhibiting growth of the common pathogen, Clostridium difficile. Additionally, the 

anthelmintics used in this study did not appear to significantly hinder the growth of select 

commensal bacterial species or animal cells [93]. These findings offer an exciting possible solution 

to address the need for alternative bio-therapeutics due to the rise in antibiotic resistant pathogens 

[94]. Additionally, this study demonstrates the potential innovation that can result from an 

improved understanding of helminth-microbiota-host interactions. 

Changes in microbiota community composition have also been observed in horses 

following anthelmintic treatment. Large shifts in the relative abundance of predominating phyla 

were observed in fecal samples from horses with cyathostomin infection following administration 

of a combined treatment of Fenbendazole and Ivermectin [95]. In horses shedding a relatively high 

number of cyathostomin eggs, a significant reduction in the abundance of TM7 and a significant 

increase in Adlercreutzia was observed following a routine anthelmintic treatment of Ivermectin 

[88]. A study which evaluated the impact of Moxidectin on the equine microbiome reported that 
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the abundance of multiple OTUs differed between treatment groups, although overall bacterial 

diversity was not significantly altered. This previously described study also evaluated the hindgut 

fermentation kinetics, and found a significant reduction in fermentation of oats and hay following 

treatment, but with no significant alterations to bacterial metabolite output observed [96]. Reported 

changes in microbial community composition associated with anthelmintic administration in 

horses are preliminary and require further investigation at this time. 

 

Conclusion 

In conclusion, understanding of the importance of the host-associated microbiota is rapidly 

advancing. Due to the significant number of gastrointestinal health issues in horses, the microbiota 

associated with this system is an important focus of research at this time. Preliminary evidence 

demonstrates the need to consider this research in association with parasitology, in regards to 

interactions between the host associated microbiota, helminths and anthelmintic substances.  At 

this time, the dynamics between these factors which have been characterized in the horse may be 

subtle, yet are still becoming apparent. As researchers strive to improve our understanding of the 

gastrointestinal ecosystem dynamics, the unintended consequences of previously accepted medical 

practices, such as the use of anthelmintic drugs, may come to light. By considering these new 

perspectives in regards to the importance of microbial life, approaches to animal health 

management may undergo significant changes in the future. The following chapters describe 

multiple research projects which were conducted to determine the impact of anthelmintic drug 

administration on the equine gastrointestinal microbiota.  
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 CHAPTER II: CHARACTERIZING THE EFFECT OF ANTHELMINTIC 

ADMINISTRATION ON THE EQUINE FECAL MICROBIOTA IN HORSES WITHOUT AN 

OBSERVABLE HELMINTH INFECTION  

 

 

 

Introduction 

Disruption of an individual’s normal microbiota when the microbial community structure 

is maladapted or unbalanced, referred to as a dysbiosis, has been associated with a variety of causes 

and negative effects. A dysbiosis can result when the microbial community composition or 

structure are altered. Sources of the alteration can be from acute dietary changes, environmental 

changes, exposure to toxins or pathogens, drugs and stress [97,98]. Dysbiosis is associated with 

metabolic syndrome [99–101], colitis [36,102] and other gastrointestinal dysfunctions. The 

possibility exists that routine medical and management approaches – such as treatment with 

anthelmintic drugs to control parasitic infections – are having more significant impacts on the 

gastrointestinal microbiota and, by extension, the gastrointestinal physiology. Knowledge of how 

the microbiota responds to anthelmintic treatment strategies is largely unknown. A recent study by 

Peachey et al.[103] demonstrated that the GIM community structure differs between individual 

horses with varying levels of helminth infection and taxonomic abundance differences following 

anthelmintic treatment were associated with helminth infection level. Given the broad application 

of anthelmintic drugs regardless of infection status, an important question to consider is whether 

exposure to a drug intended to kill parasitic helminths have unintended consequences for the 

microbial community living in the same environment? It is therefore critical we understand the 

impact of these compounds on the gut microbiota in the absence of any helminth infection. This 

characterization will help determine the potential for dysbiosis to result from anthelmintic 
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treatment. It is important to understand these dynamics for optimal management of equine 

gastrointestinal health and function. 

This study investigates the hypothesis that anthelmintic drugs are capable of altering the 

equine GIM community composition in animals without an observed cyathostomin or ascarid 

infection. This hypothesis is assessed through two objectives; 1) characterization of the equine 

fecal microbiota before and after anthelmintic treatment and, 2) the identification of changes in 

microbial diversity and taxonomic abundances following anthelmintic administration. 

 

Materials and Methods 

Animal Use 

Animals were housed at the Colorado State University Equine Teaching and Research 

Center throughout the experiment. All procedures were approved by the Institutional Animal Care 

and Use Committee (Protocol approval number 16-6811A). Samples were obtained from twelve 

American Quarter horses (ages 1.5-2 years), housed together in group pens and fed a forage-based 

diet ad libitum. Animals used had no known history of illness and did not receive any antibiotics 

in the six months before the study.  Fecal egg counts were conducted (see appendix I) on samples 

collected from all animals prior to the start of this study to confirm that no parasitic helminth 

(cyathostomins or ascarids) was detectable in any of the animals used. Table 2 includes a summary 

of the horses used for this study. Two horses (H11 and H12) were excluded from further analysis 

due to positive FEC results.    
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Table 2. Summary of metadata from animals used in this study 

Horse ID DOB* Gender** Breed*** FEC Results**** 

H01 May 2015 G QH Negative 

H02 June 2015 M QH Negative 

H03 May 2014 G QH Negative 

H04 April 2015 M QH Negative 

H05 April 2015 M QH Negative 

H06 June 2015 G QH Negative 

H07 March 2015 G QH Negative 

H08 July 2015 M QH Negative 

H09 April 2014 G QH Negative 

H10 May 2014 G QH Negative 

H11 July 2014 M QH Positive 

H12 March 2015 M QH Positive  
*DOB: Date of birth  
**Gender: Mare (M) or Gelding (G) 
***QH: Registered American Quarter Horse 
****FEC Results: Based on diagnostic fecal egg counts (Appendix I). Positive=egg observed; Negative=No 

eggs observed 

 

Experimental Design and Sample Collection 

Fecal samples were collected at two time points; pre-treatment (day -3) and post-treatment 

1 (day 2) resulting in a total of 20 samples (see figure 5). On day 0, all horses were treated with a 

single dose (0.4 mg/kg body weight) of QUEST® PLUS Gel [active ingredients: Moxidectin and 

Praziquantel] (Zoetis US) following manufacturer’s instructions. Samples were collected 

immediately following defecation, fecal balls were broken open and 50 ml of material from inside 

the fecal ball was collected to avoid environmental contaminants. Samples were placed 

immediately on ice for transport and stored at -20C freezer within 5 hours of initial collection and 

remained frozen until DNA extraction.  



 29 

 

Figure 5. Chapter 2 project experimental design 

 

DNA Isolation and Quantification 

Microbial DNA was isolated from all collected samples according to the protocol described 

in appendix II. Sample quality control was performed on the isolated DNA samples using 3 

methods. A NanoDrop™ Spectrophotometer (Thermo Fisher Scientific) was used to test the DNA 

purity and yield (OD260/OD280). An agarose gel electrophoresis test was used to analyze DNA 

degradation and potential contamination. Then, a Qubit® 2.0 fluorometer (Thermo Fisher 

Scientific) was used to precisely quantify the DNA concentration.   

 

16S rRNA Amplification and Next-Generation Sequencing 

A 16S rRNA library for the MiSeq Illumina platform was prepared at SeqMatic LLC, USA 

(Fremont, California) according to the Earth Microbiome Project standard protocol 

(http://www.earthmicrobiome.org/protocols-and-standards/16s/). A 515f-806r barcoded primer 

set was used to target the V4 region of the 16s rRNA gene using a dual barcoding protocol. The 

polymerase chain reactions were performed in triplicate and pooled. Sequencing of the 16S V4 

region was performed on the Illumina MiSeq platform (Illumnia Inc., San Diego, CA, USA), using 

a paired-end 2x150bp cycle run and MiSeq Reagent Kit version 2(300) chemistry.  

http://www.earthmicrobiome.org/protocols-and-standards/16s/)
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Data Processing and Analysis 

Sequence reads were demultiplexed using Illumina’s MiSeq Reporter Software (Illumnia 

Inc., San Diego, CA, USA) and imported into QIIME2 version 2018.2 (https://qiime2.org) for 

further analysis. The DADA2 pipeline [104] was used to pair forward and reverse reads and for 

quality control; phiX reads and chimeric sequences were filtered following a pooled consensus 

method. The resulting feature table was used for taxonomic assignment based on the GreenGenes 

version 13.8 reference database by training a Naïve Bayes classifier with the QIIME2 q2-feature-

classifier plugin [105–109]. De novo multiple sequence alignment was preformed using the 

MAFFT method [110]. Phylogenetic trees were constructed using the FastTree2 and Midpoint 

Root methods [111,112].   

Absolute count data from the GreenGenes taxonomic assignment was normalized into 

relative abundances at each taxonomic level and plotted using the QIIME2 taxa plugin. 

