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Abstract
A common pathology in heart failure is a detrimental change in the mechanics of both contraction
and filling. In familial hypertrophic cardiomyopathy, a genetic disease characterized by left
ventricular hypertrophy and myofiber disarray, left ventricular diastolic dysfunction is common and
contributes to congestive heart failure. In dilated cardiomyopathy, a common correlate to reduced
wall thickening and increased chamber volume is an asynchronous activation of the left ventricle
due to left bundle branch block. Local measures of the timing and magnitude of myocardial shortening
and relaxation can be obtained with magnetic resonance (MR) tissue tagging, MR cine phase contrast,
or MR cine displacement encoding. In familial hypertrophic cardiomyopathy, these methods have
been shown to quantify the restrictive filling of the ventricle. Characterizing the regions of the failing
heart which are activated late has allowed investigators to measure the change in protein expression
in those regions compared to normal myocardium. Also, these MR imaging methods have led to a
better quantification of the asynchronous activation in dilated cardiomyopathy, which can be used
to predict response to resynchronization therapy with pacing.
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Introduction
Heart failure is the leading cause of hospitalizations among the elderly. It is estimated that just
less than 5 million people in the US have heart failure. Heart failure comprises a broad spectrum
of pathologies in which the heart undergoes changes in its geometrical dimensions and its pump
function is reduced. This can involve myocardium, which is too thick and stiff in the case of
hypertrophic cardiomyopathy (HCM) or is too thin in the case of dilated cardiomyopathy
(DCM). In both cases, the heart experiences a reduction in pump function due to a poor
geometry and/or asynchronous activation of the myocardium. The myocardium itself may be
compromised by the infiltration of fibrous tissue secondary to previous infarct, or due to
idiopathic etiology.

When evaluating the patient with heart failure, it is necessary to measure the geometry of the
heart, the mechanics of the contracting ventricles, hemodynamics, and the classification of the
myocardium as viable or nonviable. Magnetic resonance imaging (MRI) can fill all of these
needs. Methods currently exist for the precise measurement of local 3-dimensional myocardial
motion noninvasively with MRI tagging.1 From these motion estimates, strain images
representing the local deformation of the myocardium can be formed to show local myocardial
contraction.2,3 These images clearly show the sequence of mechanical events during the
activation and relaxation of the heart, making them ideal to visualize abnormalities caused by
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asynchronous electrical activation or ischemia. Flow imaging can be used for measuring
hemodynamics5 and late enhancement Gd-diethylenetriamine pentaacetic acid imaging can be
used to highlight nonviable myocardium.6-8

In this article, we will focus our attention on the ability of MRI to measure the mechanical
properties of the failing heart.

Measuring mechanics with MRI
Magnetic resonance imaging has made significant contributions to the understanding of
myocardial mechanics through the use of numerous “tagging” methods for tracking myocardial
motion noninvasively.1 In MRI tagging, a set of saturation pulses placed in the tissue provide
a spatially varying signal intensity pattern that is an intrinsic part of the tissue; the change in
shape of the intensity pattern in the image reflects the change in shape of the underlying body
containing the intensity pattern.9-11 Although these methods were initially difficult to perform
in large patient populations, they are now available on almost all commercial MRI scanners,
and the advent of new processing algorithms has made it possible to analyze the data in a
reasonable time.12 This has led to the use of tagging in large clinical trials.13,14 Recent work
on alternative motion-tracking methods has also opened up opportunities of high-resolution
imaging of myocardial motion,15,16 but these have yet to be used in large clinical trials.
Reviews of these techniques exist,17,18 so we will not cover the details here. Fig. 1 shows a
short axis slice of the heart at 2 time points in the heart cycle: just after the electrocardiogram
trigger and at end-systole. The ability to measure local mechanics from the deformation of the
tagging pattern is very clear.

Measuring mechanics in HCM
Hypertrophic cardiomyopathy is a condition in which the myocardium becomes too thick,
thereby impairing function and sometimes obstructing the outflow tract in the left ventricle.
Hypertrophic cardiomyopathy was investigated early in the development of tagging
techniques.19 Young et al20 found increased twist in HCM, decreased excursion of valve plane
toward the apex, and reduced shortening especially in the basal septum. Kramer et al21 found
that circumferential shortening was less in patients with HCM than in control subjects in the
septal (13% ± 5% vs 24% ± 6%, P = .0002), inferior (13% ± 5% vs 21% ± 4%, P = .001), and
anterior (17% ± 5% vs 21% ± 3%, P < .03) regions, but not in the lateral region. Circumferential
end-systolic shortening was reduced in patients with HCM compared with control subjects at
all levels from apex to base.