Community alpha and beta diversity were analyzed using phylogenetic and non-phylogenetic 

metrics through the QIIME2 diversity plugin. Diversity within each sample (-diversity) was 

evaluated for evenness and richness based on the Shannon diversity index. The significance of the 

sample collection time (pre-treatment vs. post-treatment) variable effect on the samples’ alpha 

diversity values was calculated using a Kruskal-Wallis testing method [113]. This method is a non-

parametric version of the one-way ANOVA test and corrects for multiple testing using the 

Benjamini and Hochberg method [114]. Diversity between samples (-diversity) was estimated by 

calculating weighted UniFrac distances [115] from the feature table. The R software was used to 

visualize data and generate PCoA plots from distance matrices using the qiime2R package 

[116,117]. A pairwise PERMANOVA test was applied to determine significant differences 

between groups of samples, with 999 permutations used to calculate p-values [118]. To analyze 
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differences in the microbiome composition before and after anthelmintic treatment, the absolute 

counts of taxonomic features were tested for differential abundance using the DESeq2 negative 

binomial algorithm [119]. The Benjamini and Hochberg’s method was applied to correct for 

multiple testing errors [114]. For all comparisons and statistical tests, =0.05 was set as the 

threshold for significance.  

 

Results 

16S rRNA Amplicon Sequencing Data Summary 

Demultiplexed sequences were imported into QIIME2 and sequencing data results were 

summarized. For the 20 samples, the raw data resulted in a total of 3,475,695 sequences (see table 

3).  

Table 3. Summary of amplicon sequencing data generation 

Demultiplexed Sequence Counts Summary 

Minimum 87923 

Median 174899.5 

Mean 173784.75 

Maximum 252304 

Total 3475695 

 

The distribution of the basepair qualities at each position in the sequence reads were 

visualized (see figure 6). The vast majority of sequences had a quality score above 35, so the data 

was not further truncated or trimmed for removal of low quality sequences [120].  
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Figure 6. Distribution of sample sequencing quality 

 

Following quality control using the DADA2 pipeline, a feature table was constructed to 

map feature identifiers to representative sequences. Within the 20 samples, there were 5,369 total 

features, with a total frequency of 2,640,452. There was a mean frequency of 132,022.6 (range: 

75,931.0-220,178.0) total features per sample. For each feature, there was a mean frequency of 

491.8 observations (range: 1.0-36,448).  For downstream analysis, the frequency tables were 

rarified at an even sampling depth of 75,931 features per sample. At this level, 1,518,620 of the 

original sequences (57.51%) and all of the 20 samples were retained for analysis.   

 

Microbial Community Diversity 

Alpha and beta diversity metrics were determined for the sample microbial communities 

and the effect of treatment on diversity measures was evaluated. A decreasing trend in -diversity 

was observed in the Shannon Diversity Index following treatment (see figure 7). The observed 

effect of sample collection time (pre-treatment vs. post-treatment), was statistically significant (p-

value=0.0493).  
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Figure 7. Alpha Diversity distribution boxplots between pre- and post-treatment sample groups 

 

Differences in community diversity between pre and post treatment samples (-diversity), 

represented by weighted UniFrac distances, was not significant (p-value=0.2930). There was, 

however, slight clustering observed by collection time point (see figure 8). The effect of individual 

horse (see figure 9) was highly significant (p-value=0.001). 
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Figure 8. Weighted UniFrac PCoA labeled by sample collection time group 

 

 

Figure 9. Weighted UniFrac PCoA labeled by individual horse ID 

 

Microbial Community Composition 

Taxonomic community profiles of the samples were pooled and the relative abundance of 

taxonomic groups were compared between the pre-treatment and post-treatment samples (see 
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figure 10). Across both collection time points, the Bacteroidetes phylum predominated the 

community membership and increased following treatment (pre: 42.4%, post:  45.9%). The 

Firmicutes were the second most abundant phylum in all of the samples and decreased after 

treatment (pre: 25.0%, post: 21.4%). Other notably abundant phyla include the Spirochaetes (pre: 

13.3%, post: 14.9%), Verrucomicrobia (pre: 9.6%, post: 8.8%), and Fibrobacteres (pre: 4.1%; post: 

3.6%). At the family level, unassigned members of the Bacteroidales order accounted for the 

majority of community membership at both sampling time points (pre: 23.1%, post: 25.1%). Other 

predominant bacterial families include Spirochaetaceae (pre: 13.3%, post: 14.8%), 

Paraprevotellaceae (pre: 10.6%, post: 12.9%), Ruminococcaceae (pre: 10.3%, post: 7.8%), and 

RFP12 (pre: 8.4%, post: 7.9%). At the genus level, the microbial community was again 

predominated by unassigned members of the Bacteroidales order (pre: 21.0%, post: 23.1%). 

Treponema was the second most relatively abundant genus at both sampling time points (pre: 

13.2%, post: 14.8%). Other notably abundant genera include: Fibrobacter (pre: 4.1%, post: 3.6%), 

YRC22 (pre: 3.6%, post: 5.4%), Prevotella (pre: 3.4%, post: 3.5%), Phascolarctobacterium (pre: 

2.9%, post: 3.1%), CF231 (pre: 2.9%, post: 3.1%), and Oscillospira (pre: 1.9%, post: 0.8%). 

Additionally, three more of the top ten most abundant genera include an unassigned member of 

the RFP12 family (pre: 8.4%, post: 8.0%), an unassigned member of the Ruminococcaceae family 

(pre: 6.3%, post: 4.5%) and an unassigned member of the Lachnospiraceae family (pre: 3.8%, 

post: 4.5%). 
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Figure 10. Observed relative abundance of phyla in samples grouped by sample collection time 

 

Differential Abundance of Taxonomic Features Between Sample Collection Groups 

Differential abundance between the community composition of samples before and after 

anthelmintic treatment was evaluated using the DESeq2 method. Twenty-one taxonomic features 

were significantly (padj-value<0.05) different between the pre-treatment and post-treatment 

sample groups. Of these, 7 features from the Bacteroidetes (5) and Firmicutes (2) phyla were 

significantly higher in abundance in the pre-treatment group. Higher abundance Bacteroidetes 

include: 3 unassigned members of the Bacteroidales order, an unassigned member of the BS11 

family, and YRC22 spp. Higher abundance Firmicutes include: an unassigned member of the 

Ruminococcaceae family and a Phascolarctobacterium spp. Fourteen taxonomic features were 

significantly lower in abundance in the pre-treatment group, representing members of the 

Firmicutes (4), Bacteroidetes (6), Verrucomicrobia (2), Spirochaetes (1) and Cyanobacteria (1) 
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phyla. Lower abundance Firmicutes include: an unassigned member of the Clostridiales order, an 

unassigned member of the Christensenellaceae family, an unassigned member of the 

Ruminococcaceae family, and Streptococcus luteciae. Lower abundance Bacteroidetes include 2 

unassigned members of the Bacteroidales order, 2 unassigned members of the RF16 family, CF231 

spp., and Prevotella spp. Additionally, there were lower abundances in 2 unassigned members of 

the RFP12 family of the Verrucomicrobia phylum, a Treponema spp. of the Spirochaetes phylum, 

and an unassigned member of the YS2 order within the Cyanobacteria phylum.   
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Figure 11. DESeq2 analysis results. Taxonomic features which decreased in abundance 

following treatment are represented by a positive log2fold change, increased features have a 

negative log2fold change.  

 

Discussion 

Helminth infections are common in the horse, as are the use of anthelmintic drugs to limit 

and control these infections. Previous studies have demonstrated that changes occur to the 
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microbiota in horses with helminth infection following anthelmintic treatment [95,96,121]. Due 

the to the prevalence of anthelmintic use in un-infected horses [43], it is important to determine if 

anthelmintics impact the microbiota of healthy horses as well. Furthermore, the impact of helminth 

infection on the microbiota composition and structure may limit the ability to differentiate between 

the drivers of change in this complex system; as microbial changes could be host-associated or 

helminth-associated [63]. This is the first study to characterize the equine fecal microbiome before 

and after anthelmintic administration in a cohort of horses without an observed cyathostomin 

infection. Differences in the diversity and the taxonomic profiles of samples collected pre-

treatment and post-treatment suggest that anthelmintic administration may have some impact on 

the equine gastrointestinal microbiota in the absence of helminth infection.   Alterations to the 

microbial community composition and structure are often referred to as “dysbiosis”. It has been 

hypothesized that dysbiosis can be categorized in three types; (1) loss of beneficial microbial 

organisms, (2) expansion of pathobionts or potentially harmful microorganisms and (3) loss of 

overall microbial diversity [122]. Trends in our data suggest that anthelmintic administration may 

induce dysbiosis, demonstrated by a loss of overall diversity and change in community structure. 

At this time, it is unknown whether these changes translate into health consequences and remains 

to be studied.  

Alterations in alpha diversity metrics can be accounted for by changes in the number and/or 

distribution of taxonomic features in a community. A reduction in alpha diversity has been 

associated with a variety of disease states [123,124], often due to the reduction of certain taxa and 

the subsequent increase of others, particularly in the gut. The significant decrease in -diversity 

detected following treatment suggests dysbiosis-inflicting alterations in the community 

membership and taxonomic abundances may be associated with anthelmintic administration. 
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While changes in diversity serve as a broad indicator of community alterations, the mechanisms 

driving these changes require further investigation to understand the potential impact of dysbiosis 

[125]. In this study, changes identified in the abundance of certain taxa following treatment explain 

the observed reduction in -diversity and are consistent with the findings of previous studies 

[95,96,121]. These specific taxonomic changes provide additional support for the notion that 

anthelmintic-induced microbiota changes could lead to a dysbiosis as previously defined.  

Our data suggests that anthelmintic administration may impact taxonomic groups which 

are functionally important to the health, immunity and metabolic capabilities of horses. Five 

features belonging to the Clostridiales order of the Firmicutes phylum were identified as 

differentially abundant between pre- and post-treatment sample groups. This taxonomic group 

contains many commensal bacteria species that play vital roles in gastrointestinal homeostasis [6]. 

In horses, members of this taxonomic group predominates the hindgut [15,126] and notable 

changes in their abundance have been associated with gastrointestinal health and disease [36,127].        

The results of this study indicate that microorganisms associated with metabolic processes 

may be impacted by anthelmintic treatment. For instance, an unassigned Phascolarctobacterium 

spp. was significantly decreased following treatment. This genus has been isolated from 

gastrointestinal samples in many mammal species, including the equine cecum and feces 

[128,129], and is hypothesized to utilize succinate generated from other bacterial species 

cohabitating the gastrointestinal tract, thus contributing to the metabolic functionality of the 

microbial community as a whole [130]. A decrease was also observed in members of the 

Ruminococcaceae family, which are associated with the degradation of cellulose and 

hemicellulose in the mammalian gastrointestinal tract [131,132].  
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Different compartments of the equine gastrointestinal tract serve unique roles in digestion 

and metabolism, and thus host specialized bacterial populations [15,126]. The cecum is an 

important location for microbial digestion in the equine large intestine [13]. In this study, changes 

were observed in multiple taxonomic groups which have previously been identified in high 

abundance in the equine cecum including Phascolatctobacterium spp., Streptococcus luteciae, and 

members of the RFP12, RF16 and BS11 families [15,126,128–130,133,134]. These findings 

suggest that anthelmintic drugs may be particularly active in the equine cecum, and thus impact 

the metabolic efficiency within this compartment. Compartmental variation is not necessarily 

represented in fecal samples, so these findings are only speculative and based on the previously 

documented presence of these species in the cecum [13,18]. Due to the importance of microbial 

fermentation for equine metabolic efficiency, maintaining homeostasis throughout the 

gastrointestinal tract is crucial to ensuring that animals are able to meet their nutritional needs and 

avoid metabolic-associated disorders [14,15,135]. Furthermore, the taxonomic changes observed 

in this data may help explain the findings from a recent study, which indicated that anthelmintic 

administration reduces hindgut fermentation kinetics [96]. Additional research including 

metabolomics and measures of feed efficiency would be needed to further determine the impact of 

anthelmintics on equine metabolic capabilities.   

Interestingly, the results of the differential abundance analysis indicated the expansion of 

multiple taxonomic groups that have previously been identified as potential pathogens. A notable 

example of this was the increase of Prevotella spp. observed following anthelmintic 

administration. This genus has members that can be both commensal and pathogenic in nature 

[136–139]. In horses, Prevotella spp. have been described as opportunistic pathogens associated 

with a variety of diseases including periodontitis, lower respiratory tract infections, and colitis 
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[36,140,141]. Research into the pathogenesis of Prevotella spp. has been more thorough in human 

and mouse models, demonstrating many compelling associations between Prevotella spp. 

abundance and inflammatory diseases [137]. Furthermore, the abundance of Streptococcus 

luteciae was significantly increased in the post-treatment sample group. This species has been 

observed to predominate the equine hindgut prior to the onset of laminitis [142]. An increase in S. 

luteciae has also been observed during the onset of colorectal carcinogenesis associated with 

chronic colitis, suggesting that this species may act as an opportunistic pathogen [143]. 

Additionally, a taxonomic feature from the Treponema genus also increased in abundance 

following treatment. Species from the Treponema genus have been previously identified in equine 

microbiome samples from both healthy and disease compromised animals [144–146]. A previous 

study has suggested that Treponema spp. may be associated with hoof canker disease pathogenesis 

[144]. This genus has also been isolated in equine oral samples and is associated with periodontal 

disease [147]. It should be noted that the above mentioned observations have not been associated 

with disease causation, but their role in equine gastrointestinal dysbiosis may warrant further 

investigation.   

The results of the -diversity analysis suggest that differences in the microbial composition 

were more pronounced between different individual animals, than between different sampling time 

points. This notable result was not entirely surprising, as studies in human and mouse models have 

suggested that the inter-individual effect is a major driver of variation in microbial community 

structure and composition [148–151]. The highly significant individual effect observed in this data 

suggests a need for a larger sample size to improve the ability to detect biological trends in between 

sample variation due to treatment. The animals used in this study were all of the same breed with 

a relatively small distribution of age and gender. Additionally, all of the horses used were fed the 
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same diet, lived in group housing, and had no known previous diagnosis of infection or disease. 

The standardization of these potentially confounding variables [135] should limit the individual 

variation resulting from environmental conditions. 

  

Limitations 

Recent efforts have begun to characterize the microbiome associated with helminth 

infections in horses and other model organisms [63,121,152,153]. Additional studies are needed 

to improve our understanding of the associations between the parasites and microbes cohabitating 

a hosts’ gastrointestinal tract, and how such associations impact the host itself. Determining such 

associations are also necessary to confirm and specify the impact of anthelmintic administration 

on the gastrointestinal microbiome in regards to parasitic infection status. The results of this study 

suggest that the combined administration of Moxidectin and Praziquantel does have an impact on 

the equine fecal microbiome composition. Future investigations will also need to address the broad 

range of anthelmintic drugs currently available, as their varied mode of actions may differentially 

impact the gastrointestinal microbiome. Additionally, the scope of this study was limited to a 

single post-treatment sample collection time point; additional time points at smaller and larger 

time intervals following treatment may be useful in characterizing both the short term and long 

term impacts of anthelmintic use. 

The Bacteroidetes was the predominate (44.2%) phylum identified in all samples in this 

study, followed by the Firmicutes (23.2%), Spirochaetes (14.1%), Verrucomicrobia (9.2%), and 

Fibrobacteres (3.8%). The predominating phyla observed in these samples are consistent with 

other studies in animals with a forage-based diet [9,121,154], although some studies have shown 

Firmicutes to be the predominant phylum in equine fecal samples [12,36,89,127,155]. These 
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inconsistencies could be due to many factors including differing DNA extraction protocols, 16S 

rRNA amplicon target regions, sequencing depth and platforms, in addition to the animal selection 

criteria used for each study [12,135].  

 

Finally, the interpretation of these findings, along with many marker gene microbiome 

studies in horses and other less-studied model organisms, is limited by the lack of taxonomic 

resolution provided by microbial reference genome databases. In order to better understand the 

functionality, and potential implications of the host-associated microbiota on a broad scale, it is 

essential that the individual microbial organisms that makeup the microbiota are thoroughly 

studied and described. The ability to identify microbes at the species and strain level, and to 

understand their functional roles in the gastrointestinal ecosystem, will greatly enhance our ability 

to interpret biological trends observed in microbiota studies.   

 

Conclusion 

The fecal microbiota was characterized before and after anthelmintic administration in a 

cohort of horses that were not detectably shedding helminth eggs at the time of treatment 

administration. The findings of this investigation suggests that administering anthelmintic drugs 

to horses in the absence of an observed helminth infection results in subtle gastrointestinal 

dysbiosis, indicated by a decrease in microbial diversity and significant changes to the microbiota 

community composition and structure. Due to the high prevalence of anthelmintic drug usage in 

horses worldwide, it is pertinent to understand the physiological impact and potential health risk 

factors associated with the administration of such drugs. The effects observed in this pilot study 

are preliminary in nature and warrant further investigations to determine how these effect may 

impact host health. 
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CHAPTER III: THE EQUINE FECAL MICROBIOTA ASSOCIATED WITH HELMINTH 

EGG SHEDDING LEVELS AND THE TEMPORAL IMPACT OF ANTHELMINTIC 

ADMINISTRATION 

 

 

 

Introduction 

The equine gastrointestinal tract is a complex ecosystem which harbors both microbial 

organisms and parasitic worms (helminths). Members of this ecosystem play many roles in the 

health and homeostasis of their host organism. To further understand the impact of the 

gastrointestinal inhabitants on their host, it is vital to first understand the dynamic relationships 

occurring between members of the ecosystem. The first objective of this study is to characterize 

the microbiota community composition and structure in cohorts of horses with varying levels of 

helminth infection statuses. Furthermore, this study aims to follow-up with the pilot study 

presented in the previous chapter, by determining the impact of anthelmintic drug administration 

on the equine microbiota. To address this aim, the current study has two additional objectives: 1) 

characterize the daily temporal variation observed in the equine microbiota community following 

anthelmintic drug administration, and if possible, 2) determine if changes to the microbiota 

following anthelmintic administration vary based on the level of helminth infection detected prior 

to treatment.  