Recent work by Ennis et al22 that focused on creating tag patterns that could be tracked
throughout the entire cardiac cycle has shown some interesting differences in the temporal
characteristics of strain in HCM vs normals. Using complementary spatial modulation of
magnetization23 and extended temporal sampling with cardiac phase to order reconstruction,
24 we compared the slow relaxation of the HCM ventricle with normals as shown in Fig. 2.

Measuring mechanics in DCM (asynchronous activation)
The relationship between asynchronous electrical excitation and the onset of mechanical
contraction has been investigated with MRI tagging.4,25-28 These MRI methods are ideal for
measuring the nature of mechanical asynchrony found in some patients with DCM, especially
those who are candidates for resynchronization therapy.29-31 Fig. 3 shows an example of the
evolution of strain in a normal left ventricle vs a patient in end-stage DCM with left bundle
branch block (LBBB).

Pacing the left ventricle with either single site or biventricular (BiV) pacing has been shown
to improve cardiac function in some patients with DCM.32However, establishing the criteria
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for which patients will respond best to this therapy is ongoing. Mechanical imaging with
magnetic resonance has offered some insight into this problem33 as shown in Fig. 3. Nelson
et al34 showed that a mechanical dyssynchrony index which quantified the strain variance at
the time of maximal shortening did correlate with response to pacing much better than QRS
duration.

The relative efficacy of BiV and left ventricular (LV) pacing has also been studied using MRI
tagging techniques by Leclerq et al.35 A similar degree of systolic function improvement was
found in a canine model of LBBB-failing hearts, despite radically different electrical activation
pattern from the 2 pacing protocols. Epicardial electrical mapping, tagged MRI, and
hemodynamics were obtained in dogs with LBBB-failing hearts during right atrial, LV, and
BiV stimulation. Biventricular and LV stimulation both significantly improved chamber
hemodynamics (eg, 25% increase in dP/dtmax and aortic pulse pressure) compared with atrial
pacing-LBBB. The functional improvement correlated with mechanical resynchronization as
quantified by MRI tagging techniques. Paradoxically, the electrical dispersion decreased 13%
with BiV but increased 23% with LV pacing (P < .01). It was concluded that improved
mechanical synchrony and function do not require electrical synchrony. Mechanical
coordination was the most important factor for systolic improvement with either BiV- or LV-
only pacing.

Discussion
Precise measurements of cardiac mechanics in heart failure have shown that knowledge of the
mechanics can predict the efficacy of resynchronization therapy, whereas the QRS interval
does not seem to be useful. It should be noted that beyond mechanics, late Gd enhancement is
able to accurately differentiate coronary artery disease from non-coronary artery disease
etiology of heart failure.36 Also, chronic mechanical asynchrony will have an effect on the
myocardial substrate, possibly increasing the probability of lethal arrhythmias.37 Magnetic
resonance imaging is an excellent imaging modality to understand heart failure and help guide
appropriate therapy.
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Fig 1.
Two images of a short axis slice in a heart that has been tagged with a grid pattern. The left
image shows the heart just after electrocardiogram detection and tag pattern application. The
right picture shows the mechanical deformation of the myocardium close to end-systole. Note
the severe deformation of the thinned septum away from the center of the left ventricle
indicating “paradoxical” systolic stretching in this region of myocardium. These lines can be
tracked and the regional circumferential shortening calculated.

McVeigh Page 6

J Electrocardiol. Author manuscript; available in PMC 2007 September 3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig 2.
The circumferential strain vs time in a normal volunteer and in a patient with HCM.22 The
primary feature that is different is the rapid relaxation of the normal left ventricle during early
diastole vs the slow relaxation of the left ventricle with HCM. This feature is quantified in the
figure with percentage circumferential strain per second (% Ecc/s). The mean value of this
strain rate from 8 patients and 6 normals is shown in the bar graph on the right (normals are
the dark gray bars; patients with HCM, light gray bars). Figure adapted from the PhD thesis
of Daniel Ennis, Johns Hopkins University, with permission.
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Fig 3.
These colorized surfaces show the circumferential stretch (yellow) and contraction (blue) of
the midwall of a normal human left ventricle (top) and a left ventricle of a patient with DCM
(bottom). The apex is toward the viewer and the free wall is on the right side. Four time frames
are shown from the beginning of systole through end-systole. Note the early contraction of the
septum and late contraction of the free wall in the patient.
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