 

Materials and Methods 

Animal Use 

Twenty-five horses were used in this study. All horses used were American Quarter horses 

(aged 1.5-2 years at time of study), house together in group pens and fed a forage based diet ad 

libitum (further metadata summarized in table 4). Criteria for including animals in the study 
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included; no known history of illness and no administration of antibiotics, anthelmintics or other 

medications in the 90 days prior to the study. All procedures were approved by the Institutional 

Animal Care and Use Committee at Colorado State University (Protocol approval number 16-

6811A).  

Table 4. Summary of metadata from animals used in this study 

Horse ID DOB* Gender** Breed*** Strongyle 

FEC**** 

Ascarid 

FEC**** 

H01 May 2016  M QH 0 0 

H02 May 2016 M QH 100 0 

H03 June 2016 M QH 25 0 

H04 May 2016 M QH 725 0 

H05 June 2016 G QH 75 0 

H06 March 2016 M QH 775 0 

H07 NA M QH 625 0 

H08 NA M QH 400 0 

H09 April 2016 M QH 0 0 

H10 March 2016 M QH 925 0 

H12 May 2016 G QH 175 0 

H14 May 2016 G QH 900 150 

H15 May 2016 G QH 300 0 

H17 April 2015 M QH 75 0 

H19 May 2015 M QH 25 0 

H20 May 2015 M QH 125 0 

H21 March 2016 G QH 125 0 

H22 March 2016 G QH 100 0 

H23 March 2016 G QH 750 0 

H24 April 2016 M QH 425 0 

H25 March 2016 M QH 325 0 

H27 NA M QH 1700 0 

H28 NA M QH 875 75 

H29 NA M QH 1200 0 

H30 NA M QH 2250 50 
*DOB: Date of birth  
**Gender: Mare (M) or Gelding (G) 
***QH: Registered American Quarter Horse 
****FEC Results: Based on diagnostic fecal egg counts (Appendix I). Listed as eggs per gram of feces. 
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Experimental Design and Sample Collection 

Fecal samples were collected at 24 hour intervals over 4 days; day 0, day 1, day 2 and day 

3 (figure 12). Following D0 sample collection, all horses were administered a single dose of 

QUEST® PLUS Gel [active ingredients: Moxidectin and Praziquantel] (Zoetis US) at the 

manufacturer’s recommended dose of 0.4 mg Moxidectin/kg body weight. Samples were collected 

immediately after defecation, fecal balls were broken open and 50 ml of material from inside the 

fecal ball was collected to avoid environmental contaminants. Samples were immediately placed 

in a cooler on ice (4C) for transit. Samples were stored in a -20C freezer within 5 hours of initial 

collection and remained frozen until DNA extraction. Aliquots from all samples collected were 

used for bacterial DNA isolation as described in appendix II.  

 

 

Figure 12. Chapter 3 project experimental design and sampling scheme 

 

Additional samples collected on day 0 from each animal were used for fecal egg count 

parasite infection diagnostics described in appendix I. Animals were grouped into each of the 

following helminth egg shedding groups established from the identification of strongyle eggs 

resulting from FEC diagnostics (table 5): low egg shedder (0-200; LS), moderate egg shedder 
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(200-500; MS) or high shedder (>500; HS). The strongyle shedding level group classifications 

used in this study are based on guidelines suggested by previous research [57].  

Table 5. Suggested guidelines for classifying horses into different levels of strongyle egg 

shedding and the expected percentage of the horse population belonging to each group (Kaplan 

and Nielsen, 2010; Adapted from the AAEP Parasite Control Guidelines). 

Egg Count Level 

Low Shedders (LS): 0-200 EPG 

Moderate Shedders (MS): 200-500 EPG 

High Shedders (HS): 

 

>500 EPG 

 

DNA Isolation and Quantification 

Microbial DNA was isolated from all collected samples according to the protocol described 

in appendix II. Additionally, a “blank” sample, containing only nuclease-free water was included 

to provide a negative control for DNA isolation, PCR amplicon generation and sequencing 

protocols. The purity and quantification of isolated DNA were assessed using the NanoDrop™ 

Spectrophotometer (Thermo Fisher Scientific) was used to test the DNA purity and yield 

(OD260/OD280).  

 

16S rRNA Amplification and Next Generation Sequencing 

From the isolated genomic DNA, the V4 hypervariable region of the 16S rRNA gene was 

PCR-amplified using a 515F/806R universal primer set (Forward: 5’-GTG CCA GCM GCC GCG 

GTA A-3’; Reverse: 5’-GGA CTA CHV GGG TWT CTA AT-3’). All PCR reactions were carried 

out in 30μL reactions with 15μL of Phusion® High-Fidelity PCR Master Mix (New England 

Biolabs); 0.2μM of forward and reverse primers, and about 10 ng of template DNA. Thermal 
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cycling consisted of initial denaturation at 98 ℃ for 1 minute, followed by 30 cycles of 

denaturation at 98 ℃ for 10 seconds, annealing at 50 ℃ for 30 seconds, and elongation at 72 ℃ 

for 30 second, followed by 72 ℃ for 5 minutes. PCR products were then mixed in equidensity 

ratios and purified with the GeneJET Gel Extraction Kit (Thermo Scientific, USA). Sequencing 

libraries were generated using the Illumina TruSeq DNA PCR-Free Library Preparation Kit 

(Illumina, USA) following manufacturer’s recommendations and index codes were added. The 

quality of libraries was assessed using the Qubit 2.0 Fluorometer (Thermo Scientific, USA) and 

Agilent Bioanalyzer 2100 system. Quantified libraries were pooled according to effective 

concentration and expected data volume and sequenced on an Illumina HiSeq 2500 sequencing 

platform, generating 250 bp paired-end reads.  

 

Data Processing and Analysis 

Demultiplexed sequences were imported into QIIME2 2018.2 (https://qiime2.org) for 

further analysis. The DADA2 pipeline [104] was used to pair forward and reverse reads and for 

quality control; phiX reads and chimeric sequences were filtered following a pooled consensus 

method. The resulting feature table was used to for taxonomic assignment based on the 

GreenGenes version 13.8 reference database by training a Naïve Bayes classifier using the 

QIIME2 q2-feature-classifier plugin [105,106,108,109]. De novo multiple sequence alignment 

was preformed using the MAFFT method. Phylogenetic trees were constructed using the FastTree2 

and Midpoint Root methods [111]. 

Absolute count data from the GreenGenes taxonomic assignment was normalized into 

relative abundances at each taxonomic level and plotted using the QIIME2 taxa plugin. 

Community alpha and beta diversity were analyzed using phylogenetic and non-phylogenetic 



 50 

metrics through the QIIME2 diversity plugin. Diversity within each sample (-diversity) was 

evaluated for evenness and richness based on the Shannon diversity index. The significance of the 

experiment day (day 0, day 1, day 2 and day 3) and FEC group (LS, MS, HS) variables on the 

samples’ alpha diversity values was determined using a Kruskal-Wallis testing method. This 

method is a non-parametric version of the one-way ANOVA test and corrects for multiple testing 

using the Benjamini and Hochberg method [114]. Diversity between samples (-diversity) was 

estimated by calculating weighted UniFrac distances [115] from the feature table. This quantitative 

measure of -diversity evaluates the presence and abundance of taxa, while also account for the 

phylogenetic relationships (in terms of phylogenetic branch length) between members of the 

taxonomic community [156]. The R software was used to further visualize data and generate PCoA 

plots from distance matrices using the qiime2R package [116,117]. A pairwise PERMANOVA 

statistical method was applied to test for significant differences between groups of samples, with 

999 permutations used to calculate p-values [118]. Differences in -diversity were evaluated for 

the samples grouped by experiment day (day 0, day 1, day 2, day 3) and by FEC shedding group 

(LS, MS, HS).  

 

Results 

Fecal Egg Count Diagnostics Results Summary 

A total of 23 horses (92%) had a positive detection of strongyle eggs from the FEC 

diagnostics. Animals with no observed strongyle eggs (n=2) were classified as low egg shedders. 

A total of 11 horses (44%) were classified as low shedders (LS), a total of 4 horses (16%) were 

classified as moderate shedders (MS), and a total of 10 horses (40%) were classified as high 

shedders (HS) (see tables 5 and 6 below). A total of 3 horses (12%) had a positive ascarid detection 
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count (range: 50-150 EPG); both of these horses also had positive strongyle counts and were 

classified as high egg shedding individuals and therefore were grouped with the HS group for 

comparisons.  

Table 6. FEC diagnostics and shedding level classification group assignment results 

Shedding Group Horses (n) Prevalence EPG 

(mean) 

EPG 

(range) 

Low Shedder 11 44% 75.0 0-175 

Moderate Shedders 4 16% 362.50 300-425 

High Shedders 10 40% 1072.5 625-2250 

 

16S rRNA Amplicon Sequencing Data Summary 

Demultiplexed sequences were imported into QIIME2 and sequencing data results were 

summarized. For the 100 samples the raw data resulted in a total of 20,823,783 sequences (table 

7).  The lowest sequence count (51,616) belonged to the “Blank” control sample, which was then 

excluded from the downstream analysis.   

Table 7. Summary of amplicon sequencing data generation 

Demultiplexed Sequence Counts Summary 

Minimum 51616 

Median 208907.0 

Mean 208237.93 

Maximum 219880 

Total 28023783 

 

 The distribution of the sequence qualities at each position in the sequence data were 

visualized (figure 13) to determine if data needed to be truncated to remove low quality sequences. 

Due to high quality of sequences observed, reads were not truncated. Barcodes were trimmed from 

the 5’ end of each read (6 bp) through the DADA2 pipeline.  
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Figure 13. Distribution of sample sequencing quality 

 

Following quality control using the DADA2 method, a feature table was constructed to 

map feature identifiers to representative sequences. Within the 99 samples there were 31,434 total 

features, with a total frequency of 6,617,513. There was a mean frequency of 66,843.57 (range: 

52,188-78,148) total features per sample. For each feature, there was a mean frequency of 210.521 

observations (range: 1.0-12,957).  For downstream analysis, the frequency tables were rarified at 

an even sampling depth of 52,188 features per sample. At this threshold there were 5,166,612 of 

the original sequences (78.07%) and all of the 99 samples retained in the data set. The blank sample 

was processed separately following the same quality control and feature table generation methods. 

In the single blank sample, there were 11 features identified, with a total frequency of 528 

observations. For each feature, there was a mean frequency of 48.0 observations (range: 2.0-

138.0).  

 

Characterization of the Microbiota Between FEC Shedding Groups 

The microbial community composition and structure of day 0 fecal samples were compared 

between egg-shedding group. Some trends were observed in the -diversity measures, represented 

by the Shannon Diversity Index, between egg-shedding groups. The LS group had the highest 

average measures of -diversity, followed by the MS group and the HS group, which had the 
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lowest average -diversity (see figure 14). No significant differences were observed in -diversity 

between the LS, MS, or HS sample groups (table 8).  

 

Figure 14. Alpha Diversity distribution boxplots of day 0 samples across FEC shedding groups 

 

Table 8. Pairwise Kruskal-Wallis test results of FEC group significance based on Shannon 

diversity index 

Group 1 Group 2 H p-value q-value 

LS (n=11) MS (n=4) 0.613636364 0.433421931 0.650132896 

HS (n=10) LS (n=11) 0.714049587 0.398102716 0.650132896 

HS (n=10) MS (n=4) 0.08 0.777297411 0.777297411 

 

Visualization of the diversity between individual samples (-diversity) suggested subtle 

clustering associated with the FEC group assigned to each sample (see figure 15).  Permutation-

based statistical testing (PERMANOVA) did not indicate that the FEC group variable was a 

significant driver of beta-diversity differences (p-value=0.182). Pairwise PERMANOVA testing 
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results did not indicate any significant differences (p-values > 0.05) between individual groups of 

samples based on egg-shedding levels (see table 9).  

 

Figure 15. Weighted UniFrac PCoA labeled by FEC shedding group 

 

Table 9. Pairwise PERMANOVA results of FEC shedding group significance based on weighted 

UniFrac distances 

Group 1 Group 2 Sample size Permutations pseudo-F p-value q-value 

LS MS 15 999 1.850157467 0.053 0.159 

HS LS 21 999 1.049450182 0.344 0.361 

HS MS 14 999 1.070589281 0.361 0.361 

 

The microbiota taxonomic profiles were compared across FEC groups (see figure 16). The 

Firmicutes phylum predominated across all FEC groups (LS: 44.8%, MS: 47.1%, HS: 47.9%); 

followed by the Bacteroidetes (LS: 36.1%, MS: 31.6%, HS: 33.0%); Verrucomicrobia (LS: 7.3%, 

MS: 6.8%, HS: 6.9%); Spirochaetes (LS: 5.4%, MS: 7.6%, HS: 5.6%); and the Fibrobacteres (LS: 

1.8%, MS: 2.6%, HS: 1.9%). While some minor re-ranking of the top 5 phyla was observed 

between FEC groups as described, the top 5 predominant phyla overall did not differentiate 

between the FEC groups. Sixteen other phyla were identified in the remaining percentage of 

sequences (>2% relative abundance). Results from ANCOM testing did not indicate that there 



 55 

were any significant differences in the composition of the microbiomes associated with the egg 

shedding level groups.  

 

Figure 16. Observed relative abundance of phyla in day 0 (baseline) samples pooled by FEC 

shedding group classifications 

 

Temporal Variation of the Microbiota Following Anthelmintic Administration 

Within sample diversity (-diversity) increased slightly from baseline measures 

established on day 0, following anthelmintic treatment on days 1 and 2. On day 3, there was an 

observable trend in decreased -diversity (see figure 17).  Statistical testing across all experiment 

days did not indicate a significant difference in -diversity (p-value=0.095). Results of testing 

between groups of samples from each of the experiment days (table 10) indicate a significant 

difference in -diversity measures between samples from day 2 and day 3 (p-value=0.031).   
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Figure 17. Alpha Diversity distribution boxplots of all samples across collected across 

experimental day time series 

 
Table 10. Pairwise Kruskal-Wallis test results of experiment day group significance based on 

Shannon diversity index 

Group 1 Group 2 H p-value q-value 

Day 0 (n=25) Day 1 (n=25) 0.849411765 0.3567188 0.3567188 

Day 0 (n=25) Day 2 (n=24) 2.4964 0.114106866 0.228213733 

Day 0 (n=25) Day 3 (n=25) 0.960094118 0.327163166 0.3567188 

Day 1 (n=25) Day 2 (n=24) 1.0816 0.298339901 0.3567188 

Day 1 (n=25) Day 3 (n=25) 2.816847059 0.09327947 0.228213733 

Day 2 (n=24) Day 3 (n=25) 4.6656 0.03077267 0.184636017 

 

Principal coordinate analysis (PCoA) of -diversity suggested some clustering of samples 

based on experiment day (figure 18), with stronger clustering present in samples collected on day 

0. Samples collected after anthelmintic treatment (day 1, day 2, day 3) appear to be more diverse 

than the group of samples collected prior to treatment (day 0). 
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Figure 18. Weighted UniFrac PCoA labeled by FEC shedding group (shapes) and experiment 

day (color gradient) 

 

The fecal microbiota community composition, represented by the weighted UniFrac metric of -

diversity, was significantly different (p-value < 0.05) between groups of samples collected on each 

experiment day, as suggested by the results of pairwise PERMANOVA, in all pairwise-

comparisons except day 2 and day 3 (table 11).  

Table 11. Pairwise PERMANOVA results of experiment day group significance based on 

weighted UniFrac distances 

Group 1 Group 2 Sample size Permutations pseudo-F p-value q-value 

Day 0 Day 1 50 999 2.640315457 0.009 0.0135 

Day 0 Day 2 49 999 2.747850329 0.006 0.012 

Day 0 Day 3 50 999 4.21364104 0.001 0.003 

Day 1 Day 2 49 999 2.393543452 0.023 0.0276 

Day 1 Day 3 50 999 3.903205051 0.001 0.003 

Day 2 Day 3 49 999 2.085577099 0.05 0.05 
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Across all of the samples, the Firmicutes were the predominant phylum observed in the 

microbiota (47.2%), followed by the Bacteroidetes (32.2%), Verrucomicrobia (8.5%), 

Spirochaetes (5.3%), and Fibrobacteres (2.0%). Sixteen other phyla were represented in the 

remaining 5% of the microbial community membership. The top 5 phyla remained constant 

throughout the experiment days, and no re-ranking occurred within the top 5 across the days in 

terms of relative abundance. Taxonomic community profiles of the samples were pooled and the 

relative abundance of taxonomic groups were compared across the experiment days (see figure 

19). On day 2, the largest fluctuation in the relative abundance of Firmicutes was observed (D0: 

46.4%, D1: 46.0%, D2: 49.5%, D3: 46.9%). The relative abundance of Bacteroidetes decreased 

across the experiment days (D0: 34.2%, D1: 33.9%, D2: 30.9%, D3: 29.9%). The abundance of 

Verrucomicrobia increased from day 0 to day 1, then decreased on day 2 and increased again by 

day 3 (D0: 7.1%, D1: 8.7%, D2: 7.6%, D3: 10.5%). The relative abundance of the Spirochaetes 

phylum remained relative consistent across the experiment days (D0: 5.8%, D1: 5.2%, D2: 5.3%, 

D3: 5.6%). Subtle changes were observed in the Fibrobacteres phylum, which initially decreased 

in relative abundance, and then increased on days 2 and 3 (D0: 1.9%, D1: 1.7%, D2: 2.1%, D3: 

2.3%).  
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Figure 19. Observed relative abundance of phyla in all samples pooled by experiment day of 

which the samples were collected 

 

Due to inconsistencies in this data, further taxonomic profile characterization and 

differential abundance analysis was not conducted at this time. These inconsistencies will be 

further described in the discussion portion of this chapter and in chapter 4.   

 

Discussion 

This study sought to provide a more comprehensive follow-up to the pilot study described 

in chapter II by characterizing the microbiota associated with varying helminth egg shedding levels 

and to characterize the temporal effect of anthelmintic drug administration on the fecal microbiota. 

Finally, this project also initially aimed to determine if temporal changes following anthelmintic 

administration were associated with the level of helminth egg shedding identified prior to 
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treatment. Due to data discrepancies, these objectives were not entirely met. This discussion aims 

to describe what was learned by the researchers throughout this project in terms of biological 

significance and sources of data inconsistencies. As described further in the limitations section 

below, inconsistencies in sequencing data led researchers to not proceed with a full analysis of the 

data. The following described results and interpretations are based on preliminary analysis and 

results derived from microbial sequencing data should be considered cautiously in regards to the 

described limitations.  

The first objective of this study was to characterize the fecal microbiota of horses 

presenting a strongyle infection. Furthermore, the study aimed to determine if there were 

observable difference in the microbiota community composition and structure associated with the 

prevalence of strongyle egg shedding, as determined by FEC.  

The diagnostic results from day 0 FECs provided insight to the strongyle and ascarid egg 

shedding status from each individual in the sample population. Our sample population had a 

relatively overrepresented HS group (44%) compared to the expected percentage (15%-30%) in 

the overall horse population [57]. The prevalence of MS individuals from our sample population 

(16%) fell within the expected range (10%-20%), although the LS prevalence (44%) was 

comparatively underrepresented (expected: 50%-75%). These differences are not surprising, as the 

previously published literature describes a multitude of factors that can explain variation in the 

distribution of egg shedding groups between different populations of horses [57,157,158]. The 

horses used in this study are considered “young horses” (< 5 years of age), and it has been 

previously demonstrated that this age group has a significantly lower level of consistency in FEC 

results compared to adult and geriatric horses [157].  This age range has also demonstrated 

significantly higher mean strongyle egg shedding levels overall compared to other age classes 
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[158]. The age of horses used in this study also likely explains the prevalence of P. equorum 

observed in 3 of the animals, as this age group falls within in the expected time in which horses 

are at risk for P. equorum infection [50,159]. The use of FECs to define helminth infection burdens 

have limitations which are described further below. 

Within sample diversity (-diversity) of day 0 samples was evaluated based on the 

Shannon diversity index. The LS group samples had the highest average -diversity, followed by 

the HS group and then the MS group which had the lowest average -diversity. The observed 

differences in average -diversity were not statistically different between egg shedding level 

groups (p-values > 0.05). These results are in disagreement with a past study which observed a 

higher alpha diversity in horses with higher FEC counts, although that finding was also not found 

to be statistically significant [121].  This previous report compared animals based on high shedders 

having above 200 EPG and low shedders being anything below that threshold, which does not 

allow for sound comparisons to our study which had higher threshold EPG levels for cohort 

assignment. Other data suggest that helminth infection may lead to a decrease in alpha diversity in 

different model organisms [75,76]. To further explore and verify the impact of helminth infection 

on alpha diversity in horses, it would be useful to utilize more precise helminth infection diagnostic 

techniques, as FECs are not always representative of the true helminth burden in an animal 

[59,160]. Potential alternative methods include molecular methods, larval cultures and recently 

developed smart-phone egg counting applications [59,161].    

Some subtle differences in the relative abundance of taxonomic groups between the 

different FEC groups were observed. However, the results of ANCOM did not indicate that any 

features were significantly different in presence or abundance between the FEC groups. The small 
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sample population size, and uneven distribution of animals in each experimental group used in this 

study may have hindered the ability to detect changes in taxonomic abundance.  

The second objective of this study was the evaluate the daily temporal variation of the 

microbiota following anthelmintic administration. To address this objective, samples were 

collected at 24 hour intervals for 3 days following anthelmintic administration. This time frame 

was chosen because it has been previously demonstrated that the majority of the anthelmintics’ 

active ingredients pass through the gastrointestinal tract and are excreted by the 72 hour time point 

following treatment [162,163].  

The most noticeable temporal effects of the study were observed on day 2. Samples from 

this collection day had the highest average alpha diversity. The alpha diversity then significantly 

decreased between day 2 and day 3 (p-value=0.031). The significance of this result indicates that 

the group of samples collected on day 2 are different from those collected on day 3. This indication 

of difference is limited though, as the effect may be driven by complex changes in the taxonomic 

abundance or evenness. The results of the -diversity analysis suggest that there was not a 

significant change in the presence of the dominant phylotypes in the samples between days 2 and 

3. Further investigation is needed to determine what underlying mechanisms or alterations to the 

microbiota are driving this observed change in diversity [125,164].  However, the significant 

changes observed in -diversity suggest that this time point may be a crucial time of anthelmintic 

impact on the microbiota and may warrant further research focus in future time-series 

investigations. This is supported by previous research that has demonstrated a peak in the fecal 

excretion of Moxidectin at the 48-hour post-administration time point in horses [162].  

On day 0, the fecal microbiota was evaluated as a baseline for this longitudinal study and 

was used as a control for comparisons over time for individual animals. The taxa identified in the 
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baseline samples, and in other samples throughout the experiment,  are consistent with other 

studies in horses under similar management conditions [12]. Although, the predominant phyla 

identified are not consistent with previously generated data from this particular group of horses 

[165,166]. Significant differences in -diversity associated with sample collection day suggest that 

differences in the presence and abundance of certain taxa may be correlated with the temporal 

impact of anthelmintic administration. Further analysis of taxonomic differential abundance in the 

community composition of samples may provide more information about the sources of taxonomic 

variation driving the observed differences in -diversity. However, due to the inconsistencies in 

the taxa identified in this dataset, analysis into differential abundance has not yet been conducted. 

Further investigation into these differences will potentially be resumed once these inconsistencies 

have been resolved.   

If possible, this study intended to further investigate any observed temporal changes that 

were associated with the baseline FEC shedding group classifications determined on day 0 of the 

study. Due to inconsistencies in the data, and the lack of notable differences observed in the 

shedding groups at day 0, the analysis needed to meet this objective was dropped from the scope 

of this study. Future studies that include a larger sample population and animals with more drastic 

differences in helminth infection burden, may better allow for an assessment of the impact of 

anthelmintic drugs on the microbiota of horses based on their helminth burden at the time of 

administration. As the impact of anthelmintic on the microbiota is further investigated, this will be 

an important point to consider incorporating into studies.  

  



 64 

Limitations 

When designing this experiment, we hoped to recruit more animals in the sample 

population without an observable helminth infection. Unfortunately, this was not the case and 

limited the ability to compare the microbiota of animals with and without helminth infections. Due 

to the low number of animals (n=2) that did not have a detectable helminth infection via FEC, in 

addition to the higher risk of a false-negative than a false-positive result from the used FEC method 

[160], the animals without 0 EPG were included in the low-shedding group. Thus, a major 

limitation of this study was the inability to properly compare animals with and without helminth 

infection. 

The use of fecal egg counts does not provide exact or precise representations of the 

helminth burden of an individual and should be interpreted with caution [59,157,160]. While FEC 

results are able to provide an approximation of egg shedding levels at a specific time point, this 

information does not necessarily represent the number of adult or larval stage helminths within the 

animal. Additionally, a relatively high level of variation between the number of eggs present in a 

given sample has been previously demonstrated [59]. Thus, it has been recommended that 

assignment into FEC shedding groups should be based on the results of multiple FEC tests 

performed on multiple samples from different time points. In the present study, the classification 

of horses into FEC groups could have been strengthened by performing more egg counts prior to 

the start of the study. Therefore, the use of FECs to create cohorts for comparisons in this study 

presented a variety of limitations that could be improved in future studies. All of the horses used 

in this study were managed under the same practices and were not administered any anthelmintic 

products for at least 90 days prior to the start of the study. It should be noted however, that a 

number of management factors including previous anthelmintic administration, have been 
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demonstrated to impact helminth egg shedding levels and infection rates [158]. It is possible, that 

exposure to differing management practices, diet, anthelmintic drugs, etc. occurred before these 

animals were in our care, and that these factors could have had long-term effects on the helminth 

infection status and/or GIM composition of the horses in this study.  

Preliminary analysis of this data revealed unexplainable discrepancies in the results, due to 

these issues, it was decided to not move forward with further analysis until the discrepancies are 

resolved. Amplicon sequencing data from this project differed from past studies conducted in this 

research group. Samples were outsourced to a company for sequencing that had not previously 

been used before. This company used different quality control standards, library preparation 

protocols, and sequenced on a HiSeq platform rather than a MiSeq platform, generating longer 

reads than other studies. The FASTQ file received also still contained barcodes, which had to be 

manually trimmed from the reads. Initially, the quality and number of sequences per sample 

appeared to be far superior to previously generated data. However, following the DADA2 pipeline 

for quality control and sample inference, it was revealed that the vast majority of reads were 

identified as chimeras. Subsequently, approximately 75% of the reads from each sample were 

identified as chimeric and removed from the resulting feature table. A similar trend was observed 

in the blank sample, this sample contained only nuclease-free water although sequencing results 

generated 51,616 high-quality read. After running the DADA2 pipeline, only 11 features were 

identified in 528 total retained sequences. Taxonomic assignment did not provide resolution past 

the kingdom level, suggesting that these features may be associated with PCR-artifacts. The reason 

for this high level of data loss is yet to be determined and is being investigated by the researchers 

and sequencing company involved with this project at this time. It is suspected that the high-

sensitivity chimeric detection feature of the DADA2 pipeline identified many sequences as 
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artifacts after being incorrectly joined together and subsequently removed them from the dataset. 

Despite the loss of data, some preliminary results were generated, following the described data 

analysis methods to determine if any trends could be revealed in the analysis that may explain the 

data loss. The taxonomic analysis of the microbiota composition revealed further surprising 

results. The predominant phylum identified in this data was the Firmicutes. This is consistent with 

the findings of data generated from some other studies in horses [12,36,89,127,155]. However, 

this is not consistent with previously generated data from this lab group in particular, in which 

Bacteroidetes have always been observed as the predominant phyla in equine microbiota. This 

finding is suspicious because the all steps of the workflow for this project are identical as those 

followed in the previously mentioned studies with the exception of the company used for the 

outsourced sequencing steps. This discrepancy further suggests that there was a technical error or 

bias brought on by the use of a different sequencing facility which remained to be determined. To 

confidentially interpret these results and identify biologically meaningful results, re-sequencing of 

the samples will likely be necessary. At the current time of writing, investigation into these issues 

are ongoing and analysis will not proceed until the reproducibility of this data can be confirmed.  

Unfortunately, due to the described data discrepancies, interpretation of the preliminary reported 

results from this study remain speculative at best.  

 

Conclusion 

The results of this study demonstrate the potential for temporal variation in the equine 

microbiota immediately following anthelmintic treatment. Preliminary findings suggest that 

changes in the fecal microbiota associated with anthelmintic administration are most evident 

between 48 and 72 hours following treatment. Due to inconsistencies in the data, likely from 
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technical sources, the interpretation of these results remains inconclusive at the time of writing. 

On-going investigation into the sources of data inconsistencies may allow for re-analysis of this 

data in the future.   
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CHAPTER IV: DISCUSSION 

 

 

 

This thesis describes two research projects conducted to investigate the impact of 

anthelmintic administration on the equine microbiota. As described in chapter I, the 

gastrointestinal microbiota (GIM) is an essential component of mammalian health. Knowing the 

factors which impact and interact with the GIM is vital for the development of new medical 

advancements which reflect our enhanced understanding of the importance of the host-associated 

microbiome. This final thesis chapter will review the implications and limitations of the two 

previously described research and future outlooks of research pertaining to the equine-specific 

GIM, and the microbiota in general.   

 

Discussion of the Presented Research 

 A pilot study was conducted, as described in chapter II, which investigated the effects of 

anthelmintic drug administration on the equine fecal microbiota. This study was unique in its’ 

approach as it evaluated the impact of anthelmintics on animals that did not present with a helminth 

infection. While this approach may seem counterintuitive, the use of anthelmintic products in 

healthy animals has become common and is well documented [49,57,64,160].The side effects of 

anthelmintics on uninfected animals, however, has not been investigated. More so, these potential 

side effects have not been evaluated in the current age of microbiome research –  where substantial 

technological advancements have enhanced researchers’ abilities to identify and understand 

dynamics of the microbiome. Given our recently enhanced understanding and appreciation for the 

importance of the GIM in health and disease, the identification of any variable which could 

potentially result in dysbiosis should not be taken lightly. Therefore, it is important to investigate 
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factors that have the potential to influence the GIM, especially when those factors are associated 

with commonly used veterinary practices, such as anthelmintic use. The results of this study 

demonstrate that anthelmintic drugs do have an impact on the equine gastrointestinal microbiota 

when administered to horses without an observable helminth infection. The acute and long-term 

health consequences of this impact are not yet known and further investigation is needed to 

determine what functional changes may be occurring as a result. Due to our developing 

understanding of the consequences of GIM dysbiosis, these preliminary findings may provide a 

new body of evidence for the reasons against “routine” deworming and the need for evidence based 

practices. 

The second project described in this thesis was designed to expand on the results of the 

pilot study, while considering new questions raised by the previous findings. The results of this 

project were meaningful in a more ways than one. To some extent, the objectives of the study were 

met, and some valuable information was gained regarding the initial aims. This study focused on 

the temporal variation in the microbiota exhibited following anthelmintic administration. 

Preliminary observations indicate that the 48 hours following anthelmintic administration may 

have the most noticeable impact on the microbiota. This data also suggested that there may be 

subtle differences in the microbiota associated with FEC shedding levels. The potential for 

temporal variation being associated with these shedding levels will require further investigation 

and was beyond the scope of this research. This project, however, illuminated the complexities of 

microbiome research to a broad extent, and the resulting data must be interpreted with caution. 

The data generation and processing issues that were identified during the analysis of this study are 

not uncommon, and exemplify many large-scale limitations in the field of microbiome research, 

which require careful consideration as this rapidly evolving discipline moves forward.   



 70 

Future research pertaining to the equine microbiota and dynamics associated with helminth 

infection and anthelmintic administration will require far more comprehensive studies. In both of 

the studies described, a relatively small sample size was used (study 1: n=10; study 2: n=25). This 

limited the statistical power of the subsequent data analysis and may have resulted in the inability 

to detect subtle changes, especially at lower taxonomic levels. This limitation is further 

exemplified by the high level of individual variation observed in both studies, as demonstrated the 

by effect of individual animal being highly significant in the assessment of -diversity.  Future 

studies should be designed to account for this issue by utilizing a larger sample size, and by 

continuing to limit individual variation to the best of the investigator’s ability [167]. As more 

factors which impact the microbiome are identified in future research, variation may also be more 

easily explained and accounted for in the context of specific projects. The lack of a control cohort 

in both of these studies also may have limited the ability to make sound comparisons and 

interpretation of the data [167]. Due to the longitudinal design of the experiment, however, the use 

of baseline samples did allow each individual to serve as their own control for time-series 

comparisons [167,168]. Although, use of a control cohort would have provided additional strength 

for comparisons and should be considered for future research. 

As described in the previous review of literature, the interactions between host-helminth-

microbiota are multifaceted and complex and will require extensive on-going research to 

thoroughly understand. There are over 150 parasitic species that can infect horses [169] and 

potentially thousands of host-associated bacterial strains with which they could potentially 

interact. There interactions will clearly take a significant amount of time and research to 

investigate, but characterizing the equine microbiota associated with each parasitic species will be 

a step in the right direction. This same idea should also be extended to the multitude of anthelmintic 
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products used in livestock species. Different classes of anthelmintics differ in their mode of action 

and may potentially impact the microbiota in a variety of ways. These differences could also be 

dependent on the helminth infection status of the host animal and the community composition of 

the microbiota in question, as each type of microorganisms may be impacted differently by the 

anthelmintic action. Future research should extensively investigate the many different helminth 

species, and corresponding anthelmintic drugs used, to determine impacts to the equine microbiota.  

In order to properly understand the dynamics of a microbial ecosystem it is crucial to first 

be able to thoroughly identify the members of the population. In marker gene surveys, this is 

accomplished by assigning taxonomic information to clustered sequence reads based sequence 

similarity or dissimilarity. This step is performed by aligning the reads to a taxonomic database 

[170,171].  For these projects, taxonomy was assigned based on the commonly used GreenGenes 

database. This reference database contains phylogenetic classifications that have been submitted 

via 16S sequences to GenBank and taxonomy proposed by independent researchers, the NCBI, 

and the Ribosomal Data Base Project [171,172]. The majority of the data which has been 

contributed to reference databases such as GreenGenes come from human and mouse studies, as 

these are the most widely published model organisms. Although, the GreenGenes reference 

database has not been updated since the version 13.8 release in 2013. This poses an issue when 

trying to use these databases to gain taxonomic information on the host-associated microbiota of 

less studied, or just recently studied, model organisms such as horses, that are underrepresented in 

reference databases [173]. As a result, the taxonomic classifications obtained when assigning 

taxonomy to reads is often low resolution. In our research, typically 99% of reads in a dataset were 

classified at the phylum level, but this resolution dropped to less than 40% at the species level. 

This level of taxonomic resolution is quite low compared to marker gene studies of host-associated 
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microbiomes in more commonly studied organisms such as humans and mice. This exemplifies 

the need for more diverse and comprehensive reference databases that include less frequently 

studied model organisms [173]. To do so, researchers will first need to utilize methods other than 

marker gene surveys to describe host-associated microbes that have not yet been described and 

may be unique to the model organisms in question. Once more diverse resources are available, 

previously generated data may offer more useful information due to increased sensitivity for 

taxonomic identification and functionality. Ultimately, this will enhance our ability to interpret 

biological significance from the characterization of microbiomes. This is very evident in equine 

microbiota research, which has recently produced many survey type publications characterizing 

the microbial community under a variety of conditions but lacks the collaborative effort and 

resources necessary to gain much functional information from characterization studies. As a result, 

most of the data generated from marker gene surveys in the horse remains speculative at best and 

serves as a descriptor or snapshot of a microbial population at a specific point in time with 

inconclusive speculations regards potential implications for the health of the animal.   

The equine microbiome contains a wealth of information which researchers are only 

beginning to understand. As practices, methods and resources for microbiome research continue 

to improve as will our understanding of the functionality and importance of these microbial 

communities in horses and throughout our living world. Further research is certainly needed to 

properly define dysbiosis states as it pertains to equine health, and what constitutes dysbiosis as 

harmful versus normal shifts in a dynamic community. This information may alter the way that we 

approach the management of animal health by considering microorganisms as more than just 

pathogens, but as members of a community which lives in a delicate balance with its’ host.  
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Future Outlooks: Microbiome Research 

 Research pertaining to the microbiome in general is plagued by a lack of standardization 

and multi-approach variation. Data issues which arose during the second study of this thesis project 

are not uncommon, and exemplify broad-scale issues that must be considered when moving 

forward with future microbiome research.   

Interest surrounding the microbiome has advanced at a very rapid pace over the last decade. 

In addition to a greatly enhanced understanding and appreciation for the importance of the 

microbiome, the advent of NGS technologies have greatly increased the ability for researchers to 

quickly and cost effectively study every imaginable microbiome in existence. Innovative high 

throughput experimental assays and sequencing technologies have revolutionized many aspects of 

biological research by drastically reducing the amount of time and money needed to produce 

massive amounts of data. As a result, a new bottleneck has come into existence, the issue of 

analyzing the “big data” [174]. Sifting through such enormous data sets to gain meaningful insights 

requires the development of bioinformatics tools, computational resources, and expert personnel. 

While this data has provided the scientific community with many breakthrough findings, it has 

also generated a great deal of new questions and problems.  

Another major limitation of all microbiome studies, especially marker gene surveys such 

as those described in this thesis, is the lack of comparability between studies. This is due to the 

large amount of variation in research approaches; from experimental design, to sample collection, 

DNA isolation, and sequencing protocols, to data analysis and even the interpretation of results 

[167]. There has been some attempts to create a set of standard protocols to address the biases 

resulting from biological and technical variation in data generation, such as those proposed by the 

Earth Microbiome Project, although these standards have not been readily utilized in less studied 
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model organisms such as the horse [11,135,167,175]. While attempts can be made to explain 

discrepancies between the results of separate projects, this still does not allow for the data to be 

utilized for a proper comparative analysis.  

Just during the two years of research (2016-2018) which contributed to this thesis, the main 

software used for data analysis was updated re-released over 10 times, the cost of sequencing 

continued to decrease, and even the terminology used to describe identified microbial organisms 

in marker gene surveys changed from “operational taxonomic units” to “features” [108,176]. 

While this progress exemplifies the fascinating evolution and fast pace of this field, it also 

demonstrates the issues of information becoming obsolete in a matter of months due to research 

leading to revised best practices. Now, more than ever, it is critical that standardized pipelines be 

implemented in microbiome studies to ensure that research is comparable and repeatable. 

However, it should also be taken into consideration that standardizing pipelines without a 

commitment to improvement could eventually result in the loss of innovation and progress in this 

field. Therefore, we should not discourage the development of novel approaches and methods 

which are crucial to further advancement. Researchers must also make a collaborative effort to 

publically share data and metadata associated with their data, in addition to detailed descriptions 

of their protocols to maximize our ability to identify sources of variation in microbiome data [167]. 

Such data sharing is required by most journals, but many field-specific journals do not, therefore 

it is the responsibility of authors and reviewers to make this information publically available. 

Ultimately, cooperation and collaboration throughout the scientific community will facilitate the 

highest level of productivity in our attempts to understand the microbial world that we live 

amongst.  
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Conclusion 

In conclusion, this thesis describes novel preliminary research into the effect of anthelmintic drugs 

on the equine fecal microbiota. Furthermore, this provides a basis for consideration pertaining to 

how common health practices may have unintended consequences. This is the first research to 

investigate the impact of anthelmintic administration on the microbiota horses without a helminth 

infection. Results from this research suggest that unnecessary anthelmintic use may have effects 

on the presence and abundance of microbial organisms that play important roles in equine health. 

This research also investigated the daily temporal impact of anthelmintic administration on 

animals with varying levels of infection and provided preliminary data suggesting dynamic time-

associated shifts in the microbial community following treatment. Finally, this research 

exemplified the challenges of microbiome research in both horses and other organisms, which is 

limiting the progress of this field. Further advancements in microbiome research is critical to 

improving equine management and health.   
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APPENDIX I: FECAL EGG COUNT PROTOCOL 

 

 

 

MODIFIED McMASTER’S METHOD 

 

Approximately fifty grams of feces were collected immediately following defecation from each 

horse and placed directly in individually labeled plastic bags. Samples were placed into a cooler 

on ice and transferred to a 4C refrigerator for storage within 2 hours after collection. Samples 

were processed and fecal egg counts were preformed within 48 hours after collection. The 

McMaster’s technique was used to quantify strongyles and ascarids egg counts in the fecal samples 

with a detection level of 25 eggs per gram (EPG). Twenty-six ml of Fecasol (sodium nitrate 

solution, specific gravity of 1.2 g/ml) and four grams of feces were placed into a container. The 

solution was manually homogenized by stirring with a wooden spatula. Immediately after 

homogenizing, 0.5 ml aliquots of the solution were added to each chamber of a McMaster slide 

(Chalex Corporation, Issaquah, WA, USA). After 10 minutes, parasite eggs were counted within 

each of the slide chambers under a light microscope at 10x magnification. The total number of 

eggs on the slide were then added and multiplied by 25 to obtain the EPG for each sample.  
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APPENDIX II: DNA ISOLATION PROTOCOL 

 

 

 

Prior to DNA isolation, samples were thawed on ice (4C) and homogenized using a sterilized 

spatula. Isolation was preformed using the PowerSoil® DNA Isolation Kit (MOBIO Carlsbad, 

California, Catalog No. 12888-50 & 12888-100) following a modified version of the 

manufacturer’s protocol as described below: 

 

1. To PowerBead tubes provided, add 0.25 grams of sample.  

2. Gently vortex to mix.  

3. Check Solution C1. If Solution C1 has precipitated, heat solution to 60oC until dissolved 

before use. 

4.  Add 60 𝜇l of Solution C1 and invert several times or vortex briefly. 

5. Heat the tubes at 65oC for 10 minutes.  

6. Secure the PowerBead tubes horizontally using the MOBIO Vortex Adaptor tube holder 

(MOBIO Catalog No. 13000-V1-24). Vortex at maximum speed for 10 minutes. 

7. Centrifuge the PowerBead tubes at 13,000 x g for 1 minute.  

8. Transfer the supernatant to a clean 2ml collection tube provided. Expect between 400-500 

𝜇l of supernatant. 

9. Add 250 𝜇l of Solution C2 and vortex for 5 seconds. Incubate at 4oC for 5 minutes. 

10. Centrifuge the tubes at 13,000 x g for 1 minute. 

11. Avoiding the pellet, transfer up to, but no more than, 600 𝜇l of supernatant to a clean 2 ml 

collection tube. 

12. Add 200 𝜇l of Solution C3 and vortex briefly. Incubate for 4oC for 5 minutes. 
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13. Centrifuge tubes at 13,000 x g for 1 minute. 

14. Avoiding the pellet, transfer up to, but no more than, 750 𝜇l of supernatant to a clean 2ml 

collection tube.  

15. Shake Solution C4 to mix before use. Add 1200 𝜇l of Solution C4 to the supernatant and 

vortex for 5 seconds. 

16. Load approximately 675 𝜇l of supernatant onto a spin filter provided and centrifuge at 

13,000 x g for 1 minute. Discard the flow through and repeat until all the supernatant has 

been loaded onto the spin filter.  

▪ A total of three loads for each sample processed are required 

17. Add 500 𝜇l of Solution C5 and centrifuge for 1 minute at 13,000 x g. 

18. Discard flow through.  

19. Centrifuge again for 1 minute at 13,000 x g. 

20. Carefully place the spin filter in a clean 2ml collection tube. Avoid splashing any of 

Solution C5 onto the spin filter. 

21. Add 100 𝜇l of Solution C6 to the center of the white filter membrane. 

▪ Eluting with 100 𝜇L of Solution C6 will maximize DNA yield. For more 

concentrated DNA, a minimum of 50 𝜇L of this solution can be used. Do not use 

less than 50 𝜇L of Solution C6 at this step. 

22. Centrifuge at 13,000 x g for 1 minute and discard the spin filter basket. 
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GLOSSARY 

 

 

 

Microbiota: All microorganisms present in a defined environment 

Microbiome: An entire habitat, including all genes and genomes contributed by members of a 

microbiota and the surrounding environmental conditions 

Metagenome: The collection of genes and genomes contributed by members of a microbiota 

Diversity: Mathematical equation accounting for the measures of richness and evenness in a given 

population or populations 

Alpha diversity: The diversity within a single ecosystem, site, or environment  

Richness: Number of different species represented in an ecosystem or community  

Evenness: Distribution of the abundance of members within an ecosystem or community  

Beta diversity: The diversity differences between two or more ecosystems, sites or environments   
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 LIST OF ABBREVIATIONS  

 

 

 

AAEP: American Association of Equine Practitioners 

ANOVA: Analysis of variance  

FEC: Fecal egg count 

g: gram 

GIM: Gastrointestinal microbiota 

kg: kilogram 

mg: milligram 

NGS: Next-generation sequencing 

OTU: Operational taxonomic unit 

PCoA: principal component analysis 

PCR: polymerase chain reaction 
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